СОСТОЯНИЕ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ МАЛЬЧИКОВ-ПОДРОСТКОВ, ЗАНИМАЮЩИХСЯ ТЯЖЕЛОЙ АТЛЕТИКОЙ

С.Д. Чернявских, М.З. Федорова

Белгородский государственный университет Россия, 308015, г. Белгород, ул. Победы, 85

E-mail:Fedorova@bsu.edu.ru

Изучено влияние физической нагрузки на функциональное состояние сердечно-сосудистой системы мальчиков-подростков по показателям кардиоинтервалографии. Установлено, что занятия в секции тяжелой атлетики не оказывают отрицательного влияния на антропометрические параметры, показатели длительности сердечного цикла, частоты сердечных сокращений, амплитуды зубпов, длительности интервалов, электрической систолы, систолического показателя и вагосимпатического индекса.

Ключевые слова: мальчики-подростки, сердечно-сосудистая система, электрокардиография, функциональная проба.

Введение

Ведущим критерием состояния здоровья подрастающего поколения является, как известно, физическое развитие, уровень которого тесно связан с социальноэкономическими и гигиеническими условиями жизни [1]. От нормального физического и нервно-психического развития, функционирования органов и систем детей и подростков зависит способность их организма сохранять устойчивость к экзогенным факторам, адаптироваться к меняющимся условиям внешней среды. У детей, имеющих отклонения в состоянии здоровья, адаптационные возможности, как правило, ниже, чем у практически здоровых их сверстников [2]. Важнейшим элементом мониторинга состояния здоровья подрастающего поколения является наблюдение за ростом и развитием подростков старшей возрастной группы, стоящей на пороге взрослой жизни с ее социальными требованиями, возросшей физической и психической нагрузкой. Успешность их адаптации к условиям современной жизни в решающей степени может определить будущий репродуктивный и трудовой потенциал страны, ее развитие и уровень национальной безопасности [3]. В подростковом возрасте происходит значительная перестройка соотношений роста сердца и сосудов, обуславливающая своеобразие условий кровообращения, что требует внимательного и дифференцированного подхода в дозировании физической нагрузки, особенно с выраженными элементами статики.

Целью проведенного исследования было изучение функционального состояния сердечно-сосудистой системы мальчиков-подростков, занимающихся тяжелой атлетикой.

Материал и методы исследования

Исследования проведены на базе спортивного зала тяжелой атлетики СДЮСШОР № 3 г. Белгорода. Обследованы две группы подростков: 11-13 (младшие подростки, первая группа) и 14-17 лет (старшие подростки, вторая группа), по 11 человек в каждой группе. Все участники эксперимента имели стаж занятий не менее 6-и месяпев.

У всех обследованных определяли соматометрические (длина и масса тела, окружность грудной клетки) и физиометрические (артериальное давление на левой плечевой артерии) показатели [4]. Записывали и анализировали электрокардиограмму.

Регистрация ЭКГ проводилась в состоянии относительного покоя – лежа на спине после предварительного отдыха в течение 10-15 мин, а также на 1-й минуте после функциональной нагрузки в виде 20 приседаний за 30 сек. [5]. Запись ЭКГ проводили с помощью электрокардиографа «Аксион» при стандартном усилении 1 мВ =

10 мм, скорости лентопротяжного механизма — 50 мм/сек., в 12 общепринятых отведениях: трех стандартных (I, II, III), однополюсных, усиленных от конечностей (aVR, aVL, aVF) и шести однополюсных, усиленных грудных (V_1 – V_6). Используя номенклатуру зубцов комплекса PQRS, анализировали и оценивали ЭКГ-показатели II отведения: длительность сердечного цикла, частоту сердечных сокращений (ЧСС), амплитуду зубцов P, Q, R, S и T, длительность интервалов P-Q, QRS, S-T и Q-T [6]; рассчитывали показатели — интегративный (ИП) как отношение амплитуд зубцов P и T [7] и систолический (СП) по формуле Фогельсона-Черногорова: (Q-T/R-R)×100%.

