ВЫВОД ПОТЕНЦИАЛА И ПОЛНОЙ ЭНЕРГИИ ИОННЫХ КРИСТАЛЛОВ ИЗ ФУНКЦИОНАЛА ЭЛЕКТРОННОЙ ПЛОТНОСТИ В СООТВЕТСТВИИ С ИОННОЙ МОДЕЛЬЮ

А.Г. Шкловский, А.С. Старовойтов

Белгородский государственный университет, 308007, г.Белгород, ул.Студенческая, 14. Starovoitov@Bsu.edu.ru

Описан вывод потенциала и полной энергии ионных кристаллов из функционала электронной плотности в соответствии с ионной моделью. Проведен расчет полной и когезионной энергий для кристалла КСІ. Показано, что полученные в рамках ионной модели результаты находятся в разумном согласии с экспериментальными данными.

Ключевые слова: потенциал, полная энергия, ионный кристалл, функционал электронной плотности, ионная модель.

Введение

В настоящей работе обсуждается ионная модель, основная идея которой заключается в том, что функции Ваннье ионных кристаллов достаточно точно могут быть аппроксимированы линейной комбинацией сильно локализованных функций, полученных из решения уравнения Шредингера или Дирака для сферически симметричного сжатого иона, находящегося в кристаллическом потенциале.

Ионный кристалл отличается тем, что он состоит из заряженных ионов, которые притягиваются друг к другу за счет кулоновских сил даже при больших параметрах решетки. Если считать параметр решетки достаточно большим, электронная плотность $n(\vec{r_1})$ ионного кристалла может быть представлена в виде суммы локализованных плотностей ионов:

$$n(\vec{r}_1) = \sum_{\vec{N},\tau} n_{\tau,ion} \left(|\vec{r}_1 - \vec{N} - \tau \cdot \vec{a}_{\tau}| \right), \tag{1}$$

где $n_{\tau, \rm low}(|\vec{r_1} - \vec{N} - \tau \cdot \vec{a_\tau}|)$ — электронная плотность сферически симметричного иона, центрированного в узле решетки $(\vec{N} + \tau \cdot \vec{a_\tau})$, τ (равное 0 или 1) — номер атома в ячейке. Когда постоянная решетки a больше радиуса локализации R_τ , гамильтониан кристалла $H(\vec{r})$ сильно отличается от гамильтониана $H_\tau(\vec{r})$ для атома, центрированного в точке $\vec{a_\tau}$,

$$II_{\mathbf{r}}(\vec{r}) \cdot \psi_{\mathbf{r},n,i,m}(\vec{r}) = e_{\mathbf{r},n,i,m} \cdot \psi_{\mathbf{r},n,i,m}(\vec{r}) \tag{2}$$

лишь для расстояний r больших R_r . При этом перекрытием волновых функций ионов можно пренебречь, и линейная комбинация функций $\psi_{r,n,j,m}(\vec{r})$, центрированных на векторах прямой решетки $(\vec{N} + \vec{a}_r)$, дает хорошую аппроксимацию волновой функции стационарного состояния кристалла для полного гамильтониана $H(\vec{r})$.

Когда параметр решетки начнет уменьшаться, возникнет перекрытие ионных оболочек. Будем считать, что выражение (1) при этом останется неизменным, но каждый отдельный ион будет сжиматься, т.е. $R_{\rm r}$ будет уменьшаться.

Дело в том, что при образовании ионных молекул замкнутые оболочки всегда порождают разрыхляющие молекулярные орбитали [1]. Эти орбитали отличаются тем, что их энергия монотонно возрастает при сближении центров ионов, составляющих молекулу. Рассматривая полную энергию молекулы как функцию межатомного

расстояния и включая в нее энергию кулоновского притяжения ионов, можно найти равновесное расстояние между ядрами ионов в молекуле, приравнивая производную от полной энергии по r к нулю. Другими словами, давление отталкивания, создаваемое разрыхляющими орбиталями, должно уравновешивать давление кулоновского притяжения. Аналогичные рассуждения, проделанные для функций Ванье в ионном кристалле в [2], показывают, что отталкивающее давление сжатых ионных оболочек должно уравновешивать давление Маделунга. Равновесный параметр решетки при этом находим из условия минимума когезионной энергии.

