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Abstract—The new SOCRATES (ShOrtening CRiteria and ATtributES) method for reducing the dimen-
sionality of attribute space is described. In this method, a large number of initial numerical and/or verbal
characteristics of objects are aggregated into a single integral index or several composite indicators with small
scales of qualitative estimates. Multiattribute objects are represented as multisets of object properties. The
attribute aggregation includes various methods for the transformation of attributes and their scales. Reducing
the number of attributes and shortening their scales make it possible to simplify the solution of applied prob-
lems, in particular, problems of multicriteria choice and to explain the obtained results.
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INTRODUCTION
The problems of strategic and unique choices

involving very few compared objects and a very large
number of features that characterize their properties,
which can reach tens or hundreds, are among the most
difficult ones. Examples of such objects are the place
for building an airport or power plant, the route for
laying a gas or oil pipeline, the scheme of a transport
network, the configuration of a complex technical sys-
tem, etc. In real situations, it is very difficult for deci-
sion-makers (DM) and experts to select the best object
as well as to rank or classify objects that are described
by a large number of attributes, because, as a rule,
many objects will be formally incomparable in their
characteristics. 

Additional difficulties arise in the case of poorly
structured problems that combine quantitative and
qualitative dependencies, for which the construction
of objective models is either impossible in principle or
very difficult. The known methods for decision-mak-
ing [2–5, 7, 14, 15] are extremely effort- and time-
consuming in obtaining and processing large amounts
of data about objects, DM preferences and/or expert
knowledge, and are of little use for solving multicrite-
ria choice problems of high dimensionality.

The following approaches are possible that facili-
tate the choice in a large attribute space and reduce the
information losses: the use of psychologically correct

operations for obtaining information from DM and
experts, and reduction of the attribute space dimen-
sionality. It has been experimentally established that it
is easier for a person, due to the peculiarities of his
physical memory, to operate with small amounts of
data and to compare objects by a small number of indi-
cators. The results of such operations are more reliable
and easier to analyze. For this, it would suffice to
describe objects with three to seven indicators. A per-
son makes fewer mistakes when the indicators have
verbal scales rather than numerical [3–5, 15]. Reduc-
tion of the attribute space dimensionality simplifies
the solution of problems of individual and group mul-
ticriteria choice by diminishing the number of vari-
ables. Practically all applied methods for dimensional-
ity reduction deal with numerical data [1, 2, 16]. Pro-
cedures for dimensionality reduction in the spaces of
qualitative attributes are presented in [10–13].

This work describes the new SOCRATES (ShOrt-
ening CRiteria and ATtributES) method in which
numerous initial characteristics of objects are aggre-
gated into several indicators or a single integral indica-
tor with small scales of verbal assessments. The repre-
sentation of multiattribute objects as multisets and
aggregation of attributes can significantly reduce the
complexity of solving the original problem of multicri-
teria choice and reasonably explain the obtained
results.
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1. REPRESENTATION AND COMPARISON
OF MULTIATTRIBUTE OBJECTS

Let us discuss possible ways of presenting, compar-
ing, and grouping objects that are specified by many
numerical and/or verbal attributes and are present in
several copies that differ in the values of their charac-
teristics [6–8, 10].

Let the objects O1,…,Oq be the only ones and be
described by the attributes K1,…,Kn with numerical

and/or verbal rating scales Xi = { }, i = 1,…,n.
Traditionally, every object Op, p = 1,…,q is associated

with a vector or tuple xp = ( ),  is one of
the gradations of the attribute Ki on the scale Xi. The
vector/tuple xp is a point of the n-dimension space X =
X1 ×…× Xn formed by the scales of attributes K1, …, Kn.

The situation is more complicated when the object
Op is present in several copies , p = 1,…,q, s = 1,…,t,
which differ in the values of the attributes K1, …, Kn.
Different versions of the Op object emerge, for
instance, when the object is assessed by t experts by
many criteria K1, …, Kn, or the characteristics of an
object are calculated t times by several methods K1, …,
Kn, or measured t times using several instruments
K1, …, Kn. In such cases, the object Op will be associ-
ated not with a single vector/tuple, but with a group of
t vectors/tuples . The vector/tuple

 describes one of the versions  of

the object Op, and its component  is the value of the

attribute Ki in the version  of the object Op equal to

; e = 1,…,h if all attributes K1, …, Kn have the same

rating scale X = {x1, …, xh} or , ei = 1,…,hi if each
attribute K1, …, Kn has its own rating scale Xi =

, i = 1, …, n.
The object Op is now represented in an n-dimen-

sional attribute space X = X1 ×…× Xn not by a single
point xp but by an entire group (“cloud”) consisting of

t points . Importantly, the group of vec-

tors/tuples  representing the object Op must
be treated as an entity. In this case, generally speaking,
the individual values of the attributes for various ver-
sions of the object Op (assessments made by different
experts, characteristics measured by different methods
or instruments) can be both similar and different, and
even contradictory, which in turn can lead to incom-
parability of vectors/tuples, which comprise the group
representing one and the same object Op.

The objects O1, …, Oq, each of which exists in sev-

eral versions  specified by the vectors/tuples ,
and their attributes can be represented by Objects–
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Attributes matrices F = ||xpi||q×n and 
The rows of the matrix F correspond to objects, the
columns correspond to attributes, and the xpi elements

are the values of the components  of vectors/tuple
components that define the objects. The number of
rows of the matrix , which has a large dimensional-
ity, is equal to the number of all copies of the objects,
the number of columns is equal to the number of attri-
butes, and the elements  are the values of the com-

ponents  of vectors/tuples specifying different ver-
sions of the objects.