Должную электрическую систолу определяли по формуле Базетта:

Q-
$$T_{\text{долж}} = K \sqrt{R-R}$$
,

где К – константа, равная для мужчин 0.37, для женщин – 0.39.

Полученный цифровой материал был обработан статистически с использованием персонального компьютера (программа Excel и Statistica). Достоверность различий между группами оценивали по критерию Стъюдента [8].

Результаты исследования и их обсуждение

Полученные значения показателей физического развития младших и старших подростков, представленные в таблице 1, свидетельствуют о том, что все антропометрические показатели обследуемых находились в пределах границ физиологической нормы [9]. При этом длина тела подростков возраста 14-17 лет отличалась от 11-13-летних незначительно.

Таблица 1 Показатели соматометрического и физиометрического развития подростков разных возрастных групп (СДЮСШОР № 3 г. Белгорода, 2007 г.)

Параметры,	Возраст, лет	
единицы измерения	11-13	14-17
Длина тела, <i>см</i>	143.00±2.38	164.00±2.83
Масса, кг	44.50±1.04	60.75±4.53*
Окружность грудной клетки, см	70.75±1.03	87.25±4.29
Артериальное давление, мм.рт.ст.		
-систолическое	105.40±5.77	112.00±2.55
-диастолическое	65.00±2.89	70.00±2.00

Примечание: здесь и далее: * - достоверность различий по сравнению с младшими подростками p<005.

Масса тела обследуемых возраста 14-17 лет была на 9.7% (p<0.05) выше, чем в возрасте 11-13 лет. Это является свидетельством интенсивного наращивания мышечной массы спортсменов, занимающихся в секции тяжелой атлетики. Окружность грудной клетки у подростков второй группы была также выше на 6.3% в сравнении с испытуемыми первой группы.

Показатели артериального давления, характеризующего функцию сердечно-сосудистой системы, также соответствовали возрастной норме [10] (см. табл. 1).

По данным разных авторов, показатели ЭКГ (амплитуда зубцов, длительность интервалов) варьируют в широких пределах [5, 6, 7]. Исходя из этого, мы использовали для сравнения фоновые показатели (в покое) и показатели, полученные после физической нагрузки.

Значения основных параметров ЭКГ в исследуемых группах подростков до и после физической нагрузки представлены в таблицах 2-5.

С возрастными анатомическими изменениями параметров сердечнососудистой системы у подростков тесно связаны изменения функциональных показателей, одним из которых является частота сердечных сокращений. Этот показатель гемодинамики является одним из наиболее лабильных. Он изменяется в процессе роста и зависит как от факторов внешней среды (температура окружающей среды, голод), так и от внутренних (поражение сердца, эндокринные расстройства, анемия и др.) факторов. Общеизвестно, что с нарастанием двигательной активности, увеличением массы скелетной мускулатуры совершенствуется нервная регуляция частоты сердечных сокращений. При этом у детей, занимающихся спортом, регистрируется склонность к брадикардии. Это происходит вследствие того, что интенсивные двигательные тренировки вызывают физиологическую гипертрофию миокарда. Гипертрофия как компенсаторное приспособление к нагрузке достигается удлинением и утолщением мышечных волокон сердца, что приводит к некоторому увеличению размеров полостей сердца. В нашем исследовании не наблюдалось явлений брадикардии у спортсменов. В целом частота сокращений сердца как в покое, так и после физической нагрузки находились в пределах границ физиологической нормы у подростков обеих групп, несмотря на достоверное увеличение данного показателя после нагрузки у 11-13-летних подростков [11, 12].

Таблица 2 Показатели длительности сердечного цикла и частоты сердечных сокращений при разных условия регистрации ЭКГ (СДЮСШОР № 3 г.

Белгорода, 2007 г.)