Теоретическая часть

В качестве примера детально рассмотрим равновесный кристалл KCl. Будем использовать атомную систему единиц $\hbar = e^2 = m_e = 1$. В качестве единиц длины будем использовать боровские радиусы, а в качестве единиц энергии – Хартри (1 Ha=27,11 eV). Вектор прямой решетки $(\bar{N} + \tau \cdot \bar{a}_r)$ этого кристалла через базисные вектора \bar{a} выражается следующим образом:

$$\vec{N} = n_1 \cdot \vec{a}_1 + n_2 \cdot \vec{a}_2 + n_3 \cdot \vec{a}_3,$$

$$\vec{a}_1 = a/2 \cdot [0,1,1],$$

$$\vec{a}_2 = a/2 \cdot [1,0,1],$$

$$\vec{a}_3 = a/2 \cdot [1,1,0],$$

$$\vec{a}_r = a/2 \cdot [1,1,1],$$
(3)

где n_1, n_2, n_3 — целые числа, a — параметр кубической решетки, равный 11,905 б.р. Для определенности будем считать, что ионы калия центрированы на векторах \vec{N} , для них номер иона в базисет равен 0. Вектора $\vec{N} + \vec{a}_r$ указывают положения центров ионов хлора, т.е. для них $\tau = 1$.

Стационарное уравнение Дирака для электрона в кристалле KCl имеет вид:

$$H\Psi_{n,\vec{k},m}(\vec{r}) = (c^2 + e_{n,\vec{k},m}) \cdot \Psi_{n,\vec{k},m}(\vec{r}). \tag{4}$$

Здесь $e_{\eta,\vec{k},m}$ — энергия блоховского электрона в кристалле, η — номер зоны, \vec{k} — квазиимпульс, m — спиновый индекс, а для гамильтониана кристалла H используется следующее выражение:

$$H = \begin{pmatrix} V(\vec{r}) + c^2 & -i \cdot c \cdot (\vec{s} \cdot \vec{\nabla}) \\ -i \cdot c \cdot (\vec{s} \cdot \vec{\nabla}) & V(\vec{r}) - c^2 \end{pmatrix}, \tag{5}$$

где c — скорость света в атомной системе единиц. Диагональные элементы в (5) умножены на единичные магрицы 2 × 2, а недиагональные элементы включают в себя матрицы Паули:

$$s_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, s_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, s_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{6}$$

Четырехкомпонентный волновой спинор $\Psi_{\eta, \vec{k}, m}(\vec{r})$ представлен в виде:

$$\Psi(\vec{r}) = \begin{pmatrix} u(\vec{r}) \\ v(\vec{r}) \end{pmatrix},\tag{7}$$

где $u(\vec{r})$ и $v(\vec{r})$ – обычные двухкомпонентные спиноры.

В методе функционала электронной плотности [3] потенциал кристалла $V(\vec{r})$ в адиабатическом приближении имеет вид:

$$V(\vec{r}) = \int_{\Omega} \frac{n(\vec{r}_1) \cdot d\vec{r}_1}{\left|\vec{r} - \vec{r}_1\right|} - \sum_{\vec{N}, \tau} \frac{Z_{\tau}}{\left|\vec{N} + \tau \cdot \vec{a}_{\tau} - \vec{r}\right|} + v_{xc}(n(\vec{r})), \tag{8}$$

где Z_r – заряд ядра, находящегося в узле решетки $(\vec{N} + \tau \cdot \vec{a}_r)$, Ω – объем кристалла. Как и в (1), $n(\vec{r_1})$ - электронная плотность в кристалле, а v_{xc} – обменнокорреляционный потенциал кристалла.

Подставляя (1) в (8) и производя несложные преобразования, получим:

$$V(\vec{r}) = \sum_{\vec{N},\tau} \left(\int_{\Omega_0} \frac{n_{\tau,ion}(\vec{r}_1) \cdot d\vec{r}_1}{|\vec{r} - \vec{r}_1 - \vec{N} - \tau \cdot \vec{a}_\tau|} - \frac{Z_\tau}{|\vec{N} + \tau \cdot \vec{a}_\tau - \vec{r}|} \right) + v_{xt} \left(n(\vec{r}) \right), \tag{9}$$

где Ω_0 – объем элементарной ячейки, а $n_{r,on}(\vec{r_1})$ – электронная плотность сжатого иона калия или хлора.

