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On a domain D c  C  in the plane, consider the first- 
order elliptic system

^ - A ^  = 0
dy ox ( 1 )

with coefficient A e  C /:;/. Ellipticity means that the 
matrix A  has no real eigenvalues. It is well known that 
the solutions U = (Uu U2, . . Ut) to this system are real 
analytic on the domain D.

Suppose that the boundary r  = dD of the domain is 
a piecewise Lyapunov contour; i.e., its connected com­
ponents are homeomorphic to the circle and can be rep­
resented as unions of finitely many Lyapunov arcs, 
which can intersect only in endpoints. Recall that an arc 
L  is Lyapunov if  it admits a smooth parameterization of 
class C1' M for some 0 < |i < 1. Take a sequence of con­
tours T„ c  D, where « = 1 ,2 , . . . ,  converging to T  in the 
sense that there exists a homeomorphism a n: V —> r„
with piecewise continuous derivative a„ such that 
a n(t) - 1 —> 0 as n —> <x> in the sup-norm and the deriva­
tives a n are uniformly bounded.

The Hardy space Hp(D), where 1 < p < °°, of solu­
tions to elliptic systems is defined by the condition that 
the norm

\U\ = sup I U\ LP(Tn) (2)

must be finite. The domain D can be finite or infinite; in 
the latter case, the solutions u to system (1) are assumed 
to be bounded at infinity. The I f - norm of a function 
U(i) on T„ is related to the number function \U(I)\, 
where |-| denotes some fixed norm on W. The space №

can also be defined for p = 1, but we do not consider this 
case.

For analytic functions, this definition generalizes 
the classical Hardy class on the unit disk and is due to 
V.I. Smirnov, M.A. Lavrent’ev, and M.V. Keldysh (see 
[1]). This class is also denoted by EP{D).

Of special interest are systems of the form (1) for 
which

T^?. = 0— J  W  i
dy ax (3)

where the spectrum a(J) of the matrix J  e  C /x/ is con­
tained in the upper half-plane. System (3) is a natural 
generalization of the Cauchy-Riemann equation; it was 
introduced by Douglis in [2]. The basic properties of 
analytic functions are inherent in the solutions to this 
system [3]; for this reason, they are called hyperana- 
lytic functions, or functions analytic in the sense of 
Douglis (or, briefly, /-analytic functions).

In the general case, the solutions of system (1) can 
be uniquely expressed in terms of those of (3). Indeed, 
if an invertible matrix B  reduces A to a block-diagonal
form J  = diag(./h J 2) (i.e., B 'AB = J) and the eigenval­
ues of Jk are contained in the upper half-plane, then we
have the representation U = B(j), where (|) = (c^, (j>2), of 
a solution to system (1) in terms of the / r  analytic func­
tions §k. This allows us to consider only system (3) in 
what follows.

If a /-analytic function (|) is continuous on a closed 
simple domain D = D u  T, then the following Cauchy 
formula is valid [3]:

2 (Kz) = d t j ^ ( t ) ,  t
n i J

e D, (4)
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where (x, + Lx2), = x, 1 + x2J  for Xj e R. the expression 
MX, + dx2)j = MX,) 1 + (dx2).f has similar meaning for the 
matrix differential, and the contour r  = dl) has positive 
orientation with respect to D. Replacing the boundary 
value (|)+ by an arbitrary density cp, we obtain a general­
ized Cauchy-type integral, which we denote by (/(p)(z).
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The definition of Hardy spaces can be extended to 
the weight case in a natural way. Let F  be a finite set of 
points 1 6  F. For a family X = (X-, x e F) of real num­
bers (of weight order), we denote the class of continu-

X
ous functions on r \ F  with asymptotics 0 (l)\t-% \  as 
t —> x by Q jT , F). A scalar function p e Cx is said to be 
weight (of order X) if it does not vanish and p 1 e C , . 
We indicate the dependence on X by a subscript: p = p, .

