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ON ADDITIVE BINARY PROBLEMS
WITH SEMIPRIME NUMBERS OF A SPECIFIC FORM

N. A. Zinchenko UDC 511.345

Abstract. The paper is devoted to methods of solution of binary additive problems with semiprime

numbers, which form sufficiently “rare” subsequences of the natural series. Additional conditions are

imposed on these numbers; the main condition is belonging to so-called Vinogradov intervals. We

solve two problems that are analogs to the Titchmarsh divisor problem; namely, based on the Vino-

gradov method of trigonometric sums, we obtain asymptotic formulas for the number of solutions to

Diophantine equations with semiprime numbers of a specific form.
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1. Introduction. An important branch of the additive number theory is devoted to problems on
prime numbers from so-called Vinogradov (short) intervals:

[
(2m)c, (2m+ 1)c

)
, m ∈ N, c ∈ (1, 2]. (1)

If we denote by {a} the fractional part of a number a, then the fact that a prime number belongs to

the interval (1) is equivalent to the condition
{
1

2
p1/c

}
<

1

2
.

This branch of number theory is related to works of I. M. Vinogradov [14] and S. A. Gritsenko [4]. Ad-
ditive problems with prime numbers from intervals of the form (1) were considered, for example, in [1,
3, 5, 6]. Problems examined in these papers either were ternary or admitted solution by the ternary

scheme inapplicable in the case of additive binary problems with prime numbers from Vinogradov
intervals. Solutions of such problems are based on an equipollent analog of the Bombieri–Vinogradov
theorem (see [2, 13]), which has not yet been obtained. We mention D. Tolev’s theorem (see [12] which

asserts that if the inequalities 0 < λ < 1/4, 0 < θ < 1/4 − λ, and A > 0 are fulfilled, then

∑

k≤xθ

max
y≤x

max
gcd(a,k)=1

∣
∣∣
∣ψλ(y; k, a)− y1−λ

ϕ(k)(1 − λ)

∣
∣∣
∣ ≤

x1−λ

lnA x
,

where

ψλ(y; k, a) =
∑

n≤y
n≡a (mod k)
{√n}<1/nλ

Λ(n).

In this theorem, the range of variation of the parameter k is less than x1/4, whereas in the classical
Bombieri–Vinogradov theorem it is close to x1/2. Therefore, one cannot apply Tolev’s theorem to

binary additive problems with prime numbers from intervals of the form (1). For a particular case,
this boundary was approximated to x1/3 in [7], but this was insufficient.
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At the present time, one can solve binary additive problems with semiprime numbers from (1), i.e.,

numbers of the form p1p2 or p1p
a
2. They form sufficiently rare sequences in the set of natural numbers.

For a ≥ 2, the latter sequence is “close” to the sequence of prime numbers. In this paper, we consider
two binary additive problems with these numbers from Vinogradov intervals, which can be regarded as
analogs of the Titchmarsh divisor problem. These problems are solved by I. M. Vinogradov’s method

of trigonometric sums. Methods applicable to problems discussed in this paper can also be used for
other binary problems with semiprime numbers from Vinogradov intervals.

2. Notation and auxiliary lemmas. We will use the following notation:
p, p1, p2 are prime numbers (primes);

π(x) =
∑

p≤x
1 is the number of primes that do not exceed x;

π(x, a, k) =
∑

p≤x,
p≡a (mod k)

1;

τ(m) is the number of natural divisors of a number m;
μ(m) is the value of the Möbius function at m;
ϕ(m) is the value of the Euler function at m;

Λ(n) is the value of the von Mangoldt function at m;

Lix =

x∫

2

du

lnu
;

{x} is the fractional part of a number x;
gcd(a, b) is the greatest common divisor of numbers a and b;

[a, b] is the least common multiple of numbers a and b;

f(x) ∼ g(x) means that lim
x→∞

f(x)

g(x)
= 1;

A � B means that there exist c1 and c1 such that c1B ≤ A ≤ c2B.
We will need the following auxiliary assertions.

Lemma 1 (Brun–Titchmarsh theorem; see [8]). For natural numbers a and k satisfying the condi-
tions (a, k) = 1 and k ≤ x, the following relation holds:

π(x, a, k) =
∑

p≤x,
p≡a ( mod k)

1 <
(2 + η)x

ϕ(k) ln
(
2x
k

) ,

where η > 0 and x > x0(η).

Lemma 2. Let X ≥ 2; then
∑

m≤X

1

ϕ(m)
= c0 lnX +O(1).

Lemma 3 (see [16]). For N > 2 and a positive integer l, we have

∑

0<m≤N

(τ(m))l � N(lnN)2l−1,

where

c0 =

∞∑

r=1

μ2(r)

rϕ(r)
.
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Lemma 4 (Bombieri–Vinogradov theorem). For any A > 0, there exists B such that

∑

k≤
√

x

lnB x

max
l≡l0( mod k)

(l,k)=1

∣∣
∣∣π(x, l, k) −

Li(x)

ϕ(k)

∣∣
∣∣ = O

(
x

lnA x

)
.

Lemma 5 (see [15]). Let r be a positive integer, α and β be real numbers, and 0 < Δ < 0.25 be such
that Δ ≤ β − α ≤ 1 − Δ. Then there exists a periodic function ψ(x) with period 1 possessing the

following properties:

(1) ψ(x) = 1 in the interval α+ 0.5Δ ≤ x ≤ β − 0.5Δ;
(2) 0 ≤ ψ(x) ≤ 1 in the intervals α− 0.5Δ ≤ x ≤ α+ 0.5Δ and β − 0.5Δ ≤ x ≤ β + 0.5Δ;
(3) ψ(x) = 0 in the interval β + 0.5Δ ≤ x ≤ 1 + α− 0.5Δ;

(4) ψ(x) can be expanded into the Fourier series of the form

ψ(x) = β − α+

∞∑

m=1

(
gme2πimx + hme−2πimx

)
,

where gm and hm depend only on m, α, β, and Δ and, moreover,

|gm| ≤ 1

πm
, |hm| ≤ 1

πm
, |gm| ≤ β − α, |hm| ≤ β − α,

|gm| < 1

πm

( r

πmΔ

)r
, |hm| < 1

πm

( r

πmΔ

)r
.