Если в сумме по (\vec{N}, τ) рассмотреть члены, удовлетворяющие условию $\left|\vec{N}+\tau\cdot\vec{a}_{r}-\vec{r}\right|>R_{r}$, то интеграл будет преобразован к виду:

$$\int_{\Omega_0} \frac{n_{\tau,ion}(\vec{r}_1) \cdot d\vec{r}_1}{|\vec{r} - \vec{r}_1 - \vec{N} - \tau \cdot \vec{a}_\tau|} = \frac{N_{e,\tau}}{|\vec{N} + \tau \cdot \vec{a}_\tau - \vec{r}|},$$
(10)

где $N_{s,\tau}$ — число электронов в ионе, центрированном в узле решетки $(\vec{N} + \tau \cdot \vec{a}_{\tau})$. Для остальных членов (9) можно добавить и вычесть правую часть равенства (10). Комбинируя члены $Z_{\rm r}$ и $N_{\rm e,r}$, так чтобы получился заряд иона $Q_{\rm ion,r}=Z_{\rm r}-N_{\rm e,r}$, получим потенциал (9) в виде решеточной суммы:

$$V(\vec{r}) = \sum_{\vec{N},\tau} \left(\frac{Q_{ion,\tau}}{|\vec{N} + \tau \cdot \vec{a}_{\tau} - \vec{r}|} \right) + \sum_{\vec{N},\tau} \Theta(R_{\tau} - |\vec{N} + \tau \cdot \vec{a}_{\tau} - \vec{r}|) \cdot 4\pi \int_{|\vec{N} + \tau \cdot \vec{r}|}^{R_{\tau}} dr_{2} \cdot n_{\tau}(r_{2}) \cdot r_{2} \cdot \left(\frac{r_{2}}{|\vec{N} + \tau \cdot \vec{a}_{\tau} - \vec{r}|} - 1 \right) + v_{xc}(n(\vec{r}))$$

$$(11)$$

Для вычисления решеточной суммы в потенциале был применен метод Эвальда [4]. При этом используются два тождества:

$$\frac{2}{\sqrt{\pi}} \cdot \sum_{\vec{N}} \exp(-|\vec{N} - \vec{r}|^2 \cdot x^2) = \frac{2 \cdot \pi}{\Omega_0} \cdot \sum_{\vec{k}} \frac{1}{x^3} \cdot \exp\left(-\frac{g^2}{4x^2} + i \cdot (\vec{g} \cdot \vec{r})\right)$$
(12)

Н

$$\sum_{N} \frac{1}{|\vec{N} - \vec{r}|} = \sum_{N} \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{\infty} \exp(-|\vec{N} - \vec{r}|^{2} \cdot x^{2}) dx.$$
 (13)

где \vec{g} – векторы обратной решетки, g – модули этих векторов, а x – переменная интегрирования.

Подставим (13) в (11) и разобъем интеграл по переменной x на две части, от 0 до 2/a и от 2/a до бесконечности. Вторую сумму по прямой решетке с помощью (12) заменим на сумму по обратной решетке и получим:

$$\sum_{\vec{N},r} \left(\frac{Q_{\text{ton,r}}}{|\vec{N} + \tau \cdot \vec{a}_{r} - \vec{r}|} \right) = \frac{2\pi}{\Omega_{0}} \sum_{\vec{g},r} \int_{0}^{\frac{\pi}{d}} dx \frac{1}{x^{3}} \exp\left(-\frac{g^{2}}{4x^{2}} + i(\vec{g}(\vec{r} - \tau \vec{a}_{r})) \right) \cdot Q_{\text{ton,r}} +$$

$$+ \sum_{\vec{N},r} \frac{2}{\sqrt{\pi}} \cdot Q_{\text{ton,r}} \cdot \int_{\frac{\pi}{d}}^{\pi} \exp(-|\vec{N} + \tau \vec{a}_{r} - \vec{r}|^{2} \cdot x^{2}) dx =$$

$$= \frac{4\pi}{\Omega_{0}} \sum_{\vec{g},r} Q_{\text{ton,r}} \frac{\exp\left(i(\vec{g}(\vec{r} - \tau \vec{a}_{r})) - \left(\frac{ga}{4} \right)^{2} \right)}{g^{2}} + \sum_{\vec{Q},r} \frac{Q_{\text{ton,r}}}{|\vec{N} + \tau \vec{a}_{r} - \vec{r}|} \cdot \operatorname{erfc}\left(\frac{2}{a} |\vec{N} + \tau \vec{a}_{r} - \vec{r}| \right).$$
(14)

