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Abstract This is a brief overview of some recent developments in the transmutation
operator approach to practical solution of mathematical physics problems. It
introduces basic notions and results of transmutation theory, and gives a brief
historical survey with some important references. Mainly applications to linear
ordinary and partial differential equations and to related boundary value and spectral
problems are discussed.

Linear second order differential equations arise in innumerable models and prob-
lems of mathematics, physics, engineering, chemistry, biology and even social
sciences. While linear ordinary differential equations of first order are easily solved,
and the method of their solution is taught to students even of specialities not
particularly close to mathematics, the situation of linear ordinary second order
differential equations with variable coefficients is pretty much different. No general
method for their solution in a closed form is known. On one hand this resembles
the situation that had been occurring throughout centuries that separated the full
understanding by the antique mathematicians of the algebraic quadratic equations
from the epoch of N. Tartaglia, G. Cardano and L. Ferrari when finally algebraic
equations of third and fourth orders succumbed to the efforts of mathematicians. On
the other hand, the problem of a closed form solution of linear ordinary second order
differential equations with variable coefficients is not even contemplated among
the most important mathematical problems (of the century or millennium), perhaps
because it is not expected to be solved ever.

One of the approaches used at all times is to reduce the difficult problem to a
simpler one. Since linear second order equations with constant coefficients admit
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such a closed-form solution, a natural idea is to relate solutions of the equation with
constant coefficients to solutions of the equation with variable coefficients via an
operator which is called a transmutation operator. Consider the second order linear
differential expression

L := − d2

dx2 + q(x) (1)

with q being an L2-function defined on a finite interval. The equation

Ly(x) = λy(x), λ ∈ C (2)

is called the one-dimensional Schrödinger equation or very often the Sturm–
Liouville equation, taking into account that a large variety of linear ordinary second
order equations reduce to this form by a Liouville transformation.

A transmutation operator is sought to relate L to the simplest linear second order

expression B := − d2

dx2 by the formula

LT = T B.

If T is linear and invertible its knowledge allows one to solve (2) at least formally.
Indeed, one can look for a solution of (2) in the form y = T v, where v is a solution
of the equation Bv = λv (whose general solution is of course v(x) = c1 sin

√
λx +

c2 cos
√

λx). Then Ly = LT v = T Bv = λT v = λy, thus y is a solution of (2).
This idea in the theory of linear differential equations appeared in 1938 in the

work [18] by J. Delsarte and later on it was developed in [1, 8–11, 19, 29, 47–
51, 60, 62] and in many other publications. In particular, for Eq. (2) with the
Sturm–Liouville operator (1) in [53] it was proved that such an operator T exists and
even possesses some wonderful properties. Namely, it can be realized in the form of
a linear Volterra integral operator of second kind with a continuous integral kernel.
Hence T is invertible and its inverse T −1 admits the same form of a linear Volterra
integral operator of second kind. Additionally, such T can be chosen to preserve the
initial conditions fulfilled by the solutions. In [53] also applications to generalized
positive definite functions were proposed. Similarly in [46] such transmutations
were constructed on semi-axis with applications to inverse and scattering problems.
Also transmutations for the Bessel operator

Bc := d2

dx2 + c

x

d

dx
(3)

of Sonine and Poisson types were introduced into the theory (cf. [8–11, 29, 33, 49,
62] together with transmutations for the permuted Bessel operator

L := d2

dx2 + c

x

d

dx
+ q(x) (4)
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which were widely applied, cf. [62–64]. A new class of Buschman-Erdélyi trans-
mutations was studied in [29, 59, 61, 62]. For applications to special radial
Schrödinger equation and construction of Jost solutions cf. [26, 27]. A general
method for constructing transmutations from basic integral transforms called Inte-
gral Transform Composition Method (ITCM) was developed in [22, 28, 29, 62].
Transmutations for problems with Stark potentials were considered in [25] and
with quantum oscillator potential in [52]. Interesting problems in transmutation
theory in connection with fractional powers of Bessel operators were studied in
[58]. In papers of E. Shishkina transmutations were applied to Euler–Poisson–
Darboux equations [24, 57] and to the potential theory [54–56]. Applications of
transmutations to problems in mechanics were considered in [68]. Connections of
transmutation theory and generalized analytic functions were studied in [3, 35, 67].
Starting from the paper of V. Stashevskaya [64] a line of studying transmutations
based on Paley–Wiener theory was developed in [13, 65, 66]. Applications of Sonine
and Poisson type transmutations to pseudo differential and PDE equations were
considered in [29, 33]. Applications to hyper-Bessel equations based on Obreshkov
transform were studied in [20, 34]. Special representations of transmutation kernels
via Bessel function series were developed in [14].