Lemma 6. Let x be a large number, D ≤ x1−α, where

0 < α <
1

2
, (l,D) = 1, x1 < x, x− x1 > x1−α/2.

Then
∑

x1≤Dm+l≤x

(
τ(Dm+ l)

)k
= O

(
x− x1
D

(lnx)a(k)
)
,

where a(k) is a constant depending only on k.

The well-known Titchmarsh divisor problem is an example of binary additive problems. This prob-
lem consists of the search for an asymptotic formula for the number of solutions of the equation

p − 1 = xy, p ≤ n; it was stated and solved by E. Titchmarsh in 1930 (see [11]) under the assump-
tion that the extended Riemann hypothesis is valid. In the 1960s, Yu. V. Linnik using his dispersion
method obtained an asymptotic formula for this problem without additional conditions (see [10]).

Since binary additive problems with prime numbers from short intervals cannot yet be solved, the
search for analogs of the Titchmarsh divisor problem with semisimple numbers from (1) is of great
interest now.

3. Analog of the Titchmarsh divisor problem for semiprime numbers of the form p1p2
from short intervals. We consider the equation

p1p2 − xy = 1, p1p2 ≤ n, (2)

with the variables x, y, p1, and p2, where x and y are natural numbers and the prime numbers p1
and p2 satisfy the additional conditions p1 > exp(

√
lnn) and p2 > exp(

√
lnn).

We denote by T (n) the number of solutions of Eq. (2). Obviously,

T (n) =
∑

p1p2≤n

p1>exp(
√
lnn)

p2>exp(
√
lnn)

τ(p1p2 − 1). (3)
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We denote by T1(n) the number of solutions of Eq. (2) with semiprime numbers p1p2 from the inter-

vals (1). Obviously,

T1(n) =
∑

p1p2≤n

p1>exp(
√
lnn)

p2>exp(
√
lnn)

{ 1
2
(p1p2)1/c}< 1

2

τ(p1p2 − 1). (4)

Theorem 1. If c is an arbitrary number from the semi-interval (1, 2] and T (n) and T1(n) are defined

by the relations (3) and (4), respectively, then the following equality holds:

T1(n) =
1

2
T (n) +O(n ln ln lnn), (5)

where

T (n) ∼ c0n ln lnn, c0 =

∞∑

r=1

μ2(r)

rϕ(r)
.

Proof. We split the proof of Theorem 1 into several steps.
1. First, we consider the sum T1(n) and estimate the error, which appears if we restrict the range

of the variable x in Eq. (2). For this, we transform the sum by using the following auxiliary periodic
function with period 1:

�(y) =

{
1 if 0 ≤ y < 1/2,

0 if 1/2 ≤ y < 1.
(6)

We have

T1(n) =
∑

p1p2≤n

p1>exp(
√
lnn)

p2>exp(
√
lnn)

τ(p1p2 − 1)�

(
1

2
(p1p2)

1/c

)
=

∑

p1p2≤n, p1p2−xy=1

p1>exp(
√
lnn)

p2>exp(
√
lnn)

�

(
1

2
(p1p2)

1/c

)

=
∑

p1p2≤n, p1p2−xy=1, x≤√
n

p1>exp(
√
lnn), p2>exp(

√
lnn)

�

(
1

2
(p1p2)

1/c

)
+

∑

p1p2≤n, p1p2−xy=1, x>
√
n

p1>exp(
√
lnn), p2>exp(

√
lnn)

�

(
1

2
(p1p2)

1/c

)
.

Let P = n1/(ln lnn)2 ; then

T1(n) = 2
∑

p1p2≤n, p1p2−xy=1
x≤√

nP−10

p1>exp(
√
lnn), p2>exp(

√
lnn)

�

(
1

2
(p1p2)

1/c

)
−R2(n) + 2R1(n), (7)

where

R1(n) =
∑

p1p2−xy=1, p1p2≤n,
√
nP−10<x≤√

n

p1>exp(
√
lnn), p2>exp(

√
lnn)

�

(
1

2
(p1p2)

1/c

)
,

R2(n) =
∑

p1p2−xy=1, x≤√
n, y≤√

n

p1>exp(
√
lnn), p2>exp(

√
lnn)

�

(
1

2
(p1p2)

1/c

)
.
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For estimating remainders, we use Lemma 1. Finally, we obtain

T1(n) = 2
∑

p1p2≤n, p1p2−xy=1, x≤√
nP−10

p1>exp(
√
lnn), p2>exp(

√
lnn)

�

(
1

2
(p1p2)

1/c

)
+O

( n

ln lnn

)
. (8)

2. Now we restrict the range of one of the primes p1 or p2. We transform the sum in the right-hand
side of Eq. (8) as follows:

∑

p1p2≤n, p1p2−xy=1, x≤√
nP−10

p1>exp(
√
lnn), p2>exp(

√
lnn)

�

(
1

2
(p1p2)

1/c

)

= 2
∑

p1p2≤n, p1p2−xy=1, x≤√
nP−10

exp(
√
lnn)<p1≤P , p2>exp(

√
lnn)

�

(
1

2
(p1p2)

1/c

)
+ 2R3(n) +R4(n), (9)

where

R3(n) =
∑

p1p2≤n, p1p2−xy=1, x≤√
nP−10

P<p1≤√
n, p2>exp(

√
lnn)

�

(
1

2
(p1p2)

1/c

)
,

R4(n) =
∑

p1p2−xy=1, p1≤√
n, p2≤√

n

p1>exp(
√
lnn), p2>exp(

√
lnn)

x≤√
nP−10

�

(
1

2
(p1p2)

1/c

)
.

To estimate the remained R3(n), we use the fact that |�(n)| ≤ 1 and Lemmas 1 and 3. We have

R3(n) � n ln ln lnn.