С использованием этой формулы выражение (11) было преобразовано к виду:

$$V(\vec{r}) = -\frac{Q_{lon,r}}{|\vec{r}|} - \sum_{\vec{N},r} \frac{Q_{lon,r} \cdot erfc\left\{\frac{2}{a} | \vec{N} + \tau \cdot \vec{a}_{r} - \vec{r}|\right\}}{|\vec{N} + \tau \cdot \vec{a}_{r} - \vec{r}|} - 4\pi \cdot \sum_{\vec{g},r} \frac{Q_{lon,r}}{\Omega_{0} \cdot g^{2}} \cdot exp\left(i\vec{g}(\vec{r} - \tau \cdot \vec{a}_{r}) - \left(\frac{ag}{4}\right)^{2}\right) - \sum_{\vec{N},r} \Theta(R_{r} - |\vec{N} + \tau \cdot \vec{a}_{r} - \vec{r}|)$$

$$\cdot 4\pi \int_{|\vec{N} + r|}^{R_{r}} dr_{2} \cdot \vec{n}_{r}(r_{2}) \cdot r_{2} \cdot \left(\frac{r_{2}}{|\vec{N} + \tau \cdot \vec{a}_{r} - \vec{r}|} - 1\right) + \nu_{xc}(n_{\tau}(\vec{r})),$$

$$(15)$$

где штрих в сумме по прямой решетке исключает член с $(\vec{N}, \tau) = 0$, а штрих в сумме по обратной решетке — член с g = 0.

Формула (15) удобна для численных расчетов, так как из-за быстрого убывания функции эрфактум в суммировании по прямой решетке остается небольшое количество членов, и в суммировании по обратной решетке тоже останется мало членов из-за быстрого убывания экспоненты. Алгоритм вычисления потенциала $V(\vec{r})$ по формуле (15) подробно описан в статье [5].

Рассмотрим потенциал сферически симметричного иона $V_{\tau}(r)$, который легко выделяется из (15) для любого иона ($\tau=0$ или $\tau=1$),

$$V_{\tau}(r) = \frac{(N_{e,\tau} - 1 - Z_{\tau})}{r} - \frac{4\pi(N_{e,\tau} - 1)}{r \cdot N_{e,\tau}} \left(\int_{r}^{R_{\tau}} x^{2} n_{\tau}(x) dx - r \int_{r}^{R_{\tau}} x n_{\tau}(x) dx \right) + v_{xcp,\tau}(n_{\tau}(r)).$$
 (16)

Он использовался нами для численного расчета энергий и самосогласованной электронной плотности ионов в работе [6]. При $r \to 0$ этот потенциал переходит в кулоновский потенциал притяжения электрона к ядру. При $r \to \infty$ этот потенциал

имеет правильную асимптотику: $\frac{(N_{\epsilon,r}-1-Z_r)}{r}$. Остаточный член обменно-

корреляционного потенциала $v_{\text{кср. t}}(n_{\text{t}}(r))$ введен нами в работе [6]:

$$v_{scn,t}(n_{t}(\vec{r})) \equiv \delta E_{scn,t}[n_{t}] / \delta n_{t}(\vec{r}), \qquad (17)$$

где остаточная обменно-корреляционная энергия $E_{xcp,r}[n_r]$ дается выражением

$$E_{xcp,\tau}[n_{\tau}] \approx \int \varepsilon_{xcp,\tau}(n_{\tau}(\vec{r}))n_{\tau}(\vec{r})d\vec{r}, \qquad (18)$$

а $\varepsilon_{\text{кср, r}}(n_{\text{r}}(\vec{r}))$ определяется по формуле

$$\varepsilon_{\kappa,p,\tau}(n_{\tau}(\vec{r})) = \varepsilon_{\kappa,\tau}(n_{\tau}(\vec{r})) - \varepsilon_{\kappa,\tau}(n_{\tau}(\vec{r})/N_{\epsilon,\tau}). \tag{19}$$

Вычислительный эксперимент

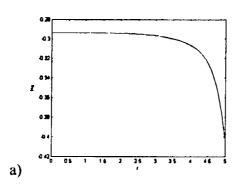
Для нахождения поправки, дополняющей ионный потенциал $V_r(r)$ до полного периодического потенциала кристалла, исключим потенциал (16) из потенциала (15):

$$V_{ext}(\vec{r}) = V(\vec{r}) - V_{f}(\vec{r})$$
(20)

и проанализируем полученную поправку $V_{ext}(\vec{r})$.