In a similar way, weight functions on the domain D 
with respect to the corresponding class C% = C,( I ) , F) 
are defined. In this case, of main interest are /-analytic 
(I x Z)-matrix weight functions R(z) = Rx(z) satisfying 
system (3) and subject to the additional constraint 
R(z)J = JR(z) for z e I). This constraint means that the 
operation § R§ of multiplication by a weight func­
tion does not lead out from the class of /-analytic vector 
functions ((). Weight functions RJz) mentioned above 
always exist. For example, if the domain I) is finite and 
T is a simple contour, then we can set

Rx(z) = ] ^ [ ( z - x ) ^ .
IE F

Here, in the notation of (4), the multiplier (z, -  x)" = 
exp[aln(z -  i)/1 is understood as a function of a matrix 
for the branch of the logarithm ln(z -  x) continuous on I).

Let Lpx ( r ,  F) be the Banach space on the boundary

r  = })D such that L{ = LP for X = and the weight 

transformation (p —> p v(p implements an isomorphism 

between LP on Lp _ 1 /p. Note that the class C, + 0( r ,  F) =

l J C l  + o is densely contained in Lpx ( r ,  F).
£> 0

In a similar way, we define a space Lpx (I), F) on the
2

domain I) by the condition L{ = LP with k  = —  and a
P

family of weight Hardy spaces H- (I), F) by the condi­

tion H i = HP with X = and the weight transforma­

tion (() —> Rv(j). Obviously, for k  = 0. the space L[\ on Y 
and on D is an LP-space with respect to the measures 
d\\. = p i(t)ds, where / e V, and d\\. = p_2(z)dxdy, where 
z = x  + iy e D, respectively.

The following theorem gives all basic properties of 
the Hardy spaces.

Theorem 1. (a) Let (|) e H px (D) be a solution to sys­
tem (1). Then, there exist almost everywhere angular 
limit values (|)+(0, which determine a function (|)+ e
Z ^(r). The space Hj- (D) is Banach, the norm |(()|

0 ' is equivalent to (2), and there are continuous 

dense embeddings Cx+0( D , F) c  H p% (I), F ) c i J  (I), F).

(b) I f§  e H p% (D), then the restriction of§ to each sub- 
domain D(, c  I) bounded by a piecewise Lyapunov con­

tour belongs to H pk (D0). Conversely, if  such subdomains

Dj, D2, are disjoint, D\ u  D 2 u  ... u  Dm = D ,
and (() is a solution to system (I) on the domain D
belonging to H p% (Dj)for j  = 1 ,2 ,. . . ,  m, then (|) e Hp{D)\ 

moreover, the norm on H {(D ) is equivalent to |(()| =

j
(c) The Cauchy-type integral k p determines a 

bounded linear operator L{ ( r ,  F) —> H i  (D , F) fo r  
-1  < X < 0, and, fo r  almost all t0 e T, the Sokhotskii- 
Plemelj formula

( / t p ) +( r 0) =  9 ( ^ o )  +  ^ J ( ^ - ^ o ) / 1^ / 9 ( 0
r

holds. Here, the integral is singular; it is understood in 
the sense o f the Cauchy principal value.

The classes C%+0 and L{ (D) in assertion (b) of The­
orem 1 refer to /-analytic functions. Assertions (a) and 
(b) imply, in particular, that the space H{ does not 
depend on the choice of the sequence T„ in (2) and can 
be defined as the completion of the class C/ + 0 >n the
norm |(()| = <|)+| , . This scheme was implemented in [4]
for usual analytic functions. The above spaces for ana­
lytic functions were studied in [5] under more general 
assumptions about the boundary of the domain D and 
the weight. Theorem 1 (b) makes it possible to naturally
extend the definition of H{ (D) to domains D  with any 
piecewise Lyapunov boundary. The proofs of asser­
tions (a) and (b) of Theorem 1 are based on assertion (c), 
which is proved in precisely the same way as in [6].

The analogue of N.I. Muskhelishvili’s theorem 
about a representation of (|) by the integral Rp with a real 
vector function (p, which was proved in [3] for the 
Holder classes, remains valid for the Hardy classes.

