УДК 539.89 : 539.25 оригинальное исследование

EBSD-АНАЛИЗ МИКРОСТРУКТУРЫ AL-CU-MG СПЛАВА, ПОДВЕРГНУТОГО СВАРКЕ ТРЕНИЕМ С ПЕРЕМЕШИВАНИЕМ

М. Р. Газизов¹, И. С. Зуйко², С. С. Малофеев²

(Статья представлена членом редакционной коллегии А. В. Носковым)

¹Российский государственный аграрный университет – МСХА имени К. А. Тимирязева,

Москва, 127434, Россия

²Белгородский государственный национальный исследовательский университет, Белгород, 308015, Россия

E-mail: gazizov@rgau-msha.ru, malofeev@bsu.edu.ru, zuiko_ivan@bsu.edu.ru

Аннотация. В данной работе исследована связь между тепловыделением во время сварки трением перемешиванием (СТП) и микроструктурой, формирующейся в зоне перемешивания современного термоупрочняемого алюминиевого сплава 2519. С помощью системы автоматической идентификации дифракции обратно-рассеянных электронов (EBSD) установлено, что микроструктура является мелкозернистой. Так же было показано что при исследованных режимах соединения размер зёрен в зоне перемешивания не превышает 2 мкм.

Ключевые слова: сварка трением с перемешиванием, дифракция обратно рассеянных электронов, аномальный рост зёрен

Для цитирования: Газизов М. Р., Малофеев С. С., Зуйко И. С. 2022. EBSD-анализ микроструктуры Al-Cu-Mg сплава, подвергнутого сварке трением с перемешиванием. Прикладная математика & Физика, 54(4): 261–265. DOI 10.52575/2687-0959-2022-54-4-261-265

EBSD-INVESTIGATION OF AL-CU-MG ALLOY MICROSTRUCTURE SUBJECTED TO FRICTION-STIR WELDING

Marat Gazizov ¹, Ivan Zuiko ², Sergey Malopheyev ²

(Article submitted by a member of the editorial board A. V. Noskov)

¹Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, 127434, Russia
²Belgorod National Research University, Belgorod, 308015, Russia
E-mail: gazizov@rgau-msha.ru, malofeev@bsu.edu.ru, zuiko_ivan@bsu.edu.ru Received November, 28, 2022

Abstract. In this work, the relationship between heat input during friction stir welding (FSW) and the microstructure formed in the stir zone of a modern heat-treatable aluminium alloy 2519 was studied. Electron back-scatter diffraction technique (EBSD) revealed that microstructure consists of fine grains. In addition, it was found that grain size does not exceed 2 mkm.

Keywords: Friction Stir Welding, EBSD, Abnormal Grain gGowth

For citation: Gazizov M. R., Malopheyev S. S. Zuiko I. S. 2022. EBSD-investigation of Al–Cu–Mg alloy microstructure subjected to friction-stir welding. Applied Mathematics & Physics, 54(4): 261–265 (in Russian). DOI 10.52575/2687-0959-2022-54-4-261-265

1. Введение. Благодаря низкой плотности, высокой прочности и жёсткости, термоупрочняемые Al–Cu–Mg сплавы находят применение в авиационной и транспортной промышленностях. Как известно [11, 15] их главным механизмом упрочнения является дисперсионный, то есть выделение наноразмерных частиц вторых фаз (из семейства *θ*-Al₂Cu, S-Al₂CuMg]. Для полномасштабного использования в промышленности эти сплавы должны обладать таким качеством как свариваемость [5], [6]-[9],[10].