В областях, занимаемых ионами K и Cl, можно провести усреднение этой поправки по углам и добавить получившийся усредненный кристаллический потенциал к сферически симметричному потенциалу иона для нового самосогласованного расчета электронной плотности.

На рис. 1а и 16 представлены графики усредненного кристаллического потенциала, отсчитанные от ядра Cl и K соответственно.



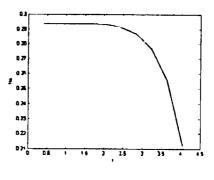


Рис. 1. Кристаллический потенциал, усредненный по сферам с центрами на ядрах Cl и K соответственно: а) вблизи ядра иона хлора, б) вблизи ядра иона калия. Расстояния r в боровских радиусах

б)

На рис. 1а видно, что поправка $V_{ext}(r)$ в центре иона действительно совпадает с энергией Маделунга V_{mod} , как это было отмечено еще в [8]:

$$V_{mad} = -\frac{\alpha}{d} = -0.2936, \tag{21}$$

где α — постоянная Маделунга [7], равная 1,7476 для решеток с кристаллической структурой типа натрий хлор. Для равновесного KCl d = 5,9526 б.р. — расстояние между ближайшими соседними ионами в кристалле. Обратим внимание, что усредненный потенциал практически не меняется вплоть до расстояний 3 б.р., и именно в этой области сосредоточены основные части электронной плотности сжатого иона хлора.

Аналогичные рассуждения можно провести и для области кристалла, занимаемой ионом калия. В центре ионов калия, как указывалось в [8], усредненный потенциал равен энергии Маделунга, взятой с противоположным знаком, а в остальной области, занимаемой ионами калия, также меняется очень медленно. Поэтому отличием поправки $V_{\rm ext}(r)$ к ионному потенциалу от значения $\pm V_{\rm mad}$ можно пренебречь. Тогда вблизи иона калия можно заменить потенциал V(r) потенциалом $V_{\rm r}(r) - V_{\rm mad}$. Вблизи отрицательного иона хлора можно заменить потенциал V(r) потенциалом $V_{\rm r}(r) + V_{\rm mad}$. Таким образом, если вычислять энергетический спектр кристалла $e_{\eta,\vec{k},m}$ из (4), пренебрегая перекрытием волновых функций сжатых ионов K и Cl, то его можно считать равным $e_{{\bf r},n,j,m} - (-1)^{\rm r} V_{\rm mad}$, где выбор знака при потенциале Маделунга определяется типом иона ($\tau=0$ — калий, $\tau=1$ — хлор). Чтобы отличать эту константу от точного значения $e_{\eta,\vec{k},m}$, будем обозначать ее $\vec{e}_{{\bf r},n,j,m}$.

В методе функционала электронной плотности полная энергия кристалла *KCl* в адиабатическом приближении дается выражением [3]

$$E = \sum_{\eta, \vec{k}, m} e_{\eta, \vec{k}, m} - \frac{1}{2} \int_{\Omega} d\vec{r_1} n(\vec{r_1}) \int_{\Omega} \frac{d\vec{r_2} n(\vec{r_2})}{\left|\vec{r_1} - \vec{r_2}\right|} + \frac{1}{2} \sum_{\vec{N_1}, r_1, \vec{N_2}, r_2} \frac{Z_{r_1} \cdot Z_{r_2}}{\left|\vec{N_1} + \tau_1 \vec{a_r} - \vec{N_2} - \tau_2 \vec{a_r}\right|} + E_{sc} - \int_{\Omega} d\vec{r_1} n(\vec{r_1}) \cdot v_{sc}(n(\vec{r_1})),$$
(22)

где штрих в сумме по векторам прямой решетки кристалла указывает на отсутствие члена с нулевым знаменателем, E_{xc} – обменно-корреляционная энергия кристалла. Воспользуемся формулой (1) для электронной плотности в кристалле. Будем рассчитывать энергию кристалла, приходящуюся на одну ячейку, т.е. на пару ионов –