It is rather difficult to analyze a set of multiattribute
objects O1, …, Oq, each of which is represented in the
attribute space X = X1 ×…× Xn by its own “cloud” con-
sisting of t various points. Therefore, it is highly desir-
able in one way or another to simplify the description
and to aggregate representation of such multiattribute
objects. In the case of numerical attributes K1,…, Kn,
the simplest way is to define each Op object as a single

vector , whose components
are determined by additional formal conditions or
meaningful considerations. As an example, it can be
the following: a vector that is the center of the group;
the vector closest to all vectors in the group or a vector
with the total, averaged, or weighted component val-
ues of the vectors  representing versions of
this object. In the case of symbolic, verbal, or mixed
attributes K1,…,Kn, the group of tuples representing
copies of any object, even in principle, cannot be
replaced by a single tuple with total, averaged,
weighted, mixed values of the components, since such
operations are mathematically impossible.

A convenient mathematical model for representing
objects that are described by many numerical and ver-
bal attributes, is a multiset or a set with repetitions [9].
This model makes it possible to simultaneously take
heterogeneous attributes, possible combinations of
attribute values, and the presence of different object
copies [6–8, 10] into account. When all attributes
K1, …, Kn have the same rating scale X = {x1, …, xh}, we
associate the object Op, p = 1,…,q with a multiset of
estimates

(1)

over the generating set X = {x1,…,xh} of the scale gra-
dations. Here, the value of the multiplicity function
kAp(xe) shows the number of times that the grade xe ∈
X, e = 1,…,h is present in the description of the object Op.

When each attribute Ki has its own rating scale Xi =

, i = 1,…,n, we introduce a single expanded
scale (hyperscale) of attributes: the set X = X1∪ … ∪Xn =

{ }, which consists of n groups of
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attributes and combines all gradations of estimates on
the scales of all attributes. Then, the object Op will cor-
respond to the multiset of estimates

(2)

over the generating set X = { } of
attribute scale gradations. Here, the value of the mul-
tiplicity function kAp( ) shows the number of times

the estimate  ∈Xi, ei = 1, …, hi with regard to the
attribute Ki is present in the description of the object
Op. Expression (2) can easily be written in the “usual”
form (1), if the following change in variables is carried
out in the set X = { }:

  …,
= xh, h = h1+…+hn. Despite the seemingly cum-

bersome representation of multiattribute objects using
multisets, such notation forms are extremely conve-
nient when comparing objects and performing opera-
tions, since calculations are carried out in parallel and
simultaneously for all elements of all multisets.

A variety of operations on multisets makes it possi-
ble to group multiattribute objects in different ways.
A group of objects can be formed by specifying multi-
set J representing the group by the sum J =

, union J = ∪s As, kJ(xe) =
maxs kAs(xe), intersection J = ∩s As, kJ(xe) = mins

kAs(xe) of multisets As describing the grouped objects or
by one of linear operations on multisets As: J =

, J = ∪s csAs, J = ∩s csAs, cs > 0 is an integer.
Upon addition of multisets, all the properties (all val-
ues of all attributes) of objects included in the group
are aggregated. Upon combining or intersecting the
multisets, the best properties (maximum values of all
attributes) or, accordingly, the worst properties (mini-
mum values of all attributes) possessed by individual
members of the group are amplified.

If there are several versions of the object Op, all its

copies , p = 1,…,q, s = 1,…,t make up a group rep-
resenting this object. We associate the object Op with
the multiset Ap = {kAp(x1) x1, …, kAp(xh) xh} of the form

(1), (2), and the version , with the multiset  =

{ (x1) x1, …, (xh)◦xh} over the set of estimates

X = {x1,…,xh} or X = { }. Multiset
Ap will be generated as a weighted sum of multisets
describing the versions of the object: Ap =

 where the multiplicity function of
the multiset Ap is calculated according to the rule
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kAp(xe) = , and the coefficient  char-

acterizes the significance of the copy  (expert com-
petence, measurement accuracy).

The objects O1,…,Oq and the values of their attri-
butes represented by the multisets A1, …, Aq of the form
(1) and (2) can be given by matrices Object–Attribute
G = ||kpe||q×h and H = ||kpi||q×h, h = h1 +…+ hn. The rows
of the matrix G correspond to the objects, the col-
umns, to the values of the attribute scale X, and the
elements kpe are the values of the multiplicity kAp(xe)
that characterize elements xe of multisets specifying
the objects. The rows of the matrix H correspond to
the objects, the columns, to the values of the attributes
hyperscale X = X1∪…∪Xn, and the elements kpi are the

values of the multiplicity kAp( ) of elements  of
multisets specifying the objects. Versions of multi-
attribute objects O1,…,Oq and the values of their attri-
butes represented by the multisets of the form (1), (2)
can be given by Object–Attribute matrices

 and , h = h1 +…+hn. The

elements of the matrices  are the multiplicity
values  of the elements of multisets

 describing the respective copies of the objects .
Here is an illustrative example of representing mul-

tiattribute objects. There are ten objects O1,…,O10
described by eight attributes K1,…,K8, each of which
takes one of the values on a five-point rating scale X =
{x1, x2, x3, x4, x5}. For instance, objects O1,…,O10 are
pupils and the attributes K1,…,K8 of the objects are
grades in the following school subjects: K1 Mathemat-
ics, K2 Physics, K3 Chemistry, K4 Biology, K5 Social
science, K6 History, K7 Literature, and K8 Foreign lan-
guage. The grading scales include: x1 is 1/very poor, x2

is 2/poor, x3 is 3/satisfactory, x4 is 4/good, and x5 is
5/excellent. Or it can be that the objects O1, …, O10 are
questions of a public opinion poll on some problem.
Attributes of the objects are the answers of K1, …, K8
respondents coded in the following way: x1 is 1/com-
pletely disagree, x2 is 2/disagree, x2 is 3/indifferent, x4

is 4/agree, x5 is 5/fully agree.
Situations are also possible where each of the

objects O1, …, O10 is present in several copies differing
from each other. For instance, pupils are graded in
eight subjects K1, …, K8 twice a year for every half-year
(semester) or eight respondents K1, …, K8 participate
in the poll twice answer the same questions. There-
fore, each object is represented by two vectors/tuples
of the attributes or two multisets rather than one. This
description of an object copy can be considered an
individual opinion of some expert and the description
of the object “as a whole” is an aggregated collective
judgment of two experts.
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Table 1. Object–Attribute Matrix 