Применение традиционных методов создания неразъемных сварных соединений (например, аргоннодуговым или электронно-лучевым) приводит к значительной деградации механических свойств [1]-[2], [5], [8]-[10]. Однако, относительно недавно появился новый метод соединения – сварка трением с перемешиванием (СТП) позволяет получать высококачественные сварные соединения даже в материалах, которые раньше считались несвариваемыми [2], [4]-[6], [9]. Это обеспечивается за счёт особенностей самого метода – во время СТП материал остаётся в твёрдом виде, то есть не переводится в расплав [1]-[10]. 262

Кроме того, материалы в процессе СТП подвергаются очень большим пластическим деформациям при повышенныхтемпературах и относительно высокой скорости [7]-[9]. Формирование зёренной микроструктуры при СТП представляет собой очень сложный физический процесс, который может включать в себя и прерывистую и непрерывную рекристаллизацию, и динамический и статический возврат, а также фрагментацию [2], [5], [8]-[9]. Вклад каждого механизма определяется свойствами соединяемых материалов, а именно структурой и энергией дефекта упаковки.

На сегодняшний день особенности микроструктуры Al–Cu–Mg сплавов после СТП изучены поверхностно. Поэтому поведение материала при вышеуказанных экстремальных условиях вызывает как академический, так и прикладной интерес. Таким образом, целью настоящей работы являлось исследование микроструктурных аспектов СТП-швов посредством современного метода характеристики структуры – EBSD-анализа.

2. Материалы и методика эксперимента. В качестве исходного материала использовали сплав AA2519 (химический состав Al-5.64Cu-0.33Mn-0.23Mg-0.15Zr-0.11Ti-0.09V-0.08Fe-0.08Zn-0.04Sn-0.01Si, весовых %), полученный методом полунепрерывного литья в HИУ «БелГУ». Из горячекатаных плит вырезали пластины, обработали на твёрдый раствор при T=535°C в течение 1 часа, закалили в холодную воду, прокатали на 20% (ε ~ 0.22) до толщины 3 мм и состарили в течение 6 часов при 165°C (состояние максимальной прочности). Это микроструктурное состояние было обозначено как основной материал (OM). Размер зёрен в OM составлял ~24 мкм, а доля ВУГ 90% [15]. Листы OM были сварены встык вдоль направления прокатки на СТП-машине AccurStir 1004. Для соединения использовали два режима, отличающиеся тепловыделением, благодаря варьированию скоростями вращения и поступательного движения инструмента. HT − низкое тепловыделение соответствовало скорости вращения 500 об/мин и скорости подачи 360 мм/мин. Учитывая сложный характер эволюции микроструктуры в ходе СТП, для дальнейшего исследования полученные сварные соединения были разделены в продольном направлении на три равных части (которые обозначены как «Верх», «Центр», и «Низ» на Рис. 1).

Рис. 1. Оптическое изображение поперечного сечения низкотемпературного сварного шва с обозначенными участками микроструктурных наблюдений. AS и RS соответствуют стороне набегания и стороне отвода Fig. 1. Optical image of the weld cross-section of the low-heat-input weld with indicated areas of microstructural observations. AS and RS is advancing and retreating side, respectivelys

Исследования микроструктуры были сосредоточены на зёренной структуре и проводились с использованием растрового электронного микроскопа FEI Quanta 600 FEG-SEM, работающего при напряжении 30 кВ, оснащённого системой анализа структуры кристаллических материалов методом дифракции обратно рассеянных электронов (EBSD). Во всех случаях размер карты составлял как минимум 250 × 250 мкм, а шаг сканирования – 0,2 мкм. Для анализа использовалось программное обеспечение TSL OIM Analysis 7. Достоверность индицирования Кикучи-картин определялась «индексом достоверности» или «confidence index». Все точки с индексом менее 0,1 не принимались во внимание и обозначены чёрным цветом на картах. Границами зёрен считали высокоугловые (ВУГ) с разориентировкой $\theta \ge 15^{\circ}$, границы с разориентировкой менее 15° рассматривали как малоугловые границы (МУГ). Мало- и большеугловые границы на EBSD-картах обозначены как белые и красные линии, соответственно. Средний размер зёрен вычислялся методом случайных секущих. Плотность границ того или иного типа (МУГ, ВУГ) определялось как соотношение общей длины границ к площади карты. Все остальные подробности эксперимента были представлены ранее [12]-[14].