 $E_{sv} = E / N_{sv}$. Количество векторов \vec{k} , находящихся в зоне Бриллюэна, точно совпадает с количеством ячеек в кристалле. Пренебрегая в (22) перекрытием сжатых волновых функций ионов, для E_{sv} имеем приближенное выражение

Плотности сжатых ионов калия и хлора в кристалле приближенно остаются сферически симметричными. Рассчитывая электронную плотность $n_{\tau}(r)$ и занятые уровни энергии $e_{\tau,n,j,m}$ так, как это проделано в работе [5], можно получить полную энергию сжатых ионов $E_{\tau}(R_{\tau})$ по формуле:

$$E_{r}(R_{r}) = \sum_{n,j,m} e_{r,n,j,m}(R_{r}) - 2\pi(N_{e,r} - 1) \int_{0}^{R_{r}} dr_{1}r_{1}n_{r}(r_{1}) + 8\pi^{2} \frac{(N_{e,r} - 1)}{N_{e,r}} \int_{0}^{R_{r}} dr_{1}r_{1}n_{r}(r_{1}) \cdot \int_{0}^{R_{r}} dr_{2}r_{2}(r_{2} - r_{1})n_{r}(r_{2}) + 4\pi \int_{0}^{R_{r}} r_{1}^{2} dr_{1}(\varepsilon_{scp}(n_{r}(r_{1})) - v_{scp}(n_{r}(r_{1})))n_{r}(r_{1}).$$
(24)

Воспользуемся формулой (24) для преобразования (23) к виду:

$$E_{_{RV}} \approx \sum_{\tau,n,j,m} (\vec{e}_{_{\tau,m,j,m}} - e_{_{\tau,n,j,m}}) + \sum_{\vec{i}} E_{_{\tau}}(R_{_{\tau}}) - \frac{1}{2N_{_{RV}}} \sum_{\vec{N}_{_{1}},\tau_{_{1}},\vec{N}_{_{2}},\tau_{_{2}}} \frac{N_{_{e,\tau_{_{1}}}} \cdot N_{_{e,\tau_{_{2}}}}}{|\vec{N}_{_{1}} + \tau_{_{1}}\vec{a}_{_{\tau}} - \vec{N}_{_{2}} - \tau_{_{2}}\vec{a}_{_{\tau}}|} + \frac{1}{2N_{_{RV}}} \sum_{\vec{N}_{_{1}},\tau_{_{1}},\vec{N}_{_{2}},\tau_{_{2}}} \frac{Z_{_{\tau_{_{1}}}} \cdot Z_{_{\tau_{_{2}}}}}{|\vec{N}_{_{1}} + \tau_{_{1}}\vec{a}_{_{\tau}} - \vec{N}_{_{2}} - \tau_{_{2}}\vec{a}_{_{\tau}}|}.$$

$$(25)$$

В формуле (25) зависимость от вектора \vec{N}_1 можно исключить, если ввести обозначение $\vec{N}_2 = \vec{N}_1 - \vec{N}$ и воспользоваться условием:

$$Z_K = N_{eK} + 1$$

$$Z_{CI} = N_{eCI} - 1.$$
(26)

При этом последние два члена в (25) можно преобразовать к виду:

$$\frac{1}{2} \sum_{\vec{N}}' \left(\frac{Z_{CI}^2 - N_{eCI}^2}{\left| \vec{N} \right|} + \frac{Z_K^2 - N_{eK}^2}{\left| \vec{N} \right|} + 2 \frac{Z_{CI} \cdot Z_K - N_{eCI} \cdot N_{eK}}{\left| \vec{N} + \vec{a}_{\tau} \right|} \right) =$$

$$= \sum_{\vec{N}}' \left(\frac{N_{eK} - N_{eCI} + 1}{\left| \vec{N} \right|} + \frac{N_{eCI} - N_{eK} - 1}{\left| \vec{N} + \vec{a}_{\tau} \right|} \right) = -(N_{eK} - N_{eCI} + 1) \frac{\alpha}{d}. \tag{27}$$

Таким образом, после всех преобразований вместо формулы (23) имеем

$$E_{R_{t}} \approx \sum_{\tau,n,j,m} (\tilde{e}_{\tau,n,j,m} - e_{\tau,n,j,m}) + \sum_{\tau} E_{\tau}(R_{\tau}) - (N_{eK} - N_{eCl} + 1) \frac{\alpha}{d}.$$
 (28)