O\K K1 K2 K3 K4 K5 K6 K7 K8
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Table 2. Object–Attribute matrix 

O\X x1 x2 x3 x4 x5

0

0

0

0

0
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Differing versions of the objects O1, …, O10 are
given by the Object–Attribute matrices  and 
(Tables 1, 2). The rows of the matrix  are vectors

 of the numerical semester marks of pupils or
numerical grades for the answers of university students
who evaluated twice the course of lectures. The first
rows in the cells of the matrix  are borrowed from
[14]. The same grades of the pupil school performance
or grades for answers of university students recorded as
multisets Ap of numerical or verbal estimates of the
form (1) are represented by the rows of the matrix .
The annual marks of pupils Op, p = 1, …, 10, in subjects
K1,…,K8, which have their own scales Xi = { },
i = 1,…,8, are given by the multiset

(3)

the multiplicities of the elements of which form the
rows of the Object—Attribute matrix H (Table 3).
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Matrix  similar to matrix H includes multiplicities
of elements of multisets  describing copies of the

objects  and is too cumbersome to be presented
here.

As an example, semester marks of the pupil O1 are

represented in Table 1 by two vectors  = (4, 5, 4, 5,
4, 5, 4, 5) and = (5, 5, 5, 5, 4, 4, 4, 5). The annual
school performance of the pupil O1 can be described
by the resultant vector x1 = (9, 10, 9, 10, 8, 9, 8, 10) or

averaged vector  = (4.5, 5.0, 4.5, 5.0, 4.0, 4.5,
4.0, 5.0). However, there are no such numbers in the
accepted five-point rating scale X = {1, 2, 3, 4, 5}. The
same marks of the pupil O1 are represented in Table 2

by the multisets  = {0 x1, 0 x2, 0 x3, 4 x4, 4 x5} and

H
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s
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2
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Table 3. The Object–Attribute Matrix H

O\X

A1 0 0 0 1 1 0 0 0 0 2 0 0 0 1 1 0 0 0 0 2

A2 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 2 0 0 0 0

A3 2 0 0 0 0 1 1 0 0 0 0 0 2 0 0 2 0 0 0 0

A4 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1

A5 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 2 0

A6 0 0 0 1 1 0 0 0 0 2 0 0 0 2 0 0 0 0 2 0

A7 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0

A8 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0

A9 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0

A10 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1

0 0 0 2 0 0 0 0 1 1 0 0 0 2 0 0 0 0 0 2
0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 2 0 0 0
0 0 0 1 1 1 1 0 0 0 2 0 0 0 0 0 0 1 1 0
0 0 0 2 0 0 0 0 0 2 0 0 1 1 0 0 0 0 1 1
0 0 0 2 0 0 0 0 1 1 0 0 0 1 1 0 0 0 2 0
0 0 0 2 0 0 0 0 1 1 0 0 0 0 2 0 0 0 1 1
0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0
0 1 1 0 0 0 0 2 0 0 0 1 1 0 0 0 0 2 0 0
0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 2 0

1 2 3 4 5
1 1 1 1 1    x x x x x 1 2 3 4 5

2 2 2 2 2    x x x x x 1 2 3 4 5
1 3 3 3 3    x x x x x 1 2 3 4 5

4 4 4 4 4    x x x x x

1 2 3 4 5
5 5 5 5 5    x x x x x 1 2 3 4 5

6 6 6 6 6    x x x x x 1 2 3 4 5
7 7 7 7 7    x x x x x 1 2 3 4 5

8 8 8 8 8    x x x x x
 = {0 x1, 0 x2, 0 x3, 3 x4, 5 x5}. The annual school
performance of the pupil O1, considering semiannual

marks equally significant:  = 1, is described by
the sum of multisets  and :

This form of record shows that the pupil O1 over a
year received seven marks x4—good and nine marks
x5—excellent, and had not received any other marks.
This result is not directly visible when the annual
school performance of the pupil O1 is represented by

the vectors x1 or . If the marks in Table 1 are
symbols, the annual school performance of any pupil
Op cannot be described by any tuple xp at all.

In Table 3, the annual school performance of the
pupil O1 are associated with the following multiset:

From this it is clear that over a year, the pupil O1
received in mathematics one mark x4 – good, one
mark x5– excellent; in physics he received two marks

x5–excellent; in chemistry, one mark x4–good, one
mark x5–excellent; in biology, two marks x5–excel-
lent; in social science, two marks x4–good; in history,
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one mark x4–good, one mark x5–excellent; in litera-
ture, two marks x4–good; and in foreign language, two
marks x5–excellent.