For estimating R4(n), we partition the summation interval with respect to p1:

R4(n) ≤
∑

p1p2−xy=1
p1≤P, p2≤√

n
x≤√

nP−10

1 +
∑

p1p2−xy=1
P<p1≤√

n, p2≤√
n

x≤√
nP−10

1 = r′ + r′′.

The second sum in the right-hand side of the inequality obtained can be estimated exactly as for R3(n);
we have

r′′ � n ln ln lnn.

Applying Lemma 2, we obtain

r′ �
∑

m≤P
√
n

τ(m) � P
√
n lnP

√
n � n lnn

(ln lnn)2
� n ln ln lnn.

Therefore, R4(n) � n ln ln lnn. Substituting the estimates for R3(n) and R4(n) into (9), we obtain
from (8)

T1(n) = 4T̃1(n) +O(n ln ln lnn), (10)

where

T̃1(n) =
∑

p1p2≤n, p1p2−xy=1, x≤√
nP−10

exp(
√
lnn)<p1≤P, p2>exp(

√
lnn)

�

(
1

2
(p1p2)

1/c

)
.
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Arguing similarly, we arrive at the formula

T (n) = 4T̃ (n) +O(n ln ln lnn), (11)

where

T̃ (n) =
∑

p1p2−xy=1, x≤√
nP−10, p1p2≤n

exp(
√
lnn)<p1<P, p2>exp(

√
lnn)

1

3. Now we obtain an asymptotic formula for the sum T̃ (n). Verify that the leading term of this

formula has order n ln lnn. Note that if the numbers p1 and x are not coprime (gcd(p1, x) 
= 1), then

the congruence p1p2 ≡ 1 (mod x) has no solutions and terms of the sum T̃ (n) corresponding to such

p1 are equal to zero. Therefore, in the sequel we assume that summation is performed only over p1
that are coprime with x. Therefore,

T̃ (n) =
∑

x≤√
nP−10

∑

exp(
√
lnn)<p1<P
˜T (n)

∑

p2≤ n
p1

p2≡p∗1( mod x)

1,

where p∗1 is a solution of the congruence p1y ≡ 1 (mod x).
Changing the order of summation and using the notation from Lemma 1 in the interior sum, we

obtain

T̃ (n) =
∑

exp(
√
lnn)<p1<P

∑

x≤√
nP−10

gcd(p1,x)=1

π

(
n

p1
, p∗1, x

)
.

We represent T̃ (n) in the form

T̃ (n) =
∑

exp(
√
lnn)<p1<P

∑

x≤√
nP−10

gcd(x,p1)=1

Li
(

n
p1

)

ϕ(x)
+ r(n), (12)

where

r(n) ≤
∑

exp(
√
lnn)<p1<P

∑

x≤√
nP−10

⎛

⎝π

(
n

p1
, p∗, x

)
−

Li
(

n
p1

)

ϕ(x)

⎞

⎠ .

Applying the Bombieri–Vinogradov theorem (Lemma 4), we have

∑

x≤√
nP−10

∣
∣
∣∣
∣∣
π

(
n

p1
, p∗, x

)
−

Li
(

n
p1

)

ϕ(x)

∣
∣
∣∣
∣∣
� n

p1 ln
A n

,

where A > 0. Therefore,

r(n) ≤ n

lnA n

∑

exp(
√
lnn)<p1<P

1

p1
� n ln lnn

lnA n
. (13)

After a simple transformation of the first term in the right-hand side of (12) we obtain

∑

exp(
√
lnn)<p1<P

∑

x≤√
nP−10

gcd(x,p1)=1

Li
(

n
p1

)

ϕ(x)
= s1(n) +O(s2(n)), (14)
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where

s1(n) = n
∑

exp(
√
lnn)<p1<P

1

p1 ln
n
p1

∑

x≤√
nP−10

gcd(x,p1)=1

1

ϕ(x)
,

s2(n) =
n

ln2 n

∑

exp(
√
lnn)<p1<P

1

p1

∑

x≤√
nP−10

1

ϕ(x)
.

Now we obtain an asymptotic formula for s1(n). First, we calculate the interior sum; for this, we

represent it in the difference form:

∑

x≤√
nP−10

(x,p1)=1

1

ϕ(x)
=

∑

x≤√
nP−10

1

ϕ(x)
−

∑

x≤√
nP−10

p1|x

1

ϕ(x)
.

Lemma 2 implies that

∑

x≤√
nP−10

1

ϕ(x)
= c0 ln

√
nP−10 +O(1) =

c0
2
lnn+O

(
lnn

(ln lnn)2

)
,

where

c0 =

∞∑

r=1

μ2(r)

rϕ(r)
.

Since the Euler function ϕ satisfies the inequality ϕ(a · b) ≥ ϕ(a) · ϕ(b), we have

∑

x≤√
nP−10

p1|x

1

ϕ(x)
=

∑

x1≤√
n/P 10p1

1

ϕ(x1p1)
≤

∑

x1≤√
n/P 10p1

1

ϕ(x1)ϕ(p1)
.

Taking into account the condition p1 > exp(
√
lnn), the formula ϕ(p1) = p1 − 1, and Lemma 2, we get

∑

x≤√
nP−10

p1|x

1

ϕ(x)
≤ 1

p1 − 1

∑

x1≤√
nP−10

1

ϕ(x1)
= O(1).

Therefore,
∑

x≤≤√
nP−10

gcd(x,p1)=1

1

ϕ(x)
=

c0
2
lnn+O

(
lnn

(ln lnn)2

)
.

Now we calculate the sum
∑

exp(
√
lnn)<p1<P

1

p1 ln
n
p1

.

Applying the Abel transform and the formula

∑

p≤n

1

p
= C + ln lnn+O

(
1

lnn

)
,

which is valid for n > 2, we have

∑

exp(
√
lnn)<p1<P

1

p1 ln
n
p1

=
ln lnn

2 ln n
+O

(
1

(ln n)3/2

)
. (15)
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Therefore, taking into account the estimate for the interior sum we have

s1(n) =
c0
4
n ln lnn+O

(
n√
lnn

)
.