Как было отмечено при выводе формулы (23), каждая энергия $\breve{e}_{r,n,l,m}$ отличается от энергии $e_{r,n,j,m}$ как раз на величину α / d , которая берется с плюсом для иона калия и с минусом для иона хлора. Поэтому в тех же приближениях вместо (28) можно записать

$$E_{\rm gq} = E/N_{\rm gq} \approx \sum_{\rm r} E_{\rm r}(R_{\rm r}) - \alpha/d , \qquad (29)$$

Выражение (29) выведено для произвольного параметра решетки d, для которого еще можно пренебречь перекрытием волновых функций. Кроме того, считалось, что разницей между обменно-корреляционной энергией в кристалле и в отдельных ионах можно пренебречь.

Подставляя найденные из решения уравнения Дирака для сжатых ионов $n_*(r)$ и $e_{t.n.,m}$ в (24), а затем результат – в формулу:

$$P_{\rm r} = -\frac{dE_{\rm r}(R_{\rm r})}{dR_{\rm r}} \cdot \frac{1}{4\pi R_{\rm r}^2},\tag{30}$$

получаем энергии $E_{\rm r}(R_{\rm r})$ и давления $P_{\rm r}$ для ионов калия и хлора в зависимости от радиусов сжатых ионов R_K и R_{Cl} . Результаты этих вычислений представлены в табл. 1.

Таблица 1 Зависимость полных энергий ионов $E_{\tau}(R_{\tau})$ и давления P_{τ} от радиусов сжатых ионов калия и хлора

Калий			Хлор		
<i>R_K</i> , б. р.	$E_{\mathcal{K}},$ eV	Р _К , 10 ¹² дин∕см ²	R_{Cl} , б. р.	E _{Cl} , eV	Р _{Сі} , 10 ¹² дин/см ²
9,0(∞)	-16378,562	0	9,0(∞)	-12550.365	0
5,0	-16378,527	0,003	5,8	-12549,982	0,014
4,8	-16378,500	0,007	5,6	-12549,850	0,023
4,6	-16378,452	0,013	5,4	-12549,672	0,027
4,4	-16378,371	0,023	5,2	-12549,460	0,043
4,2	-16378,235	0,043	5,0 .	-12549,118	0,071
4,0	-16378,005	0,082	4,8	-12548,642	0,102
3,8	-16377,617	0,137	4,6	-12548,026	0,138

Как видно из табл. 1, расчеты по методике, описанной в работе [4], для иона калия с зарядом +1 с R_{κ} =9 б.р. дали для полной энергии величину -16378,562eV, а для хлора с радиусом R_{Cl} =9 б.р. и зарядом –1 величину –12550.365 eV. Они отличаются от экспериментальных значений [1] для иона калия (-16334,1 eV) и для иона хлора (-12540,01 eV) всего на 0,13%. Поэтому полные энергии сжатых ионов калия и хлора с радиусами 9 принимаются за полные энергии несжатых ионов, и в табл. 1 эти радиусы помечены знаком ∞.

Теперь можно ввести когезионную энергию кристалла KCl:

$$u(d) = u_{cor}(d) - \frac{\alpha e^2}{d}, \qquad (31)$$

где введено обозначение $u_{cor}(d)$ для разности энергий пары сжатых и несжатых ионов

$$u_{cor}(d) = E_{\kappa}(R_{\kappa}) - E_{\kappa}(\infty) + E_{Cl}(R_{Cl}) - E_{Cl}(\infty). \tag{32}$$

Далее необходимо найти зависимость радиусов сжатых ионов калия R_K и хлора R_{Cl} от расстояния между ионами d. Такие равновесные радиусы определяются из условия: внешнее давление притяжения P, рассчитанное по формуле

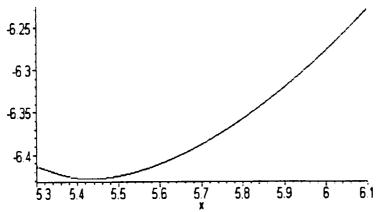
$$P = -\frac{dE_{\text{av}}}{d\Omega_0} = \frac{\alpha e^2}{6d^4},\tag{33}$$

для различных значений d, должно быть равно внутреннему давлению отталкивания, рассчитанному по формуле (30). Результаты этих вычислений представлены в табл. 2.

