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Abstract. In the survey, results on the existence, growth, uniqueness, and value distribution of
meromorphic (or entire) solutions of homogeneous linear partial dilferential equations of the second
order with polynomial coeflicients that are similar or different from that of meromorphic solutions of
linear ordinary differential equations have been obtained. We have characterized those entire solutions
of a special partial differential equation that relate to Bessel functions and prove in general that
meromorphic solutions that grow much faster than the coefficient have zero Nevanlinna's deficiency for
each non-zero complex value. It's well-know result that if a nonconstant meromorphic function fon C
and its I-th derivative f) have no zeros for some [ > 2, then [ is of the form f(z) = exp(Az + B) or
flz) = (Az + B)™" for some constants A, 3. We have extended this result to meromorphic functions
of several variables, by [irst extending the classic Tumura-Clunie theorem for meromorphic functions
of one complex variable to that of meromorphic functions of several complex variables by utilizing
Nevanlinna theory.

Keywords: meromorphic functions. homogeneous linear partial differential equation, holomorphic
coellicients, Nevanlinna’'s value distribution theory.

Analytie properties or characterizations of meromorphic (or entire) solutions of some partial
differential equations (or system) of the first order have been exhibited elearly by several authors
(ef. [2]. [13]. [18], [19]). In this survey, we introduce a few results on meromorphic solutions
of homogeneous linear partial differential equations of the second order in two independent
complex variables
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where a, = ay(t, z) are holomorphie functions for (¢, z) € T, where ¥ is a region on C?. Basic
idea comes from S. N. Bernstein [3], H. Lewy [17], I. G. Petrovskii[20]. For more detail, see [15].
To prove these results, we used some methods in [5]. [7]. [L1]. [14]. [21]. [23] and |26].

First of all. we examine the following special differential equation:
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The work of Chung-Chun Yang was partially supported by Natural Science Foundation of China and second
author was partially supported by a UGC Grant of Hong Kong: Project 604106.

t?




Pei-Chu Hu, Clung-Clhun Yang. Uniqueness ... 46

Theorem 1.1 The differential equation (1.2) has an entire solution f(t,z) on C? if and only
if f is an entire function erpressed by the series

oc

Jit 2 e Zn!ann(t}z” (L.3)

n={

such that

lim sup e, |Y™ =0, (L.4)

N—a0
where J,(t) is the first kind of Bessel’s function of order n. Moreover, the order ord(f) of the
entire function [ satisfies
p < ord(f) < max{L, p},
where
2logn

y = lim sup ———. fESs
PR T R (L.5)

By definition. the order of f is defined by

Floe +F AT( N
ord(f) = limsup M

P—ag 10gr
where
logz, fz>=1;
- e o =] == o
log I‘{U, fre<l,
and

M(r, fy= max |f(t2)|.

[tl<r,|z|<r

G. Valiron [25] showed that each transcendental entire solution of a homogeneous linear ordinary
differential equation with polynomial coefficients is of finite positive order. However, Theorem 1.1
shows that Valiron's theorem is not true for general partial differential equations. Here we
exhibit another example that the following equation

pFu_ 0o
gtz P22 ot

Lias an entire solution exp(te®) of infinite order.

=0

If0 < A = ord(f) < oo, we define the type of f by

: : log *M{(r, f)
typ(f) = limsup —=

T =00
For the type of entire solutions of the equation (1.2}, we have an analogue of Lindeldf-Pringsheim
theorem, its proof is essentially the same as that of the determining of the type for Taylor series
of entire functions of one complex variable.

Theorem 1.2 If f(t.z) is an entire solution of (1.2) defined by (1.3) and (1.4) such that
1 < A=ord(f) < oo, then the type o = typ(f) satisfies

exa = 27 limsup 2ne, M 2.
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Broseh [4] proved that if two nonconstant meromorphic functions f and g on C share three
distinet values ¢;. e, ¢y counting multiplicities, and if f is a solution of the differential equation

n n
a1z

=0

such that by, by, - -+ . oy, (bo, Z 0) are small functions of f (grow slower than f), furthermore if
P(z.¢;) 20 for i =1,2.3, then f = g. To state a generalization of Brosch’s result to PDE, we
abbreviate
_ _ Fu _ Pu
Uy = E Ui, = @ Uy = 6{'_2
and so on, and set

Du = a[]uf + 2a 1, — agui.
Lu = agug + 2001, + Goll,, + Q31 + 04U,

We make the following assummption:

(A) All coefficients a; in (1.1) are polynomials and when ag = () there are no nonconstant
polvnomials u satisfving the system
Du =0,
Lu=10.