For estimating s2(n), we apply Lemma 2 and the formula for the sum
∑

p≤n

1
p . We obtain

s2(n) � n

ln2 n
· ln lnn · lnn =

n ln lnn

lnn
.

Substituting the asymptotic formula for s1(n) into (14) and taking into account the estimate for s2(n),
we get

∑

exp(
√
lnn)<p1<P

∑

x≤√
nP−10

gcd(x,p1)=1

Li
(

n
p1

)

ϕ(x)
=

c0
4
n ln lnn+O

(
n√
lnn

)
.

Using this formula and the estimates for r(n) from (12), we arrive at the following asymptotic formula:

T̃ (n) =
c0
4
n ln lnn+O

(
n√
lnn

)
, c0 =

∞∑

r=1

μ2(r)

rϕ(r)
. (16)

4. We obtain an asymptotic formula for

T̃1(n) =
∑

p1p2≤n, p1p2−xy=1, x≤√
nP−10

exp(
√
lnn)<p1≤P, p2>exp(

√
lnn)

�

(
1

2
(p1p2)

1/c

)
.

4.1. We use Lemma 5 and take the parameters r, Δ, α, and β in two ways. First, we define these

parameters as follows: r = [lnn], Δ = 1/ln2(n), where n > [e2], n ∈ N, α = Δ/2, and β = (1−Δ)/2.
It is easy to verify that these numbers satisfy the conditions of Lemma 5. We denote by �1(x) the
function ψ(x) whose existence follows from Lemma 5.

Next, for the same r and Δ, we set α = −Δ/2 and β = (1 + Δ)/2 and denote the corresponding
function by �2(x). Then Lemma 5 implies that �1(x) ≤ χ(x) ≤ �2(x) and

T̃11(n) ≤ T̃1(n) ≤ T̃12(n), (17)

where

T̃1i(n) =
∑

p1p2−xy=1, p1p2≤n, x≤√
nP−10

exp(
√
lnn)<p1<P, p2>exp(

√
lnn)

�i

(
1

2
(p1p2)

1/c

)
, i = 1, 2.

If we obtain asymptotic formulas for T̃11(n) and T̃12(n) with the same leading terms, then the inequal-

ity (17) implies that a formula with the same leading terms ia also valid for T̃1(n).
Expand the functions �1(x) and �2(x) into Fourier series:

�1

(
1

2
(p1p2)

1/c

)
=

1

2
−Δ+

∑

|m|≥1

g1(m)eπim(p1p2)1/c ,

�2

(
1

2
(p1p2)

1/c

)
=

1

2
+Δ+

∑

|m|≥1

g2(m)eπim(p1p2)1/c ,

where |gi(m)| ≤ 1/π|m| for i = 1, 2. This and (11) imply that

4T̃1i(n) =

(
1

2
+O(Δ)

)
T (n) +O(ln ln lnn) + 4

∑

0<|m|<Δ−1 lnn

gi(m)vm(n), (18)
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where

vm(n) =
∑

p1p2−xy=1, p1p2≤n, x≤√
nP−10

exp(
√
lnn)<p1<P, p2>exp(

√
lnn)

eπim(p1p2)1/c .

Therefore, the same formula is also valid for 4T̃1(n):

4T̃1(n) =

(
1

2
+O(Δ)

)
T (n) +O(ln ln lnn) + 4

∑

0<|m|<Δ−1 lnn

g(m)vm(n).

Substituting the equality obtained into (10), we obtain

T1(n) =

(
1

2
+O(Δ)

)
T (n) +O(ln ln lnn) + 4

∑

0<|m|<Δ−1 lnn

g(m)vm(n).

Therefore,

T1(n) =
1

2
c0n ln lnn+O(Δn ln lnn) +O(n ln ln lnn) + 4

∑

0<|m|<Δ−1 lnn

g(m)vm(n). (19)

Now we must estimate the last sum in (19) and obtain an asymptotic formula for T1(n).
4.2. An estimate of the trigonometric sum vm(n) was obtained in [17]. We present a sketch of

the proof. First, we partition the interval
(
exp(

√
lnn), P

]
of summation by p1 into intervals p1 ∈

(P1/2, P1], where P1 ≤ P , P1/2 > e
√
lnn > 1, and consider the sums corresponding to these intervals:

S(m,P1) =
∑

p1p2−xy=1
x≤√

nP−10

∑

P1
2
<p1≤P1

∑

p1p2≤n

eπim(p1p2)1/c ,

where P1 ∈ (
exp(

√
lnn), P

]
. Estimating this sum from above and applying the Cauchy inequality,

we obtain

|S(m,P1)|2 � n

P1

∑

P1/2<p1≤P1

P1/2<p′1≤P1

∑

n2≤min

(

n
p1

, n
p′1

)

τ ′(p1n2 − 1)τ ′(p′1n2 − 1)eπim(p
1/c
1 −(p′1)

1/c)n
1/c
2 ,

where

τ ′(k) =
∑

xy=k
x≤√

nP−10

1.

Extracting the diagonal terms (p1 = p′1), we have

|S(m,P1)|2 � n

P1

∑

P1/2<p1≤P1

∑

n2≤2n/P1

τ2(p1n2 − 1)

+
n

P1

∑

P1
2
<p1≤P1

∑

P1/2<p1≤P1

p1 
=p′1

∣∣
∣∣
∣∣
∣
∣∣

∑

n2≤min

(

n
p1

, n
p′
1

)

τ ′(p1n2 − 1)τ ′(p′1n2 − 1)eπim(p
1/c
1 −(p′1)

1/c)n
1/c
2

∣∣
∣∣
∣∣
∣
∣∣

.