Таблица 2 Зависимость сжатых ионных радиусов калия R_K и хлора R_{CI} , полученных из условия равенства давлений притяжения и отгалкивания в кристалле, от расстояния между ионами d

d	R_{κ}	R_{Cl}	
[б.р.]	[6.p.]	[б.р.]	
5,3	3,904	4,762	
5,4	3,932	4,807	
5,5	3,958	4,849	
5,6	3,982	4,888	
5,7	4,004	4,927	
5,8	4,026	4,964	
5,9	4,046	4,999	
6,0	4,066	5,031	
6,1	4,085	5,062	

Проведем расчет по формуле (31), пренебрегая перекрытием и получим зависимости когезионной энергии кристалла KCl от расстояния между соседними ионами d. Эта зависимость (в eV) представлена на рис. 2. Минимум когезионной энергии приходится на расстояние между ионами d = 5,432 б.р., которое отличается от экспериментального значения d = 5,953 б.р. всего на 0,52 б.р. или на 8,7%. А рассчитанная в точке d = 5,432 б.р. полная когезионная энергия, равная -6,43 eV, отличается от экспериментальной когезионной энергии (-7,18 eV) [1] всего на 0,75 eV или на 10,5%.



Puc. 2. Зависимость когезионной энергии u(x) кристалла KCl от расстояния между соседними ионами x

Вычислим модуль всестороннего сжатия B_0 в этой модели как функцию равновесного расстояния между ближайшими соседями [7]:

$$B_0 = \frac{1}{18d} \frac{d^2 u(x)}{dx^2} \bigg|_{x=d}.$$
 (34)

Он равен $1,23\cdot10^{11}$ дин/см² и отличается от экспериментального значения $B_0=1,75\cdot10^{11}$ дин/см² [7] на 29%. Учитывая, что формула (34) содержит вторую производную от численно рассчитанной функции u(x), можно признать расчет удовлетворительным.

Заключение

Таким образом, ионная модель качественно правильно описывает свойства ионного кристалла KCl, несмотря на пренебрежение перекрытием ионов. Тем не менее, учет кристаллического потенциала только в виде константы $\pm V_{mod}$ не является достаточно точным. Все приведенные результаты показывают, что модель сжатых ионов является адекватной и описывает параметр решетки кристалла и когезионную энергию достаточно точно, несмотря на свою простоту и на многие допущения. Также несомненным преимуществом модели является отсутствие в ней подгоночных эмпирических параметров.

Литература

- 1. С. Фудзинага. Метод молекулярных орбиталей. М.: Мир, 1983. –461 с.
- 2. Старовойтов А.С., Шкловский А.Г. Сжатые ионные орбитали в кристалле NaCl // Известия ТулГУ. Серия Физика. 2005. Вып. 5. –С.35-41.
- 3. Теория неоднородного электронного газа / под ред. С. Лундквиста, Н. Марча, М.: Мир, 1987. 400 с.
 - 4. Принципы теории твердого тела / под. ред. Дж. Займан. М.: Мир, 1974. 472 с.
- 5. Шкловский А.Г. Вычисление полного кристаллического потенциала в соединении $YBa_2Cu_3O_7$ // Научные ведомости БелГУ: Серия «Физико-математические науки». 2005. №2(22). Вып. 11. С. 152–157.
- 6. Старовойтов А.С., Шкловский А.Г. Обменно-корреляционная энергия в методе локального функционала электронной плотности // Известия ТулГУ. Серия: Физика. Тула: Изд-во Тульск. ун-та, 2006.
 - 7. Ашкрофт H., Мермин H. Физика твердого тела. M.: Мир, 1979. T. 2. 422 c.
- 8. Дж. Слэтер. Методы самосогласованного поля для молекул и твердых тел. М.: Мир, 1978. 658 с.

CONCLUSION OF POTENTIAL AND FULL ENERGY OF IONIC CRYSTALS FROM FUNCTIONAL ELECTRONIC DENSITY ACCORDING TO IONIC MODEL

A.G. Shklovskii, A.S. Starovoitov

Belgorod State University, Studencheskaja street, 14, Belgorod, 308007, Russia Starovoitov@Bsu.edu.ru

Conclusion of potential and full energies of ionic crystals from functional electronic density according to ionic model is described. The calculation of full and cohesion energies for a crystal KCl is realized. Shown, that the results is got according to ionic model is in rational agreement with experiment data.

Key words; Potential, full energy, ionic crystal, functional electronic density, ionic model.