2. REDUCING THE ATTRIBUTE SPACE
Dimensionality reduction for the object descrip-

tion is diminishing the number of indicators that char-
acterize the state or functioning of the objects by some
transformations of the initial data, during which the
set of initial attributes K1, …, Kn is aggregated into
smaller sets of intermediate L1, …, Lm,… and final N1,
…, Nl attributes. The transformations of the attributes
can formally be recorded as

(4)
where the initial attribute Ki has the scale Xi =

{ }, i = 1,…,n, the intermediate attribute Lj has

the scale Yj = { }, j = 1, …, m, and the final

attribute Nk has the scale Zk = { }, k = 1, …, l,
l < m < n. Reduction of the attribute space dimension-
ality is an informal multistage procedure based on the
knowledge, experience, and intuition of a DM/expert
who formulates rules for the attribute the transforma-
tion, establishes the structure, number, dimension,
and conceptual meaning of new indicators.

In the cases where multiattribute objects are repre-
sented by vectors/tuples, problem (4) of reduction of
the attribute space dimensionality has the form

(5)
The dimensionality of the respective attribute

space is defined then as the cardinality of the direct
product of numerical or verbal attribute scale grada-
tions that are components of vectors/tuples. In [10–13],
problem (5) is considered as a multicriteria classifica-
tion problem where the sets containing grades of the
initial attributes are classified objects, and the grada-
tions of the composite indicator scale are the classes of
solutions [4, 5, 7].

In the cases where multiattribute objects are repre-
sented by multisets, problem (4) of reduction of the
attribute space dimensionality has the form

(6)

The dimensionality of the respective attribute
space is then defined as the cardinality of the hyper-
scale, i.e., the union of numeric or verbal attribute
scale gradations that are elements of multisets. The
SOCRATES method outlined in this work makes it
possible to reduce the descriptions of multiattribute
objects, which are present in several differing copies
and are given by the multisets of numerical and/or ver-
bal characteristics. The method uses two main trans-
formations i.e., shortening the attribute scales and
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their aggregation. We now consider these transforma-
tions in greater detail.

Shortening an attribute scale is a relatively simple
transformation of the attribute space and is aimed at
decreasing the number of gradations on the attribute
scale. For this, several values of some characteristic of
an object are combined into one new gradation of the
same characteristic. The transition from the initial
scales of attributes to scales with a diminished number
of gradations is a transformation (6) of the form

(7)

where Xi = { } is the initial scale and Qi =

{ } is the shortened scale of the ith attribute Ki,

When forming (7) shortened scales of the attri-
butes, it is desirable that they consist of a small number
(2–4) of gradations that have a well-defined specific
content for a DM/expert.

The representation of multiattribute objects is
transformed as follows. Let in the attribute space
K1, …, Kn, the object Op, p = 1,…,q be given by the
multiset Ap (2) over the set X1∪…∪Xn of initial scale
gradations. We use the properties of operations on the
multisets [9, 10] and rewrite expression (2) in the form
of sums of multisets, i.e.

(8)

When the attribute scales are shortened, gradations

 of the initial scale Xi = { }for the

attribute Ki are combined into the gradation  of the

shortened scale Qi = { }. In the reduced attri-
bute space K1, …, Kn, which have the scales Q1,….Qn,
the object Op will correspond to the multiset

(9)

over the set Q1∪…∪Qn of the shortened scale grada-
tions. Multiset Bp (9) can also be written in the equiv-
alent form i.e.,
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(10)

The multiplicity of the element , oi = 1,…,di of
the multiset Bp (9) or (10), which corresponds to the

gradation  of the shortened scale Qi = { }, is
determined by the rule

(11)

where multiplicities of the elements  of
the multiset Ap (2) or (8) are summed, which corre-
spond to the combined gradations of the initial scale
Xi = {  }for the attribute Ki.

Aggregation of attributes is a more complex trans-
formation of the attribute space and is oriented to
diminish the attribute number. For this purpose, sev-
eral attributes La, Lb, …, Lc are combined into a single
new attribute (granule) Nk, which will be named as the
composite indicator or composite criterion. Aggrega-
tion of several attributes into a composite indicator is
the transformation (6) of the form

(12)

where Yj = { } is the scale of the initial attri-

bute Lj, j = a, b, …, c; Zk = { } is the scale of
the composite indicator Nk, k = 1,…,l, |Zk| = fk ≤ gj =
|Yj|.

The sets of composite indicators and their scales
can be formed using different methods for granulation
(12), which make it possible to represent each grada-
tion of the composite indicator scale as a combination
of gradations of the initial attribute estimates. It is rec-
ommended to combine two to four initial attributes in
a composite indicator with a small scale of two to four
gradations. In practical problems, it is convenient to
form the scales of the combined attributes and of the
composite indicator so that they have the same num-
ber of gradations. i.e., so that ga = gb =…= gc = fk = d,
and each gradation of the scale for the composite indi-
cator should consist of similar gradations of the scales
for the combined attributes.

The representation of multiattribute objects is
transformed as follows. Let in the space of the initial
attributes L1,…,Lm the object Op, p = 1,…,q be given by
the multiset

(13)
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over the set Y1∪…∪Ym of scales gradation where all

scales Yj = { }, j = 1,…,m have the same num-
ber of gradations d. Taking the fact into account that
the order of the elements in the multiset is insignifi-
cant [9, 10], we rewrite expression (13) represented as
sums of multisets i.e.,

(14)

On aggregating the attributes in the reduced space
of composite indicators N1,…,Nl , the object Op will be
associated with the multiset

(15)

over the set Z1∪…∪Zl of the scales gradation where all

scales Zk = { }, k = 1,…,l have one and the
same number d of gradations. Multiset Jp (15) can also
be written in the following equivalent form:

(16)

The multiplicity of the element zk
e, e = 1,…,d in the

multiset Jp (15) or (16), which corresponds to the gra-
dation zk

e of the scale Zk for the composite indicator
Nk, is determined by the rule:

(17)

where multiplicities of the elements  of the
multiset Ip (13) or (14), which correspond to grada-

tions  of the scales Ya, Yb,…, Ye of the com-
bined attributes La, Lb,…, Lc, are summed.