Using Lemma 6 for estimating the first sum, we obtain the inequality

|S(m,P1)|2 � n2 exp

(
−1

2

√
lnn

)
+

n

P1

∑

P1/2<p1≤P1

∑

P1/2<p′1≤P1

p1 
=p′1

|S(m,P1, p1, p
′
1)|, (20)
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where

S(m,P1, p1, p
′
1) =

∑

n2≤n3

τ ′(p1n2 − 1)τ ′(p′1n2 − 1)eπim(p
1/c
1 −(p′1)

1/c)n
1/c
2 , n3 = min

(
n

p1
,

n

p′1

)
.

Obviously,

S(m,P1, p1, p
′
1) =

∑

x≤√
nP−10

∑

x1≤√
nP−10

∑

n2≤n3,
n2≡p∗1( mod x)

n2≡p
′∗
1 ( mod x)

eπim(p
1/c
1 −(p′1)

1/c)n
1/c
2 ,

where p1p
∗
1 ≡ 1 (mod x) and p′1p

′∗
1 ≡ 1 (mod x). Also we see that if the interior sum in the last

equality is not empty, then n2 belongs to one of residue classes modulo [x1, x]. Therefore,

S(m,P1, p1, p
′
1) =

∑

δ≤√
nP−10

∑

x≤√
nP−10

∑

x1≤√
nP−10

(x,x1)=δ

∑

m2≤m3

eπim(p
1/c
1 −(p′1)

1/c)(η+xx1m2/δ)1/c ,

where m3 =
n3 − η

[x1, x]
and 0 ≤ η ≤ [x1, x]. Note that the sum with respect to m2 is “sufficiently long.”

For example, if δ = 1, then m3 � P 19.

Introduce the notation κ = m(p
1/c
1 − (p′1)1/c) and

S(m3, P1, p1, p
′
1, x, x1, δ) =

∑

m2≤m3

eπiκ(η+xx1m2/δ)1/c ;

then

S(m,P1, p1, p
′
1) =

∑

δ≤√
nP−10

∑

x≤√
nP−10

∑

x1≤√
nP−10

(x,x1)=δ

S(m3, P1, p1, p
′
1, x, x1, δ).

We partition the range of m3 into geometric progressions and consider the following two cases.

If m4 ≤ m3/P , then, applying the trivial estimate, we obtain

S(m3, P1, p1, p
′
1, x, x1, δ) �

m3

P
lnn,

which implies

S(m,P1, p1, p
′
1) �

n ln4 n

PP1
.

Substituting this estimate into (20), we obtain

|S(m,P1)|2 � n2 exp

(
−1

2

√
lnn

)
.

Introduce the notation

κ = m(p
1/c
1 − (p′1)

1/c), S(m3, P1, p1, p
′
1, x, x1, δ) =

∑

m2≤m3

eπiκ(η+xx1m2/δ)1/c ;

then

S(m,P1, p1, p
′
1) =

∑

δ≤√
nP−10

∑

x≤√
nP−10

∑

x1≤√
nP−10

(x,x1)=δ

S(m3, P1, p1, p
′
1, x, x1, δ).

In what follows, we assume that m4 > m3/P . Consider the sum

S(m4) =
∑

m4<m2≤2m4

eπiκ(η+xx1m2/δ)1/c .
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For the case where

0 <
|κ| (xx1/δ)1/c

m
1−1/c
4

<
1

10
,

we have

S(m4) �
(xx1

δ

)−1/c m
1−1/c
4

|κ| .

We consider the case where

|κ| (xx1/δ)1/c
m

1−1/c
4

>
1

10
.

The sum S(m4) can be estimated by the Vinogradov method.
For the case where xx1/δ > n0.99, we can use the Vinogradov scheme of estimating the zeta sum

(see, e.g., [9]) involving the “mean theorem.” We obtain the estimate

S(m4) � m4 exp

(
−γ

lnn

(ln lnn)6

)
.

If xx1/δ ≤ n0.99, then for estimating S(m4) we apply van der Corput’s method; in this case, we

obtain the estimate S(m4) � √
m4. Finally we have

vm(n) � ne−
1
4

√
lnn.

Taking into account this estimate, we obtain from (18)

T1(n) =
1

2
T (n) +O(n ln ln lnn).

Since T (n) ∼ c0n ln lnn, the formula obtained is an asymptotic formula. Theorem 1 is proved. �

4. Analog of the Titchmarsh divisor problem for semiprime numbers of the form p1p
a
2

from short intervals. We deduce an asymptotic formula for the number of solutions of the equation
p1p

a
2 − xy = 1, where a ∈ N, a ≥ 2, the numbers p1p

a
2 belong to intervals of the form (1), p1p

a
2 ≤ n,

and primes p1 and p2 satisfy additional conditions.

Theorem 2. Let n ≥ n0 > 0 and a ≥ 2 be natural numbers, Q = exp(
√
lnn ), A1 = [1, nQ−1],

A2 = [1, Q1/a], and

G(n) =
∑

p1∈A1

∑

p2∈A2
p1pa2−xy=1

∑

x,y

1, G1(n) =
∑

p1∈A1

∑

p2∈A2
p1pa2−xy=1

{ 1
2
(p1pa2)

1/c}< 1
2

∑

x,y

1.

Then the following equality holds:

G1(n) =
1

2
G(n)(1 +O(Q−η)),

where

G(n) = c0 Li

(
n

Q

)
π(Q1/a) ln n

(
1 +O

(
1√
lnn

))
,

η > 0 is an absolute constant, and

c0 =
∞∑

d=1

μ2(d)

ϕ(d)d
.
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Proof. We split the proof of Theorem 2 into several steps.

1. We obtain an asymptotic formula for G(n). First, we restrict the range of the variable x. We
obtain

G(n) = 2G′(n)−G′′(n), (21)

where

G′(n) =
∑

p1∈A1

∑

p2∈A2
p1pa2−xy=1

∑

x≤√
n

1, G′′(n) =
∑

p1∈A1

∑

p2∈A2
p1pa2−xy=1

∑

x≤√
n

y≤√
n

1.