вен брода, 2007 1.)		
Показатели, единицы измерения	Условие регистрации ЭКГ	
	В покое	После функ- циональной пробы
11-13 лет		
Длительность сердечного цикла, c	0.76±0.04	0.58±0.04*
ЧСС, у∂/мин	79.50±4.25	105.00±5.50*
14-17 лет		
Длительность сердечного цикла, сек	0.65±0.05	0.56±0.03
ЧСС, уд/мин	93.75±7.27	108.00±5.90

Примечание: см. табл. 1.

Таблица 3 Амплитуда зубцов ЭКГ при разных условиях регистрации ЭКГ, мВ (И отведение) (СДЮСШОР № 3 г. Белгорода, 2007 г.)

1 // / /			
	Условие регистрации ЭКГ		
Зубцы	В покое	После функ-	
		циональной	
		пробы	
11-13 лет			
P	0.14±0.02	0.19±0.01*	
Q	0.08±0.01	0.03±0.01*	
R	0.98±0.06	0.95±0.05	
S	0.24±0.11	0.35±0.03	
Т	0.53±0.06	0.38±0.12	
14-17 лет			
P	0.20±0.11	0.21±0.03	
Q	0.09±0.04	0.11±0.49	
R	1.34±0.41	1.48±0.05	
S	0.28±0.04	0.05±0.06	
Т	0.34±0.06	0.32±0.01	

Примечание: см. табл. 1.

Длительность сердечного цикла, являющегося совокупностью электрофизиологических, биохимических и биофизических процессов, происходящих в сердце на протяжении одного сердечного сокращения, рассчитывали по интервалу R-R. Как видно из таблицы 2, этот показатель снизился после физической нагрузки у подростков первой группы на 23.7% (p<0,05), у испытуемых второй группы – на 13,8% соответственно, однако также находился в пределах границ физиологической нормы [6].

Как видно из таблицы, зубец P, характеризующий проведение возбуждения в предсердиях, после физической нагрузки увеличился в первой и второй группах испытуемых на 35.7(p<0.05) и 5.0% соответственно по сравнению с состоянием покоя. В обеих группах этот зубец положительный, что характеризует синусовый ритм.

Зубец Q, характеризующий возбуждение межжелудочковой перегородки и верхушки сердца, у обследованных спортсменов первой группы после нагрузки снизился на 62.5% (p<0.05), во второй группе, напротив, увеличился на 22.2%.

Зубец R, характеризующий возбуждение основной массы мускулатуры желудочков, кроме основания и субэпикардиального слоя, у испытуемых 11-13-летнего возраста снизился на 3.1%, а у испытуемых 14-17-летнего возраста, напротив, увеличился на 10.4% после физической нагрузки. При этом его значения, как в покое, так и после

физической нагрузки у испытуемых обеих групп были в пределах границ нормальных величин.

Амплитуда зубца S, отражающего состояние, когда возбуждены все отделы желудочков, кроме их основания, после физической нагрузки увеличилась на 45.8% в первой и снизилась на 82,1% во второй группе обследованных в сравнении с состоянием покоя.

Физические нагрузки, сопровождаемые учащением сокращений сердца, могут способствовать возникновению гипоксии миокарда. Для последней характерно снижение и инверсия зубцов Т. Более тяжелые формы гипоксии миокарда вызывают появление гигантских положительных зубцов Т. В возникновении этих изменений существенное значение принадлежит особенностям распространения возбуждения от субэндокардиальных к субэпикардиальным слоям миокарда желудочков [7]. Согласно опубликованным данным [13, 14], уплощение зубцов Т может также соответствовать метаболическим изменениям в самом миокарде как результат нарушения энергообеспечения и рассогласования активности центральных и автономных структур его регуляции. В проведенных нами исследованиях младших и старших подростков амплитуда зубца Т после функциональной пробы имела тенденцию к снижению соответственно на 28.3% и 5.9%, что может являться свидетельством того, что с возрастом адаптация к гипоксии значительно улучшается, а также стабилизируется регуляторная функция.