3. Результаты и обсуждение. Известно, что из-за особенностей метода структура СТП-швов получается гетерогенной. Принято выделять зону перемешивания, зону термического воздействия, зону термомеханического воздействия. Текущее исследование полностью посвящено зоне перемешивания (Рис. 1).

На рисунках 2 и 3 представлены микроструктуры швов после низкотемпературного и высокотемпературного режима СТП, соответственно.

Рис. 2. EBSD-карты различных участков зоны перемешивания низкотемпературного шва: a – «Низ», б – «Центр», в – «Верх» Fig. 2. EBSD-maps of various sections of the stir zone of the low-temperature joint: a-weld root, b – center, c – upper surface

Рис. 3. EBSD-карты различных участков зоны перемешивания высокотемпературного шва: a – «Низ», б – «Центр», в – «Верх» Fig. 3. EBSD-maps of various sections of the stir zone of the high-temperature joint: a-weld root, b – center, c – upper surface

Ключевые параметры сформировавшейся микроструктуры приведены в Таблице 1.

Режим	Область	Средний размер	Малоугловые границы		Высокоугловые границы	
		зёрен, мкм	Доля, %	Плотность × 10², мкм⁻¹	Доля, %	Плотность × 10 ² , мкм
HT	Верх	1,0	55	9.9	45	8.1
	Центр	1,4	39	9.0	61	1.4
	Низ	0,9	68	11.5	32	5.8
BT	Верх	1,1	92	8.1	8	0.7
	Центр	1,9	53	4.1	47	3.8
	Низ	1,0	65	4.3	35	2.3

Таблица 1. Ключевые микроструктурные параметры зоны перемешиван	ия
Table 1. Key microstructural characteristics of a stir zone	

Оба режима сварки приводят к однородной мелкозернистой структуре с развитой сеткой субграниц. Такие структуры являются типичными для СТП-швов термоупрочняемых алюминиевых сплавов [1, 3, 6]. Их формирование напрямую контролируется непрерывной динамической рекристаллизацией [2].

Важно подчеркнуть, что вне зависимости от тепловыделения средний размер зёрен не превышал 2 мкм. Это может косвенно свидетельствовать об однородности зоны перемешивания. С другой стороны, в центральной части зоны перемешивания обоих швов наблюдается уменьшение доли малоугловых границ и формирование преимущественно зёрен. Этот эффект, скорее всего, связан с активизацией возврата в условиях деформации при повышенных температурах, что способствовало снижению плотности 264

дислокаций и тем самым замедлило эволюцию границ деформационной природы. Примечательно, что нижняя часть зоны перемешивания так же характеризуется небольшими размерами зёрен, что не совсем характерно для СТП-швов термоупрочняемых сплавов [2],[8]-[9]. Возможно, из-за малой толщины используемых пластин происходит быстрый теплоотвод из этой области в холодную стальную подложку, что приводит к подавлению роста зёрен.

Поскольку исследованный сплав является термоупрочняемым, то эволюцию зёренной структуры можно связать с частицами вторых фаз [2, 14]. Вероятно, сохранение объемной доли частиц в швах обеспечили повышенную термостабильность микроструктуры. Однако, это предположение требует экспериментального подтверждения.

В дальнейшем, для аттестации фазового состава и сформированной текстуры, планируется охарактеризовать изученные области с помощью рентгеноструктурного и рентгенофазового анализа, а также просвечивающей электронной микроскопии.

Заключение. Показано что сварка трением с перемешиванием приводит к существенному измельчению микроструктуры в зоне перемешивания термически упрочняемого сплава системы Al-Cu-Mg. Вне зависимости от выбранных условия процесса размер зерна не превышает 2 мкм. Термическая стабильность и тонкая структура полученных соединений требует дальнейшего изучения.