Recall that a bounded operator N: X —> Y between 
Banach spaces X  and Y is said to be Fredholm if its ker­
nel kerA/ is finite-dimensional, the image Im A' is 
closed, and there exists a finite-dimensional subspace 
F0 c 7  such that Y = Y0 © ImA' [7]. It is convenient to 
call this subspace the coimage of the operator N  and 
denote it by coImA'. although it is not uniquely deter­
mined by N. The difference indA' between the dimen­
sions of the kernel and the coimage is called the index 
of the operator N.
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Theorem 2. (a) I f  the domain D is bounded by a 
Lyapunov contour r ,  then the operator I: L{ (T, F) —>

H j- (D , F) (-1 < X< 0) is Fredholm, and its index equals 
l(s -  2), where s is the number o f connected components 
o f the contour. Moreover, k e r/ c  C+0(T) = CM (r),

H> 0
and there exists a coimage co lm / c  C+0(Z)).

(b) Suppose that the matrix J  is triangular, the 
domain D is bounded by a piecewise Lyapunov contour 
T without cusp points, and the set F  contains all corner 
points o f the contour.

Then, the operator I: LPK (T, F) —> H PK (D , F) ( -^  <

X<  0) is Fredholm, and its index equals 1(2 -  s). More­
over, the elements o f the kernel are constant on the con­
nected components o fT , and the operator has a coim­
age whose elements are constant on D.

More precisely, the kernel and the coimage men­
tioned in assertion (b) are described as follows. If the 
domain D is infinite, then ker/ consists of all locally 
constant functions, and we can set colm / = 0 .  If the 
domain D is finite, then ker/consists of all locally con­
stant functions vanishing on the exterior component of 
the contour T, and coIm /= ((q\ c, e  R 'j. By the exterior 
component we understand the connected component of 
T enclosing the domain D.

There is another approach to defining weight spaces, 
which is based on the consideration of homogeneity 
with respect to dilations. Suppose that F  consists of one 
point, which is convenient to take for the origin. Let us
cover I\{0} by smooth curves r ,, T2, ... so that Y„ = 

2T „ ^  j ̂  -  2 j starting with some number n> m .

Setting Y„ = T„ for n < m , we can associate each func­

tion (p e L l  ( r ,  0) with the sequence of functions

~ . . |cp(2~nt), n > m  ~ , . t P ~ .
<P»(0 = i LP(T„),

[cp(0> n < m ,

and the space Lpx (T, 0) can be described by using the 
equivalent norm

\ i ip

Then, fo r  ф e H{ (D , 0),

1ф1 = ьр(гпу (5)

A similar fact is valid for the weight Hardy space.
Theorem 3. Suppose that the domain D is repre­

sented as the union o f domains /),, D2, ... such that

D„ = 2 nDn — |  ̂  -  kl -  2 1 fo r  n > m  and the bound­

aries dD„ converge to some contour t  in the same 
sense as in (2).

фл(г) =
ф(2 nz), n > m  

^ ( z ) ,  n < m ,
ф „(г)е H p(D n),

and the space Hj- (D , 0) can be described by using the 
equivalent norm

E l ? .
V  n

Up

(6)

This theorem shows that the family of spaces intro­
duced above monotonically decreases with respect to 
each of the parameters p  and X-L in the sense of an 
embedding of Banach spaces. Note that the contours 
dDn in the theorem can be chosen to be smooth. Thus, 
the weight Hardy space can be introduced on the basis 
of the definition of the spaces №  on domains with 
smooth boundary. Applying translations, we can extend 
the above definition to the case of F = {x} for any point 
x 5* 0. In the general case, the domain D  can be repre­
sented as the union of domains Dx with z e F. where 
each I)x is bounded by a contour r T smooth outside x.

The space H i  (D, F) can be defined by the condition 

(() e H- (I)x, x) for all x e  F. According to Theorem 1 (b), 
this definition does not depend on the choice of Dx.