For technical reason, here we study only meromorphic functions of finite orders. The order
of a meromorphic function of several variables may be defined by using its Nevaulinna's
characteristic function (cf. [12]. [22]).

Theorem 1.3 Assume that the assumption (A) holds. Let f(t. z) be a nonconstant meromorphic
solution of (1.1) such that ord(f) < oc and let g be a nonconstant meromorphic function of
finite order on C2. If f and g share 0, 1, 0o counting multiplicity, one of the following five cases
is occurred:

(a) g=f:

(b) ¢f = L:

(¢) a6=0.9f=f+y:

(d) ag =0, and there erist a constant b & {0,1} and a polynomial 3 such that

e A _ __b _=Rya
fgog =g g =l

(e) ag #0, fP¢*=3fg—f—g.
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When ag # 0, the case (b) may happen. For example. we consider the differential equation

#u  Pu  Ou —
which has an entire solution of order 1
&, 2) =atte,

Let’s compare f with the following entire function of order 1

g(t.z) =e 72,
Obviously, f and g share 0, 1, —1. oo counting multiplicity, but ¢ # f, gf = 1. Now the
differential equation

Tu+Du+ag=10

has a nonconstant polynomial solution
u(t,z) =t + z

The condition (A) 18 meaningful. For example, Theoremn 1.1 shows that the differential
equation (1.2) has a lot of entire solutions of finite orders. Obviously. the condition {A) associated
to the differential equation (2) holds, and hence we can obtain the fact;

Corollary 1.4 Let f(t,z) be a nonconstant meromorphic solution of (1.2) such that ord(f) <
oo and let g be a nonconstant meromorphic function of finite order on C2. If f and g share 0,
1, oc counting multiplicity, then we have either g= f orgf =1 or f2¢> =3fg— f—g.

The case (b) in Theorem 1.3 may really happen for ag = 0. For example, we consider the
differential equation

Pu du _
— ——=10, (L.7)
ot Oz

which has an eutire solution f(t,2) = €7 of order 1 such that the assumption (A) holds

—r

obviously. The entire solution f and the function g = ™ 7% share (), 1, oo counting multiplicity,

and satisfy gf = 1, that is, the case (b) in Theorem 1.3 happens for the case ag = 0.

For a real number z, let [z] denote the maximal nteger < z. We give the following result
that is an analogue of Anastassiadis’s theorem [1] on uniqueness of entire functions of one
variable.

Theorem 1.5 Let f(t.z) and g(t. z) be transcendental entire solutions of (1.2) such that

ord(f) < oco. ord(g) < co, and
o% f
Ot 0zd

liadl
T Ot

(0.0) 0.0), j=0.1,....q.

where

g = max{[ord(f)]. [erd(g)]}.
If there exists a compler number a with (a, f(0.0)) # (0,0) such that f and g share a counting
maultiplicity, then we have f = g.
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Theorem 1.3 shows that when ag = 0, global solutions of the equation (1.1) can be quite
complicated, however, when ag # ), these solutions have normal properties. Next result also
supports this view. Theorem 1.6 extends a theorem (cf. Theorem 5.8 of [10]) on meromorphic
solutions of linear ordinary differential equations.

Theorem 1.6 Assume that all ay in (1.1) are entire functions on C* which grow slower than
a meromorphic solution of equations (1.1) on C. If ag 2 0, then the deficiency of the solution
for each non-zero compler number is zero.

For example, the telegraph equation

lin Nin 3,
e 20 1 + QQ,—M +alu=10

e iy
ot? 022 ot
Lias entire solutions
u(t,2) = e (2 + ct) + gz — )},
where f and g are entire functions on C. If & # 0, Theorem 1.6 shows that the deficiency of a
non-coustant u(t, z) for each non-zero complex number a is zero, which means that the equation

flz+et)+glz—ct) —ae® =0
Las zeros.