References

- 1. Goloborodko A. et al. 2004. Friction stir welding of a commercial 7075-T6 aluminum alloy: Grain refinement, thermal stability and tensile properties. Mater. Trans., 45(8): 2503–2508.
- 2. Heidarzadeh A. et al. 2020. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Prog. Mater. Sci., 117: 100752.
- 3. Kalinenko A. et al. 2020. Microstructure-strength relationship in friction-stir welded 6061-T6 aluminum alloy. Mater. Sci. Eng. A., 793: 139858.
- Meng X. et al. 2021. Recent progress on control strategies for inherent issues in friction stir welding. Prog. Mater. Sci., 115: 100706.
- 5. Mishra R.S., Ma Z.Y. 2005. Friction stir welding and processing. Mater. Sci. Eng. R., 50(1-2): 1-78.
- 6. Pang Q. et al. 2019. Characterization of microstructure, mechanical properties and formability for thermomechanical treatment of friction stir welded 2024-O alloys. Mater. Sci. Eng. A., 765: 138303.
- 7. Sato Y.S., et al. 2007. Grain growth phenomena in friction stir welded 1100 Al during post-weld heat treatment. Sci. Tech. Weld. Join., 12: 318–323.
- 8. Shah P.H. et al. 2017. Friction stir welding of aluminium alloys: An overview of experimental findings—Process, variables, development and applications. Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Applic., 6: 1464420716689588.
- 9. Threadgill P.L. et al. 2009. Friction stir welding of aluminum alloys. Int. Mater. Rev., 54: 49-93.
- 10. Yuan S. J., et al. 2012. Formability and microstructural stability of friction stir welded Al alloy tube during subsequent spinning and post weld heat treatment. Mater. Sci. Eng. A., 558: 586–591.
- 11. Wang S. C., Starink M. J. 2005. Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int. Mat. Rev., 50: 193–215.
- 12. Zuiko I. S. et al. 2022. On the Heterogeneous Distribution of Secondary Precipitates in Friction-Stir-Welded 2519 Aluminium Alloy. Metals, 12(4): 671.
- 13. Zuiko I. S. et al. 2021. Suppression of abnormal grain growth in friction-stir welded Al–Cu–Mg alloy by lowering of welding temperature. Scr. Mater., 196: 113765.
- Zuiko I. S. et al. 2020. Unusual ageing behaviour of friction-stir welded Al-Cu-Mg alloy. Mater. Sci. Eng. A., 793: 139882.
- Zuiko I.S., Kaibyshev R. 2020. Ageing response of cold-rolled Al-Cu-Mg alloy. Mater. Sci. Eng. A., 781: 139148.

Конфликт интересов: о потенциальном конфликте интересов не сообщалось. Conflict of interest: no potential conflict of interest related to this article was reported.

Поступила в редакцию 13.10.2022 Поступила после рецензирования 25.11.2022 Принята к публикации 28.11.2022

СВЕДЕНИЯ ОБ АВТОРАХ

Газизов Марат Разифович – кандидат технических наук, старший научный сотрудник Лаборатория перспективных сталей для сельскохозяйственной техники, Российский государственный аграрный университет – МСХА имени К. А. Тимирязева

ул. Тимирязевская, 49, Москва, 127434, Россия

Зуйко Иван Сергеевич – кандидат физико-математических наук, старший научный сотрудник Лаборатории механических свойств наноструктурных и жаропрочных материалов, Белгородский государственный национальный исследовательский университет

ул. Победы, 85, Белгород, 308015, Россия

Малофеев Сергей Сергеевич – кандидат технических наук, старший научный сотрудник Лаборатории механических свойств наноструктурных и жаропрочных материалов, Белгородский государственный национальный исследовательский университет

ул. Победы, 85, Белгород, 308015, Россия

INFORMATION ABOUT THE AUTHORS

Gazizov Marat – PhD, Senior Researcher of Laboratory of promising steels for agricultural machinery, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia

Zuiko Ivan – PhD, Senior Researcher of Laboratory of Mechanical Properties of Nanoscale Materials and Superalloys, Belgorod State National Research University, Belgorod, Russia

Malopheyev Sergey –PhD, Senior Researcher of Laboratory of Mechanical Properties of Nanoscale Materials and Superalloys, Belgorod State National Research University, Belgorod, Russia