Aggregation of attributes is carried out in stages,
step by step. At each step, it is determined which initial
attributes should be combined into composite indica-
tors and which should be considered independent
final ones. Verbal scales of composite indicators char-
acterize the desired new properties of the objects being
compared and have specific semantic content for the
DM/expert. By sequentially combining attributes, the
DM/expert constructs acceptable intermediate and
final indicators. The aggregation tree of the attributes
is built from blocks of the same type, which the
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DM/expert selects, and in fact is a form of semantic
interpretation and granulation of the DM’s prefer-
ences and/or expert knowledge.

In practical situations of choosing real objects, it is
recommended to construct several different schemes
of the attribute union combining procedures for short-
ening the attribute scales and for aggregating them.
This decreases the impact of each specific scheme and
increases the validity of the obtained results. Depend-
ing on the specifics of the practical problem being
solved, the last level of the attribute aggregation tree
may consist of several final indicators that imple-
ment the idea of multicriteria choice or be the only
integral indicator that implements the idea of holistic
choice [7].

3. ILLUSTRATIVE EXAMPLE

Solving problems of multicriteria choice in reduced
spaces of attributes require significantly less
DM/expert's labor efforts and allows for a meaningful
explanation of the choice made. Here, we show how
the SOCRATES method works using the illustrative
example from Section 1. Semestrial marks of ten
pupils (the objects O1,…, O10) in eight subjects (attri-
butes K1,…, K8) having their own five-point scales Xi =

{  }, i = 1,…,8, where   is 1/very poor,
 is 2/poor,  stands for 3/satisfactory,  means

4/good, and  is 5/excellent, are presented in
Tables 1–3.

Two versions  of the object Op, p = 1,…,10

specified by the vectors/tuples   = ( ),

  are the points of an eight-dimen-
sional attribute space X1×…×X8. The length of each
vector/tuple is 8, the components of vectors/tuples
can take one of five values of the grade xi

ei. The object
Op can be represented by the vector xp = (xp1,…, xp8) but
it cannot be represented by a tuple. The total number
of all possible combinations of components of vec-
tors/tuples (representations of each object versions) is
58 = 390 625. Operating such a number of vectors/tuples
is very difficult. In addition, almost all vectors/tuples,
and hence the objects, will be incomparable.

Let us replace the five-point scales of the attributes
Xi = { } by shortened three-point scales

Qi = { }. Here, qi
0 is 0/high grade, including

grades xi
5–5/excellent and xi

4–4/good; qi
1 is 1/middle

grade corresponding to the grade xi
3–3/satisfactory;

and   is 2/low grade, including grades  –2/poor
and  –1/very poor. We note that if the initial grades
were ordered by preference, for example as   ≻

1 2 3 4 5, , , ,i i i i ix x x x x 1
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, the new grades will also be ordered
in the same way: .

Then, the object Op and its versions  , p =
1,…,10 become tuples qp = (qp1,…,qp8),

   which, as
above, are the points of the eight-dimensional attri-
bute space Q1 ×…× Q8. The length of each tuple is still 8,
but the components of the tuples can take one of three
values of the grade . The total number of all possible
grades in subjects (representations of the object and its
copies by components of the tuples) is equal to 38 =
6561, which is almost 60 times less than 390 625, but is
still great. At the same time, almost all tuples, and
hence the objects, will remain incomparable.

Let us represent each object Op by the multiset Ap
(3) over the set X = X1∪…∪X8 of attribute scale grada-

tions K1, …, K8. The versions  of the object Op
are specified in the same way. The dimensionality of
the attribute space equals |X| = 5⋅8 = 40. The total
number of the possible grades in all subjects (represen-
tations of the object and its copies by elements of mul-
tisets) is equal to card Ap =  = 16, i.e.,
the cardinality of the multiset Ap. Multisets and objects
largely remain incomparable. However, it becomes
easier to work with them.

On transition from five-point scales of attributes Xi
to three-point scales Qi, i = 1,…,8, the object Op will
correspond to the multiset

(18)

over the set Q = Q1∪…∪Q8 of the shortened scale gra-
dations of the attributes K1,…,K8. Multiplicities of the
elements multisets Bp (18) make up the rows of the
Object–Attribute matrix H0 (Table 4), which is a
reduced (contracted) matrix H (Table 3), and are
determined according to the rules (11):

In particular, the object O1 is given by the multiset
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Table 4. Object–Attribute matrix H0 (shortened scales of the attributes)

O\Q

B1 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0

B2 1 1 0 0 0 2 0 0 2 0 0 2 1 1 0 0 1 1 0 1 1 0 0 2

B3 0 0 2 0 0 2 0 2 0 0 0 2 2 0 0 0 0 2 0 0 2 1 1 0

B4 2 0 0 1 1 0 0 1 1 2 0 0 2 0 0 2 0 0 1 1 0 2 0 0

B5 2 0 0 2 0 0 1 1 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0

B6 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0

B7 1 1 0 0 0 2 0 0 2 1 1 0 0 1 1 1 1 0 0 0 2 0 1 1

B8 2 0 0 2 0 0 2 0 0 0 1 1 1 1 0 2 0 0 2 0 0 1 1 0

B9 1 1 0 0 1 1 0 1 1 0 0 2 0 1 1 0 2 0 0 1 1 0 2 0

B10 1 1 0 2 0 0 1 1 0 2 0 0 0 1 1 2 0 0 1 0 1 2 0 0

0 1 2
1 1 1  q q q 0 1 2

2 2 2  q q q 0 1 2
1 3 3  q q q 0 1 2

4 4 4  q q q 0 1 2
5 5 5  q q q 0 1 2

6 6 6  q q q 0 1 2
7 7 7  q q q 0 1 2

8 8 8  q q q
Hence it is clear that over a year the pupil O1
received two high marks (excellent and good) in all
subjects: mathematics, physics, chemistry, biology,
social science, history, literature, and foreign lan-
guage.