An important property of the Volterra-type transmutation operator related to (1)
or (4) consists in the fact that the coefficient q often called the potential, can be easily
found whenever the integral kernel of the transmutation operator T happens to be
known. This together with other attractive properties converted the transmutation
operators into one of the main theoretical tools of spectral theory and especially of
the theory of inverse spectral problems developed in the works of V. A. Marchenko,
I. M. Gel’fand and B. M. Levitan and of many other mathematicians. During that
classical period in transmutation theory many famous problems were studied with
the aid of this technique, among them: the inverse problem by a spectral function
data via the Marchenko equation, the inverse scattering problem by a scattering data
via the Gelfand–Levitan equation, Gelfand–Levitan trace formulas and many other.
We refer to the books [1, 8–10, 23, 47, 48, 50, 51, 69] presenting this important and
extremely beautiful piece of modern mathematics.

Attempts to convert the transmutation operators of this kind into practical tools
for solving different problems of mathematical physics have been made for decades.
Many applications to problems of mathematical physics were considered in [8–
11]. We mention a series of publications of R. Gilbert with coauthors (referring
to [2] and references therein) in which transmutation operators were used for
solving acoustic wave propagation problems in inhomogeneous media, the work
of D. Colton (see [15]) in which with the aid of transmutation operators complete
systems of solutions for parabolic PDEs with variable coefficients were introduced
and applied to solution of initial-boundary value problems. In those works the
integral kernels of the transmutation operators were computed numerically by
the successive approximation method whose implementation complicates since
the iterations involve two-dimensional integrals. In [4] the transmutation operator
kernel was approximated by a partial sum of its trigonometric series, however based
on this method solution of linear ODEs does not seem practical.
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In a series of recent publications [5–7, 12, 30, 32, 41, 44, 45] the idea from [2] and
[15] to obtain complete systems of solutions of PDEs with variable coefficients as
images of complete systems of solutions of PDEs with constant coefficients under
the action of an appropriate transmutation operator was further developed based on
the observation known since the work of M. K. Fage (see the book [21]) and called in
[7] the mapping property of the transmutation operator, which indicates what are the
images of integer nonnegative powers of the independent variable under the action
of the transmutation operator. They result to be so-called formal powers arising from
spectral parameter power series (SPPS) representations of solutions of linear ODEs
(see [31, 38]) and for their computation an efficient recurrent integration procedure
is developed. Thus, some complete systems of solutions for classes of PDEs can
be constructed without knowledge of the transmutation operator itself but simply
computing the formal powers.

Another advancement in the efficient construction of the integral transmutation
kernels was reported in [39, 40, 42, 43] for transmutation operators with boundary
conditions in the origin (according to the terminology used by B. M. Levitan), and in
[17, 37] for the transmutation operators with boundary conditions at infinity. Based
on the proposed representations for the integral transmutation kernels new practical
and efficient methods were developed for solution of forward [17, 39, 40, 43] and
inverse spectral and scattering problems [16, 36, 37]. In the case of the forward
problems large sets of spectral data can be computed with a nondeteriorating
accuracy due to the possibility of convenient uniform estimates for the approximate
solutions. Meanwhile the approach developed for solving the inverse problems leads
to a direct reduction of the problem to a corresponding system of linear algebraic
equations. This new and promising area of the transmutation operator theory and
applications is still in its beginning, attracting attention of researchers from different
applied fields.

In general, the diversity of the topics associated with the transmutation operator
theory and, in particular, of those considered in the present volume reveals the
importance of the transmutation operators in a large number of fields as well as
their intrinsic interconnections and applications.
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