Кроме амплитуды зубцов нами была изучена длительность интервалов, результаты которых представлены в таблице 4, где видно, что после физической нагрузки у спортсменов первой группы длительность P-Q и S-T увеличилась на 13.3% и 3.4%, а у испытуемых второй группы на 27.8 и 19.2% (p<0.05) соответственно снизилась в сравнении с покоем.

Известно, что соотношение длительности временных интервалов кардиоциклов отражает сопряженность вегетативных механизмов регуляции электрической активности сердца [13]. Следовательно, повышение во второй группе в сравнении с первой во временной структуре кардиоциклов доли интервалов P—Q в покое можно рассматривать как результат доминирующего влияния на электрическую активность сердца парасимпатического отдела ВНС, который через реализацию трофических эффектов блуждающего нерва активизирует энергетически более экономные и выгодные механизмы адаптивной активности миокарда [15, 16, 17, 18].

Длительность интервала QRS, характеризующего проведение возбуждения по рабочему миокарду желудочков, после функциональной пробы снизилась в первой и второй группе обследованных на 18.2 и 9.1% соответственно в сравнении с покоем.

Интервал Q-Т является одним из наиболее важных параметров оценки ЭКГ. Его удлинение расценивается как маркер риска опасных желудочковых аритмий. Длительность интервала Q-Т от начала зубца Q до конца зубца Т отражает время, в течение которого желудочки находятся в электрически активном состоянии, и обозначается как электрическая систола. Установлена математическая зависимость между частотой сокращений сердца и длительностью интервала Q-Т. Это так называемая должная электрическая систола. При нормальном состоянии сердца расхождения между фактической и должной систолой составляют не более 15% в ту или другую сторону. Полученные нами значения электрической фактической и должной систолы укладываются в данные параметры, что говорит о нормальном распределении волн возбуждения по сердечной мышце в обеих группах спортсменов как в покое, так и после функциональной пробы (см. табл. 4, табл.5).

Распространение возбуждения по сердечной мышце характеризует не только длительность электрической систолы, но и так называемый систолический показатель, представляющий отношение длительности электрической систолы к продолжительности всего сердечного цикла. В первой группе данный показатель повысился после нагрузки на 9.1%, во второй группе не изменился (см. табл. 5). При этом систолический показатель находился в пределах нормы в обеих группах испытуемых.

Таблица 4 Показатели длительности интервалов ЭКГ при разных условиях регистрации ЭКГ, сек. (СДЮСШОР № 3 г. Белгорода, 2007 г.)

	Условие регистрации ЭКГ	
Показа- тели	В покое	После функ- циональной пробы
11-13 лет		
P-Q	0.15±0.01	0.17±0.01
QRS	0.11±0.01	0.09±0.01
S-T	0.29±0.01	0.30±0.04
Q-T	0.33±0.02	0.33±0.04
14-17 лет		
P-Q	0.18±0.02	0.13±0.06
QRS	0.11±0.01	0.10±0.01
S-T	0.26±0.01	0.21±0.02*
Q-T	0.34±0.02	0.29±0.02

Таблица 5 Показатели электрической систолы, систолического показателя и вагосим-патического индекса при разных условиях регистрации ЭКГ (СДЮСШОР № 3 г. Белгорода, 2007 г.)

	Условие регистрации ЭКГ	
Показатели	В покое	После функ- циональной пробы
11-13 лет		
Электрическая систола, c	0.30±0.00	0.28±0.01
Систолический показатель, %	0.43±0.02	0.55±0.06
Вагосимпатиче- ский индекс	26.42	50.00
14-17 лет		
Электрическая систола, c	0.30±0.01	0.28±0.01
Систолический показатель, %	0.53±0.11	0.53±0.03
Вагосимпатиче- ский индекс	58.82	65.63

Вагосимпатический индекс характеризует отношение амплитуды зубца Р к зубцу Т. Увеличение данного показателя у спортсменов на 89.3% и 11.58% в первой и второй группах соответственно свидетельствует о повышении тонуса симпатической нервной системы после физической нагрузки, особенно выраженное в 11-13-летнем возрасте [7].