On the basis of Theorem 2, we can transfer the 
results obtained in [6], including those on the Rie- 
mann-Hilbert problem with piecewise continuous 
matrix coefficient G, from weight Holder spaces to 
Hardy spaces. Consider the simplest case (G = 1) of the 
Schwarz problem

Кеф+ = / (7)

with real right-hand s id e /e  L \  (Г, F). By the Fredholm 
property and the index of the problem we mean those of 
the [R-linear operator H- —> L \  of its boundary condi­
tion.

The criterion for the Fredholm property, which is 
given below, is stated in terms of the end symbol, i.e., 
the family of entire functions xx( "Q of a complex vari­
able £ (where x e  f )  defined as follows. We associate 
each pair of different unit vectors a = a x + ia2 and b = 
bi + ib2 with the analytic function со of two variables £ 
and u, where Irm/ Ф 0. defined by

ю(a, b \u ,z )  = -

arg

ai + ua2 Y 
b1 + ub2

ü \  +  UÜ, 2

b1 + ub2
< к.



THE HARDY SPACE OF SOLUTIONS TO FIRST-ORDER ELLIPTIC SYSTEMS

Since the spectra of the matrices /  and 7 are contained 
in the upper and lower half-planes, respectively, in 
which co is analytic as a function of u, it follows that the 
values of this function at the above matrices can be 
defined. Thus, we can define an entire function of the 
variable C, by the formula

h(a, b; 0  = det[e’I‘̂ co(a, b; J, Q

-e-KKw(a,b; 7, 0 1 - (8)

It is easy to show that, on each strip A., < Re£ < k 2 
of finite width, the function h has finitely many zeros. 
Therefore, the projection of the zero set of this function 
onto the real axis is a discrete subset of R. which we 
denote by A (a, b).

If a = -b , then co = 1 and, therefore, the function 
h(a, -a; Q  coincides with sin'rt^ up to a constant mul­
tiplier. Thus,

À (a, -a )  = Z .

In the scalar case (I = 1), in which /  = v e C, defini­
tion (8) takes the form

h (a ,b \  Ç) = 2i\q\ sin0Ç, q =
b1 + v b 2 
ai + \ a 2

where 0 = arg q , 0 < 0 < 2n. Obviously, in this case, we 
have

A (a, b) = \ k e  Z (10)

Theorem 4. Suppose that the domain D is bounded 
by a piecewise Lyapunov contour without cusp points 
and the set F  contains all corner point o f this contour.

Then, problem (7) of class H- (D , F) is Fredholm if  
and only if

AT, x e F, ( 1 1 )

and its index k  is given by k  = 1(2 -  s) + (kx).
T

where s denotes the number o f connected compo­
nents in T.

Note that, in the scalar case (I = 1, /  = v), the set \  
is determined by (10), where the quantity 0 = 0T has the 
geometric meaning of the angle of the sector to which 
the curvilinear sector Sx is mapped under the affine 
transformation x + iy —> x  + vv. I n the special case of 
analytic functions (v = i), 0T coincides with the angle of 
the sector Sx itself. In the scalar case under consider-

0 A-
(9) ation, condition (11) reduces to g Z, and y x(t) =

+ 1, where the brackets denote the integer part

Consider problem (7). In a small neighborhood of a 
corner point x e T, the set Sx = D n  {\z -  x| < r } is a cur­
vilinear sector; we denote its lateral sides by r T±0 (it is 
assumed that the counterclockwise rotation inside the 
sector is from r T + 0 to r x 0). Let q-L±(l he the unit tan­
gent vectors to the lateral sides r T± 0 at the point x. Sup­
pose that these sides are not tangent to each other, i.e., 
x is not a cusp point of the contour T. Then, qx (l^ q -  + (l. 
and we can consider the function jct(£) = h(qx + Q, qx 0; 
Q, which we call the end symbol of the problem at the 
point x. For the corresponding set A(qT + 0, qx ,,) we use 
the short notation Let yj. t) be an entire function 
constant on the intervals from the complement to A and 
such that, for t e  A,., the jump y j i  -  0) -  yj. / + 0) equals 
the number of zeros of the function jct(£) on the line 
Re£ = t with multiplicities taken into account. This 
function monotonically decreases and is defined up to 
an additive constant, which is determined by the condi­
tion %(-0) = 0.

of a number. If the contour T  is smooth, then qx + (l = 
-q x o at x e F, and, according to (9), the situation is the 
same as in the scalar case.