We estimate the sum G′′(n) representing it as the sum of two terms G′′(n) = G′′
1(n)+G′′

2(n), where

G′′
1(n) =

∑

p1∈A1

∑

p2∈A2
p1pa2−xy=1

∑

x≤√
nQ−1

y≤√
n

1, G′′
2(n) =

∑

p1∈A1

∑

p2∈A2
p1pa2−xy=1

∑

√
nQ−1<x≤√

n
y≤√

n

1.

Note that

G′′
1(n) ≤

∑

m≤nQ−1+1

τ(m− 1)t1(m), where t1(m) =
∑

p1pa2=m
p1∈A1
p2∈A2

1.

Obviously, t1(m) = 1 if m = pa+1 or m = p1p
a
2 and t1(m) = 0 in all other cases. Taking this remark

into account, we obtain from Lemma 3 the estimate

G′′
1(n) ≤

∑

m≤nQ−1+1

τ(m− 1) � n lnn

Q
.

Next. we estimate G′′
2(n). Since in the case where p2 | x the equation p1p

a
2 − xy = 1 has no solutions,

we conclude that

G′′
2(n) =

∑

√
nQ−1<x≤√

n

∑

p2∈A2
gcd(p2,x)=1

∑

p1∈A1
p1≡p∗2 (mod x)

1 =
∑

√
nPQ−1<x≤√

n

∑

p2∈A2
gcd(p2,x)=1

π(nQ−1, p∗2, x),

where p∗2 is a solution of the congruence pa2t ≡ 1 (mod x). Applying Lemmas 1 and 2, we obtain

G′′
2(n) �

n

Q lnn

∑

p2∈A2

∑

√
nQ−1<x≤√

n

1

ϕ(x)
� n

Q
π(Q1/a)

lnQ

lnn
.

From the estimates for G′′
1(n) and G′′

2(n) we get

G′′(n) � n

Q
π(Q1/a)

lnQ

lnn
. (22)

To estimate the sum G′(n), we represent it, similarly to G′′(n), as the sum of two terms:

G′(n) = G′
1(n) +G′

2(n) =
∑

p1∈A1

∑

p2∈A2
p1pa2−xy=1

∑

x≤√
nQ−1

1 +
∑

p1∈A1

∑

p2∈A2
p1pa2−xy=1

∑

√
nQ−1<x≤√

n

1.

The sum G′
2(n) can be estimated exactly the same as G′′

2(n); therefore,

G′
2(n) �

n

PQ
π(Q1/a)

lnQ

lnn
.
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We obtain an asymptotic formula for the sum G′
1(n):

G′
1(n) =

∑

x≤√
nQ−1

∑

p2∈A2

gcd(p2, x)=1

π

(
n

Q
, p∗2, x

)

= Li

(
n

Q

) ∑

p2∈A2

∑

x≤√
nQ−1

gcd(p2, x)=1

1

ϕ(x)
+O

⎛

⎜⎜
⎜
⎝

∑

p2∈A2

∑

x≤√
nQ−1

gcd(p2, x)=1

∣
∣∣
∣∣
∣
π

(
n

Q
, p∗2, x

)
−

Li
(

n
Q

)

ϕ(x)

∣
∣∣
∣∣
∣

⎞

⎟⎟
⎟
⎠

,

where p∗2 is a solution of the congruence pa2t ≡ 1 (mod x). Therefore, due to the Bombieri–Vinogradov

theorem (see Lemma 4),

G′
1(n) = Li

(
n

Q

) ∑

p2∈A2

∑

x≤√
nQ−1

gcd(p2, x)=1

1

ϕ(x)
+O

(
nπ(Q1/a)

Q lnn

)

.

For estimating the interior sum in the first term of the right-hand side of the equality obtained, we
argue similarly to the step 3 of the proof of Theorem 1. We obtain

∑

x≤√
nQ−1

gcd(p2,x)=1

1

ϕ(x)
= c0 ln

(√
n

Q

)
+O

(
lnn

p2

)
,

where

c0 =

∞∑

d=1

μ2(d)

ϕ(d)d
.

Summing both sides of the equality obtained by p2 ∈ A2, we obtain

∑

p2∈A2

∑

x≤√
nQ−1

gcd(p2,x)=1

1

ϕ(x)
= c0 ln

(√
n

Q

)
π(Q1/a) +O (lnn ln lnQ) .

Therefore, we arrive at the asymptotic formula

G′
1(n) = c0 Li

(
n

Q

)
π(Q1/a) ln

(√
n

Q

)(
1 +O

(
lnQ

lnn

))
.

Therefore, taking into account the estimate for G′′
2(n), we obtain

G′(n) =
c0
2
Li

(
n

Q

)
π(Q1/a) lnn

(
1 +O

(
lnQ

lnn

))
. (23)

Finally, substituting (23) and (22) into (21), we get the asymptotic formula

G(n) = c0 Li

(
n

Q

)
π(Q1/a) lnn

(
1 +O

(
1√
lnn

))
. (24)

2. Consider the sum

G1(n) =
∑

p1∈A1

∑

p2∈A2
p1pa2−xy=1

{ 1
2
(p1pa2)

1/c}< 1
2

∑

x,y

1.
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Further, we assume that n ≥ n0 > 0, where n0 is a sufficiently large number. Similarly to the proof of

Theorem 2, we use the auxiliary periodic function

χ(x) =

{
1 if 0 ≤ x < 1/2,

0 if 1/2 ≤ x < 1.

Obviously,

G1(n) =
∑

p1∈A1

∑

p2∈A2
p1pa2−xy=1

χ

(
1

2
(p1p

a
2)

1/c

)
.

As in the proof of Theorem 1, we apply Lemma 5 and choose the parameters r, Δ, α, and β in two
ways.

In the case considered, we first set

r = [lnn], Δ =
1

ln2 n
, α = Δ, β =

1

2
−Δ.

