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Abstract. In this paper, we present an analysis of some cases where a positive integer cannot be

represented by a diagonal quadratic form with four integer variables.
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1. Introduction. In the literature on number theory, many problems are known about representing
a natural number in the form of sums of various kinds. One of them is the Lagrange problem (1770)
that any positive integer can be represented as the sum of no more than four squares of natural

numbers:

l21 + l22 + l23 + l24 = N.

Before this problem, P. Fermat, L. Euler, and other mathematicians studied quadratic forms of a
particular form. J. Lagrange established an exact relationship between the problem of representing
numbers by quadratic forms and solvability of the corresponding quadratic congruence.

C. F. Gauss and then L. Dirichlet, continuing studies of Euler, created the theory of representation
of natural numbers by quadratic forms. Gauss introduced sums (called now Gauss sums)

S(q, a, b) =
∑

1≤l≤q

e2πi(al
2+bl)/q,

which were first examples of trigonometric sums, and showed their usefulness in many problems of

number theory.
In 1926, H. Kloosterman generalized the Lagrange problem (see [4]) and considered the problem on

representation of a positive natural number in the form of a diagonal quadratic form depending on

four integer variables (the Kloosterman problem):

n = ax2 + by2 + cz2 + dt2. (1)

For the number of solutions r(n) of Eq. (1), he obtained the asymptotic formula

r(n) =
π2

√
abcd

nS(n) +O
(
n17/18+ε

)
,

where

S(n) =
∞∑

q=1

1

q4

q∑

l=1
(l,q)=1

e−2πinl/q S(q, al, 0) S(q, bl, 0) S(q, cl, 0) S(q, dl, 0). (2)

Moreover, in [4] some examples were considered in which the number of representations is equal to
zero. Their proofs were based on the congruence theory and were absent in some cases. The question

of the representation of an even number was considered by Kloosterman in more detail than the cases
with an odd prime p involved in the decomposition of n.
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Application of exact formulas for Gauss and Ramanujan sums (see [1–3, 5]) allows one to consider

in more detail cases for odd prime p for which Eq. (1) has no solutions; here a, b, c, d, and n are
positive integers.

2. Main results. Let p be an odd prime number and a, b, c, d, and n be positive integers.

Theorem 1. The equation n = ax2 + by2 + cz2 + dt2 has no solutions in the following cases:

1.1. if n and p are coprime and the coefficients a, b, c, and d are divisible by p;
1.2. if n and p are coprime, three coefficients of the quadratic form ax2 + by2 + cz2 + dt2 are divisible

by p, and the product of the fourth coefficient by n is a quadratic nonresidue modulo p.

Theorem 2. Let

a = pα1a1, (a1, p) = 1, b = pβ1b1, (b1, p) = 1,

(c, p) = 1, (d, p) = 1, n = pη1n1, (n1, p) = 1.

The equation n = ax2 + by2 + cz2 + dt2 has no solutions in the following cases:

2.1. if η1 < α1 ≤ β1, η1 is an odd number, and (−cd) is a quadratic nonresidue modulo p;
2.2. if η1 = α1 < β1, η1 is an odd number, and a1n1 and (−cd) are quadratic nonresidues modulo p;
2.3. if α1 < η1 < β1, α1 and η1 are odd numbers, and a1n1 and (−cd) are quadratic nonresidues

modulo p.

Theorem 3. Let

a = pα1a1, (a1, p) = 1, b = pβ1b1, (b1, p) = 1,

c = pγ1c1, (c1, p) = 1, (d, p) = 1, n = pη1n1, (n1, p) = 1.