So far, the boundary r  of the domain D was assumed 
to be finite. Suppose that the curve T  is unbounded, i.e., 
<=o e T, and it is a piecewise Lyapunov contour on the 
Riemann sphere C u = » .  The convergence of the con­
tours T„ c  D to T is understood in the same sense as 
above with the additional requirement that 00 e T„ for 
all 1 1 (in particular, the functions a„(7) must be 
unbounded, i.e., a„( oôJ = 0°). The Hardy space FP’(D) 
under these assumptions is defined by the same condi­
tion (2). In particular, for the half-plane {z = x  + iy, 
y > 0}, we can define T„ to be the lines y = en, where 
en —> 0. For analytic functions, we obtain the classical 
Hardy space [8].

Let us define weight spaces in the case under con­
sideration. We include the infinite point in F  and 
define the class C JT , F) as above with the additional

- X
requirement that (p(t) = 0(l)\t\ " as t For this 
class, we define the weight scalar functions p(7) = p,(7) 
and the /-analytic (I x Z)-matrix functions R(z) = R, (z.) as 
in the finite case. Using these functions, we define the 
weight spaces as above, with the only difference that
L{(Y ,F ) = U(Y) and H { (T, F) = W (T )  for the weight 

order k  taking the value at the finite points x e f

and ^ at the point x = and, similarly, Lpx (D, F) =
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2
LP(D) for the weight order A. taking the value - -  at the 

2
finite points x e  F and -  at the point x = For the half­

plane, the weight Hardy space for /-analytic functions 
was introduced and studied in [9].

Theorems 1 and 2 remain valid in the case under 
consideration, with the only difference that the condi­

tions -1  < X<  0 and < X<  0 for x = are replaced

by 0 < < 1 and () < ^ . respectively. An analogue

of Theorem 3 is valid as well. Suppose that the set F  
comprises only one point x = i.e., the unbounded
curve T is smooth. Let us cover Y  by smooth curves Tm

where n < 1, so that f  „ = 2_T n — j  ̂  -  N -  2 j  starting

with some number n > m. Let Dn be domains defined in 

a similar way for D. Then, the space Lvx ( r ,  «>) can be

specified by norm (5), and the space H{ (D, in The­
orem 3 can be specified by (6). Thus, the families of 
spaces under consideration, as well as in the case of 
finite contours, monotonically decrease with respect to 
each of the parameters p  and ~kx, where x e  f .

Theorem 4 also extends to the unbounded case; 
we must only enumerate the arcs r T±0 with endpoint 
x = <x> and define the corresponding unit tangent vec­
tors qx± o to these arcs at this endpoint. Recall that, for 
x ^  °o, the lateral sides r T±0 of the curvilinear sector 
,S'T = I) n  {|z — x| < e }, where 8 > 0 is sufficiently small, 
with vertex x are enumerated as follows. When the 
boundary <)SZ is traversed through the point x from r x 0 
to r T + 0, the sector Sx remains on the left. The arc r T±0

can be specified by the parametric equation z -  x = 
rqz ± 0exp[ih(r)\, where 0 < r  < e and the real function h(r) 
is continuous and vanishes at r  = 0. The case of x = «. 
can be handled similarly. Namely, for sufficiently small 
R > 0, the lateral sides of the curvilinear “sector” S,_„ = 
D n  {|z| > R] are “arcs” r T±0 with endpoint x = 
which can be specified by the parametric equation z = 
rq-L±llcxp\ih(r)\ on the half-axis r > R ,  where the real 
function h(r) is continuous and tends to zero as r  —> 
These arcs can be enumerated in the same way as for 
finite vertices x.
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