We denote by χ1(x) the function whose existence follows from Lemma 5. Next, for the same r and Δ,
we set α = −Δ and β = 1/2 + Δ and denote by χ2(x) the corresponding function. Then Lemma 5

implies that χ1(x) ≤ χ(x) ≤ χ2(x) and, therefore,

G11(n) ≤ G1(n) ≤ G12(n), (25)

where

G1i(n) =
∑

p1∈A1

∑

p2∈A2

∑

x≤√
n

p1pa2−xy=1

χi

(
1

2
(p1p

a
2)

1/c

)
, i = 1, 2.

If we obtain asymptotic formulas for G11(n) and G12(n) with the same leading terms and remainders,
then the inequality (25) means that the same formula is also valid for G1(n).

3. To deduce an asymptotic formula for G11(n), we expand the function χ1

(
1
2 (p1p

a
2)

1/c
)
into a

Fourier series:

G11(n) =

(
1

2
− 2Δ

)
G(n) +R1(n) +R2(n), (26)

where

R1(n) =
∑

0<|m|≤Δ−1 lnn

|gm||Vm(n)|, R2(n) =
∑

|m|>Δ−1 lnn

|gm||Vm(n)|,

Vm(n) =
∑

p1∈A1

∑

p2∈A2
p1pa2−xy=1

t2(p1p
a
2 − 1)eπim(p1pa2)

1/c
, t2(k) =

∑

xy=k
x≤√

nQ−1

1,

and gm is the mth Fourier coefficient of the function χ1.

Now we estimate R2(n). Lemma 5 implies

|gm| ≤ 1

π|m|
(

r

πΔ|m|
)r

.

Moreover, |Vm(n)| ≤ G1(n) ≤ n; therefore,

R2(n) = O

⎛

⎝n
∑

|m|>Δ−1 lnn

( r

Δ

)r
m−r−1

⎞

⎠ = O(1). (27)
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Estimate R1(n):

|R1(n)| ≤
∑

0<|m|<Δ−1 lnn

1

π|m| |Vm(n)|, |Vm(n)| ≤
∑

n1≤ n
Q

∣
∣
∣∣
∣∣

∑

p2∈A2

t2(n1p
a
2 − 1)eπim(n1pa2)

1/c

∣
∣
∣∣
∣∣
,

where n1 runs over the set of natural numbers. Applying the Cauchy inequality, we obtain

|Vm(n)|2 ≤ n

Q

∑

n1≤n/Q

∣
∣∣
∣∣
∣

∑

p2∈A2

t2(n1p
a
2 − 1)eπim(n1pa2)

1/c

∣
∣∣
∣∣
∣

2

=
n

Q

∑

p2∈A2

∑

p′2∈A2

∑

n1≤n/Q

t2
(
n1p

a
2 − 1

)
t2
(
n1(p

′
2)

a − 1
)
eπim(p

a/c
2 −(p′2)

a/c)n
1/c
1

=
n

Q

(
V0(n) + V1(n)

)
, (28)

where the sum V0(n) corresponds to term in which p2 = p′2, whereas p2 
= p′2 in the sum V1(n) .
Estimate V0(n). Note that the multiplicativity of the function τ(n) and the formula for calculating

its values follows that τ(ab) ≤ τ(a)τ(b). This remark and Lemma 6 imply

V0(n) ≤
∑

p2∈A2

∑

n1≤ n
Q

τ2(n1p
a
2 − 1) ≤ (a+ 1)2Q1/a

∑

n1≤nQ−1

τ2(n1) � nQ1/a−1 ln3 n. (29)

Estimate V1(n). Note that

V1(n) ≤
∑

p2∈A2

∑

p′2∈A2

f(n), (30)

where

f(n) =
∑

x1≤√
nQ−1

∑

x2≤√
nQ−1

s(m) (31)

and

s(m) =
∑

n1≤nQ−1

n1pa2≡1 (mod x1)
n1(p′2)

a≡1 (mod x2)

e2πi
m
2
(p

a/c
2 −(p′2)

a/c)n
1/c
1 .

Without loss of generality, we assume that gcd(p2, x1) = 1 and gcd(p′2, x2) = 1, sine in the opposite
case the sum is equal to zero.

Let p2q2 ≡ 1 (mod x1) and p′2q′2 ≡ 1 (mod x2). We solve the system of congruences
{
x ≡ qa2 (mod x1)

x ≡ (q′2)
a (mod x2).

It is solvable if and only if gcd(x1, x2)|(qa2 − (q′2)a) and the solution has the form x = z2 +mD, where
D = [x1, x2]. Thus,

s(m) =
∑

ξ+l≤n/(DQ)

e2πiκ(ξ+l)1/c ,

where

κ =
m

2

(
p
a/c
2 − (p′2)

a/c
)
, ξ =

z2
D
.

Obviously, 0 < ξ < 1.
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4. To obtain an asymptotic formula for G11, we must estimate s(m). We represent this sum in the

form s(m) = s1(m) + s2(m), where

s1(m) =
∑

n

DQ3/2
<ξ+l≤ n

DQ

e2πiκ(ξ+l)1/c , s2(m) =
∑

ξ+l≤ n

DQ3/2

e2πiκ(ξ+l)1/c .

Obviously,

|s2(m)| ≤
∑

ξ+l≤ n

DQ3/2

1 ≤ n

DQ3/2
.

Therefore,

s(m) = s1(m) +O

(
n

DQ3/2

)
. (32)

We split the sum s1(m) into O(ln n) sums of the form

s̄1(M) =
∑

M<ξ+l≤M1

e2πiκ(ξ+l)1/c ,

where
n

DQ3/2
≤ M < M1 ≤ 2M, M1 ≤ n

DQ
.

Since x1 ≤
√
nQ−1 and x2 ≤

√
nQ−1, we have D = [x1, x2] ≤ x1x2 ≤ nQ−2. Therefore,

M ≥ n

DQ3/2
≥ Q1/2

and hence the sum s̄1(M) contains “relatively many” terms.

We estimate s̄1(M) under the condition
n

DQ3/2
≤ M ≤ n

DQ
. First, we consider the case where

1 ≤ D ≤ n0.99 ⇐⇒ M ≥ n0.01

Q1.5
.