The equation n = ax2 + by2 + cz2 + dt2 has no solutions in the following cases:

3.1. if η1 < α1 ≤ β1 ≤ γ1 and η1 is an odd number ;

3.2. if η1 < α1 ≤ β1 ≤ γ1, η1 is an even number, and dn1 is a quadratic nonresidue modulo p;
3.3. if η1 = α1 < β1 ≤ γ1, η1 is an odd number, and a1n1 is a quadratic nonresidue modulo p;
3.4. if α1 < η1 < β1 ≤ γ1, η1 is an odd number, α1 is an even number, and (−a1d) is a quadratic

nonresidue modulo p;
3.5. if α1 < η1 < β1 ≤ γ1, α1 is an odd number, and

(
d

pη1+1

)(
a1
pη1

)(
n1

p

)
= −1;

3.6. if α1 < η1 = β1 < γ1, η1 is an odd number, α1 is an even number, and (−a1d) and b1n1 are
quadratic nonresidues modulo p;

3.7. if α1 ≤ β1 < η1 < γ1, η1 is an even number, α1 is an odd number, β1 is an odd number, and
(−a1b1) and dn1 are quadratic nonresidues modulo p;

3.8. if α1 ≤ β1 < η1 < γ1, η1 is an odd number, α1 is an odd number, β1 is an even number, and

(−b1d) and a1n1 are quadratic nonresidues modulo p;
3.9. if α1 ≤ β1 < η1 < γ1, η1 is an odd number, α1 is an even number, β1 is an odd number, and

(−a1d) and b1n1 are quadratic nonresidues modulo p.

Note that Kloosterman proved Theorem 1 in [4] by using the congruence theory. The cases 2.1

and 2.2 were not proved in [4]. The assertion 2.3 and Theorem 3 are new (they were not considered
by Kloosterman).

We present a detailed proof of Theorem 1; Theorems 2 and 3 can be proved similarly. We will need

the following assertions; their proofs can be found in [5].
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3. Auxiliary lemmas.

Lemma 1 (equalities for the Gauss sum).

1. If (q1, q2) = 1, then

S(q1q2, u, 0) = S(q1, uq2, 0)S(q2, uq1, 0).

2. If (q, 2u) = 1, then

S(q, u, 0) =

(
u

q

)
S(q, 1, 0),

where
(
u
q

)
is the Jacobi symbol,

S(q, 1, 0) =

{ √
qif q ≡ 1 (mod 4),

i
√
qif q ≡ 3 (mod 4)

}
= i(q−1)2/4√q.

3. If (q, u) = n, then

S(q, u, 0) = nS
( q

n
,
u

n
, 0
)
.

Lemma 2 (equalities for the Ramanujan sum). Let

K(q, u) =
∑

1≤l≤q
(l,q)=1

e2πiul/q

is the Ramanujan sum. The following assertions hold.

1. K(q,−u) = K(q, u).
2. For (q1, q2) = 1, the equality

K(q1q2, u) = K(q1, u1)K(q2, u2)

holds, where u1 and u2 are defined modulo q1 and q2, respectively, by the congruence

u1q2 + u2q1 ≡ u (mod q1q2).

3. Let (u, p) = 1, and α > 1. Then

K(p, u) = −1, K(pα, u) = 0.

4. Let u = pαu1, (u1, p) = 1, α > 1, and s > 1. Then

K(pα, u) = pα−1(p− 1), K(pα+1, u) = −pα, K(pα+s, u) = 0.

Lemma 3 (equalities for the generalized Ramanujan sum). Let p be an odd prime number and

Kp(p
α, u) =

pα∑

l=1
(l,pα)=1

(
l

p

)
e2πiul/p

α

is the generalized Ramanujan sum. The following assertions hold.

1. Let (u, p) = 1, α > 1. Then

Kp(p, u) = S(p, u, 0), Kp(p
α, u) = 0.

2. Let u = pαu1, (u1, p) = 1, α > 1, and s > 1. Then

Kp(p
α, u) = 0, Kp(p

α+1, u) = pαS(p, u1, 0), Kp(p
α+s, u) = 0.

196



4. Proof of Theorem 1. For the singular series S(n) of the asymptotic formula (2), we consider

the function

Φ(q) =
1

q4

q∑

l=1
(l,q)=1

e−2πinl/q S(q, al, 0) S(q, bl, 0) S(q, cl, 0) S(q, dl, 0).