The similar method is used to transform the ver-

sions   of the object Op. The dimensionality of
the reduced attribute space is equal to |Q| = 3⋅8 = 24,
and the total number of grades in all subjects expressed

by card Bp =  = 16, i.e., the cardinality of
the multiset Bp (18). On shortening the scales of the
attributes, the dimensionality of the transformed
space is decreased and the total number of grades in
subjects remains unchanged. Multisets and the objects

1 2,p pO O

( )ie
iqi Q

k q
∈ B
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Fig. 1. Aggregation of initial characteristics in composite indica
(d) fourth scheme.
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still remain incomparable. However, operations there-
with are further simplified and facilitated.

Transition from scales Xi to the shortened scales Qi
will be considered zero aggregation scheme of the
attributes. We construct different systems of indicators
with various aggregation schemes for initial character-
istics in order to represent the objects in reduced
spaces of the attributes (Fig. 1). For simplicity, we
assume that a scale of any new attribute has three gra-
dations of estimates as the scale Qi. Every gradation of
the composite indicator scale includes combinations
of the same gradations of estimates on the scales of the
initial attributes.

According to the first aggregation scheme (Fig. 1а),
all initial attributes K1, …, K8, which have scales Qi =
FORMATION PROCESSING  Vol. 48  No. 5  2021
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Table 5. Object–Attribute matrix H1 (the first scheme of aggregation)

O\Y l+(Op) s(Op) p(Op) B(Op)

C1 4 0 0 4 0 0 4 0 0 4 0 0 0.000 48 1–2 25.5

C2 1 1 2 0 0 4 1 2 1 0 1 3 0.700 24 9 1

C3 0 0 4 0 2 2 2 0 2 1 1 2 0.684 25 8 4

C4 3 1 0 2 1 1 4 0 0 3 1 0 0.211 43 4–5 16.6

C5 4 0 0 3 1 0 4 0 0 4 0 0 0.059 47 3 21

C6 4 0 0 4 0 0 4 0 0 4 0 0 0.000 48 1–2 26.5

C7 1 1 2 1 1 2 1 2 1 0 1 3 0.565 27 7 7.5

C8 4 0 0 2 1 1 3 1 0 3 1 0 0.211 43 4–5 16.5

C9 1 2 1 0 1 3 0 3 1 0 3 1 0.556 27 10 5.5

C10 3 1 0 3 1 0 2 1 1 3 0 1 0.253 41 6 12

0 1 2
1 1 1  y y y 0 1 2

2 2 2  Y y y 0 1 2
1 3 3  y y y 0 1 2

4 4 4  y y y
{ }, are combined into composite indicators,
which are considered final. The attributes K1 Mathe-
matics and K2 Physics form the composite indicator.
L1 = (K1, K2) Physical and mathematical subjects. The
attributes K3 Chemistry and K4 Biology form the com-
posite indicator L2 = (K3, K4) Chemical and biological
subjects. The attributes K5 Social science and K6 His-
tory form the composite indicator L3 = (K5, K6) Socio-
historical subjects. The attributes K7 Literature and K8
Foreign language form the composite indicator L4 =
(K7, K8) Philological subjects. The composite indica-

tors L1,…,L4 have verbal scales Yj = { }, j =

1,2,3,4, with the gradation: –0/high, including esti-

mates –1/middle, including estimates

–2/low, including estimates . Here, a = 1,
c = 2 for j = 1; a = 3, c = 4 for j = 2; a = 5, c = 6 for j =
3; a = 7, c = 8 for j = 4.

Each object Op, p = 1,…,10 is represented by the
multiset

(19)

over the set Y = Y1∪…∪Y4 of grades of estimates upon
the indicators L1,…,L4. Multiplicities of the elements

 of multisets Cp are the rows of the Object–
Attribute matrix H1 (Table 5) and are determined by
the rule (17) for forming the scales of composite indi-
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cators L1,…,L4 from the scales of the attributes K1,…,
K8. In particular, the object O1 is given by the multiset

Hence, it is clear that over a year the pupil O1 has
received four high marks in physical and mathemati-
cal, chemical and biological, socio-historical, and
philological subjects.

According to the second aggregation scheme (Fig. 1b),
the first step is the same as in the first scheme. At the
next step, the attributes L1 Physical and mathematical
subjects and L2 Chemical and biological subjects form
the composite indicator M1 = (L1, L2) Natural science
subjects. The attributes L3 Socio-historical subjects
and L4 Philological subjects form the composite indi-
cator M2 = (L3, L4) Humanities. The composite indi-
cators M1, M2 are considered final. They have verbal

scales Ur, r = 1,2 with the gradations: –0/high,

including estimates –1/middle, including

estimates –2/low, including estimates .
Here, b = 1, d = 2 for r = 1; b = 3, d = 4 for r = 2.