Let Z; denote the set of non-negative integers. For z = (21,..., 2m) € C™, i = (f1,....0) €
moo T
ZT, we write
L W P =0 = il =d 4t
h Fi s B ey @ =8, =807 il =10 i

We have interesting in the following problem:

Conjecture 1.7 If f is a meromorphic function in C™ such that f and &'f have no zeros for
somel = (L, ...lwm) € ZF with I > 2 (1 £ k € m) and such that the set of poles of f is
algebraic, then there erists a partition

{l,..m}=LUuLU---UI

such that ;N I; =0 (i # j), and

o
i 3
flzrooy 2m) = exp (Z Az + Bn) H Z Ajz + B;
ieln J=1 \igel;
where A;, B; are constants with A; # 0, and n; are positive infegers.
This is open if m > 1. For detail discussion, see [16]. When m = 1. the conclusion of

Conjecture 1.7 was obtained by Tumura [24]., and Hayman [8] gave a proof for the case | =
I, = 2. Later, as a correction of the gap in Tumura’s proof, Clunie [6] gave a valid proof of the
assertion for any [ > 1.



Pei-Chu Hu, Clung-Clhun Yang. Uniqueness ...

Let f be a meromorphic function in C™ which we shall assume to be not constant. We shall
be concerned largely with meromorphic functions b which are polynomials in f and the partial
derivatives of f with coeflicients a of the form

I T(r,a) = o(T(r, f)}, (1.8)

where T(r, f) is the Nevanlinna’s characteristic function of f. and where the symbol “||"means
that the relation holds outside a set of r of finite linear measure. Such functions b will be called
differential polynomials in f. To study Conjecture 1.7, the following result will play a crueial
role.

Theorem 1.8 Suppose that f is meromorphic and not constant in C™, that
9= f"+ Paai(f), (1.9)

where Pa-1(f) is a differential polynomial of degree at most n — 1 in f, and that
= 3 1
| N(r,f)+ N (r, E) =o(T(r. f)),

where N(r. f) is the Nevanlinna’s valence function of f for poles. Then

1 n
y={F+g) o
where a 1s a meromorphic function of the form (1.8) in C™ determined by the terms of degree
n—1in P,oi(f) and by g.

When m = 1, Theorem 1.8 is due to Hayman ([9], Theorem 3.9, p.69). By using Theorem 1.8,
we can give a proof of Conjecture 1.7, under a condition on non-vanishing of the partial
derivatives of order > 1 that differs from the one posed in the conjecture, as follows:

Theorem 1.9 If f is a meromorphic function in C™ such that f, dii Flmesg Oi’r"n f have no zeros
for some . = 2 (1 £k < m) and such that the set of poles of f is algebraic, then there erists
a partifion

{l._ m} =hUuhLuUu---UIl

such that ;N IL; =0 (i # j), and

"

k 5
f{zl. .Z,n) = exp (Z .4121' o B{]) H Z_'—‘i;zi e Bj .

i€l =1 \igl;
where A;, B; are constants with A; # 0, and n; are positive integers.
In particular, if f is entire, the function f in Theorem 1.9 has only an exponential form
flzr o zm) =exp(Ayzy + o+ Apz + By)

We shall utilize the methods developed in [9]. [12] and [13] and generalized Clunie lemma to
prove the main results.



10.

11.
12,

13.

14,

15.

16.

Beal¥

HAVYIHBIE BEIOMOCTI “‘l Ne13(68). Brimyex 17/1 2009

Bibliography

. J. Anastassiadis. Recherches algébriques sur le théoréme de Picard-Montel, Exprosés sur
la théorie des fonctions XVIII, Hermann, Paris. 1959.

. C.A. Berenstein, B.Q). Li. On certain first-order partial differential equations in C",

Harmonic Analysis, Signal Processing, and Complexity, 29-36, Progr. Math., 238, Birkh-
duser Boston, 2005.

. S.N. Bernstein. Sur la nature analytique des solutions de certaines équations aux dériveés
parttielles du second order, C. R. Acad. Sei. Paris 137 (1903), 778-781.

. G. Brosch. Eindeutigkeitssitze fiir meromorphe Funktionen, Thesis, Technical University

of Aachen. 1989,

. W.D. Brownawell. On the factorization of partial differential equations, Can. J. Math.
Vol. XXXIX (1987), No. 4, 825-834.

. J. Clunie. On integral and meromorphic functions, J. London Math. Soc. 37(1962), 17-27.

. Ph. Griffiths, J. King. Nevanlinna theory and lolomorphic mappings between algebraic
varieties, Acta Math. 130(1973), 145-220.