If
|κ|M1/c

M
≤ 1

10
,

then, approximating the sum by an integral, we obtain:

s̄1(M) =

M1∫

M

e2πiκ(ξ+l)1/cdl = O(1) = O
(
M1−1/c

)
.

In the sequel, we assume that |κ|M1/c/M > 1/10 and use van der Corput’s method for estimating

the sum s̄1(M). We define a natural number k from the condition

1

M2
<

|κ|M1/c

Mk
≤ 1

M
.

If k = 2, then

|κ|M1/c

M2
� 1

M
.

Estimating s̄1(M) by the second derivative, we obtain that s̄1(M) = O(
√
M) for k = 2.

Consider the case k ≥ 3 and estimate s̄1(M) by a derivative of order k (see [9, p. 66-70]). We have

s̄1(M) � M1−δ , where δ = δ(k) > 0. The case D ≤ n0,99 is fully explored.
Now let

D > n0,99,
|κ|M1/c

M
>

1

10
.
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We estimate s̄1(M) using the scheme proposed by I. M. Vinogradov for the zeta sum (see [9, p. 66-70]).

Let a = [M5/11]; then

|s̄1(M)| ≤ 1

a2

∑

M<m≤M1

|W (m)|+ 2a2,

where

W (m) =

a∑

u=1

a∑

v=1

e2πiκ(ξ+m+uv)1/c .

We apply the Taylor formula:

(ξ +m+ uv)1/c =

r∑

j=0

(
1/c

j

)
(ξ +m)1/c−j(uv)j + θ2

(
1/c

r + 1

)
(ξ +m)1/c−r−1a2(r+1), |θ2| ≤ 1.

Thus,

e2πiκ(ξ+m+uv)1/c = e2πiF (uv) + 2πθ3|κ|(ξ +m)1/c
(

a2

ξ +m

)r+1

, |θ3| ≤ 1,

where

F (uv) =
r∑

j=0

(
1/c

j

)
(ξ +m)1/c−j(uv)j .

Introduce the following notation:

xj =

(
1/c

j

)
, T = |κ|(ξ +m)1/c, αj =

T sgnκ

xj(ξ +mj)
.

Then

W (m) = W1 + 2πθ4T

(
a2

M

)r

a2M− 1
11 , |θ4| ≤ 1,

W1 =

a∑

u=1

a∑

v=1

e2πiF (uv) =

a∑

u=1

a∑

v=1

e2πi(α1uv+α2u2v2+···+αrurvr).

We choose a natural number r from the condition

r − 1 <
11 ln T

lnM
≤ r

and note that |κ| ≤ n0.99/c since D > 0.99. Therefore, from the inequality MD ≤ n/Q we conclude

that M < n0.01 and hence

lnT

lnM
>

ln 1
2n

0,99/c

lnn0,01
>

99

c
− 1 ≥ 97

2
,

so that the choice of r specified is possible. Following Vinogradov’s scheme, we obtain:

|W1| ≤ c2a
2e−γ1

√
lnn, c2 > 0, γ1 > 0.

Therefore,

s̄1(M) � n

QD
e−γ

√
lnn, s1(m) � n lnn

QD
e−γ

√
lnn.

Using estimates obtained above, we find from (32)

s(m) � nQ−1e−γ
√
lnnD−1 lnn+ nQ−1.5D−1 � nQ−1e−γ

√
lnn/2D−1, (33)

where D = [x,x2].
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5. We continue to deduce an asymptotic formula for G11(n). The formulas (26) and (27) imply

G11(n) =

(
1

2
− 2Δ

)
G1(n) +O

⎛

⎝
∑

0<|m|<Δ−1 lnn

1

π|m|
∣∣Vm(n)

∣∣

⎞

⎠ ,

where Δ = 1/ln2 n. From (28) and (29) we obtain

|Vm(n)|2 ≤ n

Q
V1(n) +O(n2Q1/a−2 ln3 n).

Therefore, to obtain an asymptotic formula, we need an estimate for V1(n). From (30) we have

V1(n) �
∑

p2∈A2

∑

p′2∈A2

f(n),

where

f(n) =
∑

x1≤√
nQ−1

∑

x2≤√
nQ−1

s(m).

Substituting the estimate (33) into this formula, we obtain

f(n) � n

Q
exp

(
−γ

2

√
lnn

) ∑

x1≤√
nQ−1

∑

x2≤√
nQ−1

D−1.

Estimate the sum in this inequality:

∑

x1≤√
nQ−1

∑

x2≤√
nQ−1

D−1 =
∑

x1≤√
nQ−1

∑

x2≤√
nQ−1

gcd(x1, x2)

x1x2

=
∑

x1≤√
nQ−1

∑

x2≤√
nQ−1

1

x1x2

∑

d|(x1,x2)

ϕ(d)

≤
∑

d≤√
nP−1

ϕ(d)

d2

⎛

⎝
∑

x≤√
nQ−1d−1

1

x

⎞

⎠

2

� ln3 n.

Therefore, f(n) � n ln3 n/Q2. This and (30) imply

|V1(n)| � n2Q1/a−3 ln3 n. (34)

Using the estimates (29) and (34), we obtain from (28)

|Vm(n)|2 � n2Q−2+ 2
a e−

γ
4

√
lnn + n2Q−2+ 1

a ln3 n �
(
n

Q

)2

Q−2+2/ae−γ
√
lnn/4,

that is,

|Vm(n)| � nQ−1+1/ae−γ
√
lnn/8.

Therefore,

|R1(n)| � nQ−1+1/ae−γ
√
lnn/8 ln2 n. (35)

Substituting the estimates (27) and (35) into (26), we obtain the following asymptotic formula:

G11(n) =
1

2
G(n)

(
1 +O(Q−η)

)
, η > 0.

Similar arguments for G12(n) yield an asymptotic formula with the same leading term and remainder.

Therefore, it follows from (25) that the following asymptotic formula for G1(n) holds:

G1(n) =
1

2
G(n)

(
1 +O(Q−η)

)
, η > 0.

Theorem 2 is proved. �
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