Each object Op, p = 1,…,10 is represented by the
multiset

(20)

over the set U = U1∪U2 of grades of estimates upon the
indicators M1, M2. Multiplicities of the elements

{
}
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Table 6. Object–Attribute matrices

H2 (second aggregation scheme) H3 (third aggregation scheme) H4 (fourth aggregation scheme)

O\U O\Z O\Z

D1 8 0 0 8 0 0 E1 16 0 0 F1 16 0 0

D2 1 1 6 1 3 4 E2 2 4 10 F2 2 4 10

D3 0 2 6 3 1 4 E3 3 3 10 F3 3 3 10

D4 5 2 1 7 1 0 E4 12 3 1 F4 12 3 1

D5 7 1 0 8 0 0 E5 15 1 0 F5 15 1 0

D6 8 0 0 8 0 0 E6 16 0 0 F6 16 0 0

D7 2 2 4 1 3 4 E7 3 5 8 F7 3 5 8

D8 6 1 1 6 2 2 E8 12 3 1 F8 12 3 1

D9 1 3 4 0 6 2 E9 1 9 6 F9 1 9 6

D10 6 2 0 5 1 2 E10 11 3 2 F10 11 3 2

0 1 2
1 1 1  u u u 0 1 2

2 2 2  u u u 0 1 2
1 1 1  z z z 0 1 2

2 2 2  z z z
 of the multiset Dp are the rows of the Object–
Attribute matrix H2 (Table 6) and are determined by
the rule (17) for forming the scales of composite indi-
cators M1, M2 from the scales of the the attributes
L1,…,L4. Thus, the object O1 is given by the multiset

D1 = { }. Hence, it is clear
that over a year the pupil O1 received eight high marks
in natural sciences and humanities.

According to the third aggregation scheme (Fig. 1c)
the first and second steps are the same as in the second
scheme. At the next step, the attributes M1 Natural sci-
ence subjects and M2 Humanities form the final inte-
gral indicator N1 = (M1, M2) Academic progress,

which has a verbal scale Z1 with the gradations –

0/high, including estimates –1/middle,

including estimates –2/low, including esti-

mates  .
Each object Op, p = 1,…,10 is represented by the

multiset

(21)

over the set Z1 = { } of the gradations of the

attribute N1. Multiplicities of the elements  of
the multiset Ep are the rows of the Object–Attribute
matrix H3 (Table 6) and are determined by the rule

0 1 2, ,r r ru u u

0 1 2 0 1 2
1 1 1 2 2 28 ,0 ,0 ;8 ,0 ,0u u u u u u+ + + + + +

0
1 z

0 0 1
1 2 1, ;u u z

1 1 2
1 2 1, ;u u z

2 2
1 2,u u

( ) ( ) ( ){ }0 0 1 1 2 2
1 1 1 1 1 1, ,p p p pk z z k z z k z z= E E EE + + +

0 1 2
1 1 1, ,z z z

0 1 2
1 1 1, ,z z z
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(17) for forming the scales of the composite indicator
N1 from the scales of the attributes M1, M2. In particu-
lar, the object O1 is given by the multiset E1 =

{ }. Hence, it is clear that over a year the
pupil O1 received 16 high marks in all subjects.

According to the fourth aggregation scheme (Fig. 1d)
the first step is the same as in the first scheme. At the
next step, attributes L1 Physical and mathematical
subjects, L2 Chemical and biological subjects, L3
Socio-historical subjects, and L4 Philological subjects
together are combined in the final integral indicator
N2 = (L1, L2, L3, L4) Academic progress, which has a

verbal scale Z2 with the gradations: –0/high, includ-

ing estimates –1/middle, including
estimates –2/low, including estimates

.

Each object Op, p = 1,…,10 is represented by the
multiset

(22)

over the set Z2 = { } containing the gradations
of the attribute N2. Multiplicities of the elements

of the multiset Fp are the rows of the Object–
Attribute matrix H4 (Table 6) and are determined by
the rule (17) for forming the scales of the composite

0 1 2
1 1 116 ,0 ,0z z z+ + +

0
2z

0 0 0 0 1
1 2 3 4 2, , , ;y y y y u

1 1
1 3

1 1 2
2 4 2, , , ;y y y y z

2 2 2 2
1 2 3 4, , ,y y y y

( ) ( ) ( ){ }0 0 1 1 2 2
2 2 2 2 2 2, ,p p p pk z z k z z k z z= F F FF + + +

0 1 2
2 2 2, ,z z z

0 1 2
2 2 2, ,z z z
FORMATION PROCESSING  Vol. 48  No. 5  2021



REDUCTION OF ATTRIBUTE SPACE DIMENSIONALITY 353
indicator N1 from the scales of the attributes L1, L2, L3,
L4. In particular, the object O1 is given by the multiset

F1 = { }. Hence, it is clear that over a
year the pupil O1 received 16 high marks in all subjects.

The aggregation of the indicators can also be car-
ried out in a different way. For instance, the attributes
K1 Mathematics, K2 Physics, K3 Chemistry, and K4
Biology form the composite indicator M3 = (K1, K2,
K3, K4) Natural science subjects. The attributes K5
Social science, K6 History, K7 Literature, and K8 For-
eign language form the composite indicator M4 = (K5,
K6, K7, K8) Humanities. The composite indicators M3
and M4 can either be considered final indicators or be
further combined into an integral indicator N3 = (M3,
M4) Academic progress. Other options for aggregating
indicators are also possible. When forming aggrega-
tion schemes, it is advisable to combine the initial
indicators in a composite indicator in such a way that
it has an understandable meaning, and the gradations
of its scale consist of a small number of combinations
of initial gradations.

Thus, on transition from initial data to the last
schemes for the attribute aggregation, the dimension-
ality of transformed spaces sequentially decreases
from 40 to 24, 12, 6, 3, the total number of grades in all
subjects expressed by the cardinality of multisets Ap
(3), Bp (18), Cp (19), Dp (20), Ep (21), Fp (22) does not
change.

Five constructed schemes for the indicator aggre-
gation can be treated as judgments of five independent
experts. In this case, any problem of multicriteria
choice becomes a collective choice problem, which is
solved in various reduced spaces of attributes, and in
each space, in addition, by means of several different
methods. This ensures a greater validity of the final
results.