Заключение

Занятия в секции тяжелой атлетики не оказывают отрицательного влияния на антропометрические параметры, а также показатели, характеризующие функциональное состояние сердечно-сосудистой системы: длительность сердечного цикла, частоту сердечных сокращений, амплитуду зубцов, длительность интервалов, электрическую систолу, систолический показатель и вагосимпатический индекс мальчиков-подростков 11-13 и 14-17 лет.

Список литературы

- 1. Хрипкова А.Г., Антропова М.В., Фарбер Д.А. Возрастная физиология и школьная гигиена. М., 1990. С.53- 60.
- 2. Безруких М.М., Сонькин В.Д., Фарбер Д.А. Возрастная физиология // Физиология развития ребенка. М., 2002. С.28-30.
- 3. Ямпольская Ю. А.Оценка физического развития детей // Гигиена и санитария.-1996.- №1.- С.27.
- 4. Гуминский А.А., Великанова Л.К. Практические занятия по возрастной физиологии и школьной гигиене. М., 1992. 132 с.
- 5. Макаров Л.М., Киселева И.И., Долгих В.В. и др. Нормативные параметры ЭКГ у детей // Педиатрия. 2006. № 2. С. 4-10.
- 6. Шауцукова Л.З. Физиология сердечно-сосудистой системы: Учебное пособие для студентов вузов. М., 2005. 184 с.
- 7. Фролов М.В., Свиридов Е.П. Амплитуда Т-зубца ЭКГ как коррелят эмоционального напряжения // Высшая нервная деятельность. 1974. Т. 24, вып. 5. С. 10-52.
 - 8. Лакин Г.Ф. Биометрия. М., 1980. 293 с.

- 9. Усов И.Н. Здоровый ребенок: Справочник педиатра. М.: Беларусь, 1984. 207 с.
- 10. Синяков А.Ф. Секреты бодрости и здоровья. М.: ЗАО Изд-во ЭКСМО Пресс, 1999. 464 с.
- 11. Власова И.Г., Торшин В.И. Альбом физиологических показателей в графиках, схемах, цифрах. М., 1998. 65 с.
- 12. Сухарева Л.М., Рапопорт И.К, Звездина И.В. и др. Состояние здоровья и физическая активность современных подростков // Гигиена и санитария. №3, 2002. С. 52-55.
- 13. Баевский Р.М., Бондарчук В.И., Чернышев М.К. Временная организация ритма в эволюционном аспекте // Сравнительная электрокардиология. Л., 1981. С. 204-206.
 - 14. Федоров Б.М. Стресс и система кровообращения. М.: Медицина, 1991. 320 с.
- 15. Аринчин Н.И. Эволюция и клиническое толкование электрокардиограммы и фаз сердечного цикла. Минск, 1966. 221 с.
- 16. Галанцев В.П. Электрокардиографический анализ приспособительных изменений автоматизма сердца у ныряющих млекопитающих // Сравнительная электрокардиология. Л., 1981. С.209-211.
 - 17. Рощевский М.П. Эволюционная электрокардиография. Л., 1972. 252 с.
- 18. Смирнов А.И. Роль тонуса центров блуждающих нервов в экономной форме сердечной деятельности. М., 1967. С.52.

THE FUNCTIONAL STATE OF TEENAGERS' CARDIOVASCULAR SYSTEM GOING IN FOR WEIGHT LIFTING

S.D. Chernyavskikh, M.Z. Fedorova

Belgorod State University Pobedy St., 85, Belgorod, 308015, Russia E-mail: Fedorova@bsu.edu.ru The effect of physical loading on the functional state of teenagers' cardio-vascular system according the cardiography data was studied. Nonnegative effect of weight lifting was determined in our experiment. Weight-lift training had no influence on anthropometric parameters, cardiac cycle, heart rhythm, peaks amplitude, electric systole, interval size, systole factor, vagosympathetic index.

 $\,$ Key words: teenagers, cardiovascular system, electrocardiography, functional probe.