. W.K. Hayman. Picard values of meromorphic functions and their derivatives, Ann. of

Math. 70(1959). 9-42.
. W.K. Hayman. Meromorphic functions, Oxford University Press, 1964.

Y.Z. He. X.Z. Xiso. Algebroid functions and ordinary differential equations (Chinese),
Science Press, Beijing, 1988,

E.W. Hobson. Spherical and Ellipsoidal Harmonies. Cambridge, 1931,

P.C. Hu. P. Li. C.C. Yang. Unicity of meromorphic mappings. Kluwer Academic Publishers,

2003.

P.C. Hu. C.C. Yang. Malmaquist type theorem and factorization of meromorphic solutions
of partial differential equations, Complex Variables 27 (1995), 269-285.

P.C. Hu, C.C. Yang. Value distribution theory related to number theory, Birkhiuser,

2006.

P.C. Hu, C.C. Yang. Global solutions of homogeneous linear partial differential equations
of the second order, a talk at Joint Sino-Russia Symposium “Complex Analysis and its
Applications Belgorod State University, Russia, 2009; to appear in Michigan Math. J.
(2009).

P.C. Hu. C.C. Yang. Tumura-Clunie theorem in several complex variables, a talk at
Joint Sino-Russia Symposium “Complex Analysis and its Applications Belgorod State
University, Russia, 2009.



Pei-Chu Hu, Clung-Clhun Yang. Uniqueness ...

17. H. Lewy. Neuer Beweis des analytischen Charakters der Losungen elliptische Differential-
gleichungen, Math. Aun 101{1929).609-619.

18, B.QQ. Li. Entire solutions of certain partial differential equations and factorization of
partial derivatives, Traus. Amer. Math. Soe. 357 (2003). no. 8, 3169-3177 (electronic).

19. B.Q). Li, E.G. Saleeby. Entire solutions of first-order partial differential equations, Complex
Variables 48 (2003), No. 8. 657-661.

20. L.G. Petrovskil. Dokl. Akad. Nauk SSSR 17(1937), 343-346; Mat. Sh. (N.S.) 5(47) (1939).
3-70.

21. N. Steinmetz. Uber die faktorisierbaren Losungen gewohnlicher Differentielgleichungen,

Math. Z. 170 (1980), 169-180.

22. W. Stoll. Holomorphic funetions of finite orders in several complex variables, Conference
Board of the Mathematical Science, Regional Conference Series in Mathematices 21, AMS,
1974.

23. W. Stoll. Value distribution on parabolic spaces, Lecture Notes in Math. 600(1977),
Springer-Verlag.

24. Y. Tumura. On the extensions of Borel's theorem and Saxer-Csillag’s theorem, Proc.
Phys. Math. Soc. Japan (3). 19(1937). 29-35.

25. G. Valiron. Lectures on the general theory of integral functions, Toulouse: Edouard privat,

1923.
26. Z.X. Wang, D.R. Guo. Special functions, World Scientific, 1989.



Beal¥

53 HAVUHBIE BEIOMOCTH [ 8 Ne13(68). Bruryex 17/1 2009

TEOPEMBI EAUHCTBEHHOCTU MEPOMOP®HBIX ®VHKITUIT
HECKOJIBKHNX KOMILTEKCHBIX ITEPEMEHHBIX

Teit Uy Xy!, Uynur Uyn dur?
YU WlanspyHckuit yHusepcuTer,
Murban 250100, Wanesayn, M. P. Kutad e-mail: pchu@sdu.edu.cn
%) TOHKOHrCKIMA YHUBEPCUTET HAYKW U TexXHONOr UM
Kneap Yorep Baii, KoenyH, Tonkonr e-mail: chungehun.yang@gmail.com

Annortauus. B pabore uccaeIyioTes BONPOCL CYILECTBOBAINSA, eIHHICTBEIIIOCTH i PaclpeleTius
3nadeniit Mepomopd UL (MM Hennx) pewmenui aunednnx audibepeliHanbiLIX Vpasienii B 9acT-
HLIX IPOU3BOIILIX BTOPOTO HOPAIKA ¢ NOJHIOMHAILILIME Ko3duipenTamu,

Kmrouesrle cmoba: meponvopdunie diyvikuuy, ojuopoiunie muuefinnie guddepennuanpibe Vpas-
Ll B HACTHLIX NPOM3EOINLIX, Teopus [lesanmununt pacnpeienenus LeNIOCTI,