For illustration, we present the results of ranking
the objects O1, …, O10 by their properties, which were
obtained using the PAKS-M technology of multicrite-

ria choice in the attribute space of high dimensionality
[10, 11]. First, for each attribute aggregation scheme,
collective rankings of the objects were constructed by
three methods of group selection: ARAMIS, weighted
sum of estimates, and lexicographic ordering [7, 10].

The ARAMIS method enables ranking multiattri-
bute objects, assessed by several experts upon many
quantitative and/or qualitative criteria K1, …, Kn, with-
out constructing individual rankings of the objects.
The objects are ordered in the metric space of multi-
sets by a value of the proximity index l+(Op) of the
object Op to the best (possibly hypothetical) object O+,
which has the highest estimates with regard to all cri-
teria according to the judgments of all experts.

The method of weighted sum of estimates makes it
possible to rank multiattribute objects by the values of
their value function. The value of the object Op is given
by the sum s(Op) of the products of the number of esti-
mate gradation by the weight of the gradation. In the
example above, the high gradation was assigned weight
3, the average gradation had weight 2, and the low gra-
dation had weight 1.

The lexicographic ordering method allows ranking
multiattribute objects according to the total number of
corresponding estimate gradations. The ranking posi-
tion p(Op) of the object Op is determined first by the
number of high grades, then by the number of average
grades, then by the number of low grades etc.

For all five schemes for attribute aggregation, the
results of data processing by each of the above-men-
tioned methods proved to be similar. They are pre-
sented in Table 5. In other words, the judgments of all
five independent experts, based on any of these meth-
ods coincided. This resulted from the additivity of
rules (11) and (17) for transforming the scales of the
attributes. The collective rankings of the objects
obtained according to any scheme by the methods
ARAMIS RΑ

gr, weighted sum of estimates RΣ
gr, and the

lexicographic ordering RΛ
gr, are as follows:

Rankings of the objects using the methods ARAMIS,
weighted sum of estimates, and lexicographic ordering
can also be interpreted as judgments of some other
three experts. Let us combine the opinions of these
experts using the Borda method of voting [7], accord-

ing to which the order of the objects is given by the sum
b(Op) of the Borda scores in the corresponding rank-
ings (Table 5). Generalized group ranking of the

objects combining the collective rankings 
has the form

0 1 2
2 2 216 ,0 ,0z z z+ + +

A 1 6 5 4 8 10 9 7 3 2

1 6 5 4 8 10 7 9 3 2

1 6 5 4 8 10 7 3 2 9
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Closed objects are enclosed in round brackets, dis-
tant groups of objects are enclosed in square brackets.

Thus, the final orderings of the objects obtained in
different ways or, which is the same, the collective
preferences of many different groups of experts (time
periods, aggregation schemes of the attributes, selec-
tion methods) almost completely coincide, with the
exception of minor differences in the location of the
objects in the last group. In all rankings, there are sim-
ilar groups of good objects O1, O6, O5 with high esti-
mates, middling objects O4, O8, O10 with middle esti-
mates, and almost coinciding groups of bad objects O7,
O9, O3, O2 with low estimates. According to the aggre-
gated estimates of all experts, the best objects by all
features are O1, O6, occupied the first place in all rank-
ings. The worst is the object O2, occupied the last place
in three rankings and next to the last place in one rank-
ing. There are clear gaps between the groups of good
objects, middling objects, and bad objects. Therefore,
we can also consider the grouped ordering of objects as
the grouped ordinal classification, where the classes of
the objects and the positions of the objects in the
classes are given by the corresponding rankings.
Exactly the same results for the same illustrative
example were obtained in [10] when ranking of the
objects O1,…,O10 using a different method for reduc-
tion of the attribute space dimensionality.

CONCLUSIONS

The proposed SOCRATES method for reduction
of the attribute space dimensionality has a certain uni-
versality since it allows one to operate simultaneously
with symbolic (qualitative) and numerical (quantita-
tive) data. An attractive feature of the method is that it
can be used in combination with various decision-
making methods and information processing technol-
ogies. And most importantly, the initially available
information is not distorted or lost.

The SOCRATES method is easily integrated into
the new technologies PAKS [10, 12,13] and PAKS-M
[10, 11] for solving multicriteria choice problems in
high dimensionality spaces, which provide a better
substantiation for choosing the most preferable object.
These technologies have important features. On
applying them, several schemes with different options
for the attribute aggregation are formed, in which the
gradations of the composite indicator scale are repre-
sented as combinations of gradations of the initial
attributes. The posed problem is solving by several
methods of multicriteria choice. The DM/expert is

B 1 6 5 4 8 10

7 9 3 2

, ,[ ] [ ]
[ .( ) ]

grR O O O O O O
O O O O

⇔ � � �

� � � �
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given a clear understandable explanation of the
obtained results, which helps him to choose the most
suitable scheme of the attribute aggregation or apply
several schemes together.

When solving the problem of multicriteria choice,
the DM/expert may encounter inconsistency and
controversy of the obtained results. Such situations are
caused by various reasons, in particular, the formal
combination of the attributes or the unsuccessful for-
mation of the scales for composite attribute gradations
and the integral indicator. The establishment of
semantic links between the initial attributes and com-
posite indicators plays an important role in construct-
ing the attribute trees.

Technologies for solving problems of multicriteria
choice in spaces of high dimensionality were used in
assessing the progress of scientific research, evaluating
the effectiveness of activities, rating various organiza-
tions, and choosing a prospective computing complex
[10–13]. Applying the new SOCRATES method will
significantly reduce the complexity and time of solving
similar practical problems.
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