We show that it is multiplicative. Let q = q1q2, (q1, q2) = 1, and l = l1q2 + l2q1; then the assertion 1.1
of Lemma 1 implies that

S(q, al, 0) = S
(
q1q2, al1q2 + al2q1, 0

)
= S

(
q1, al1q

2
2, 0

)
S
(
q2, al2q

2
1 , 0

)
.

We take into account the equality

S
(
q1, al1q

2
2, 0

)
=

∑

1≤j≤q1

e2πial1q
2
2j

2/q1 =
∑

q2≤j1≤q1q2

e2πial1j
2
1/q1 = S(q1, al1, 0).

Then

S(q, al, 0) = S(q1, al1, 0) S(q2, al2, 0).

Similar arguments are also valid for other sums S(q, bl, 0), S(q, cl, 0), and S(q, dl, 0). Moreover, the
assertion 2.2 of Lemma 2 implies that

q1q2∑

l=1
(l,q1q2)=1

e−2πinl/(q1q2) =

q1∑

l1=1
(l1,q1)=1

e−2πinl1/q1

q2∑

l2=1
(l2,q2)=1

e−2πinl2/q2 .

Therefore,

Φ(q1q2) =
1

q41

q1∑

l1=1
(l1,q1)=1

e−2πinl1/q1 S(q1, al1, 0) S(q1, bl1, 0)S(q1, cl1, 0) S(q1, dl1, 0)

× 1

q42

q2∑

l2=1
(l2,q2)=1

e−2πinl2/q2 S(q2, al2, 0) S(q2, bl2, 0) S(q2, cl2, 0) S(q2, dl2, 0).

Thus, Φ(q1q2) = Φ(q1)Φ(q2), i.e., the multiplicativity is proved.
Due to the property of multiplicative functions, we obtain the representation of the singular series

in the product form:
+∞∑

q=1

Φ(q) =
∏

p|q

(
1 + Φ(p) + Φ(p2) + . . .

)
.

We obtain exact formulas for various products for odd prime p, (n, p) = 1.

4.1. Case where a, b, c, d, and n are coprime with p. Let

(a, p) = 1, (b, p) = 1, (c, p) = 1, (d, p) = 1, (n, p) = 1.

Then for the product of Gauss sums (Lemma 1, assertion 1.2) we obtain the formula

S(pα, al, 0) S(pα, bl, 0) S(pα, cl, 0) S(pα, dl, 0) =

(
abcd

pα

)
p2α.

Therefore,

Φ(pα) =

(
abcd

pα

)
1

p2α
K(pα,−n).
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Using Eq. 3 from Lemma 3.2, we obtain

Φ(p) = −
(
abcd

p

)
1

p2
, Φ(pα) = 0, α > 1.

We obtain the first factor in the representation of the singular series in the product form:

∏

p: (a,p)=1,
(b,p)=1, (c,p)=1,
(d,p)=1, (n,p)=1

(
1−

(
abcd

p

)
1

p2

)
.

Note that for (a, p) = 1, (b, p) = 1, (c, p) = 1, (d, p) = 1, n = pαn1, (n1, p) = 1, and α > 1, formulas
for the product of Gauss sum are similar:

Φ(pα) =

(
abcd

pα

)
1

p2α
K(pα,−n).

The formulas for the Ramanujan sum are diverse. Using Eq. 4 from Lemma 2, we obtain

Φ(pk) =

(
abcd

pk

)
p− 1

pk+1
, k = 1, 2, . . . , α,

Φ(pα+1) = −
(
abcd

pα+1

)
1

pα+2
, Φ(pα+s) = 0, s > 1.

We obtain the second factor in the representation of the singular series in the product form:

∏

p
(a,p)=1, (b,p)=1,
(c,p)=1, (d,p)=1
n=pαn1, α>1,

(n1,p)=1

(
1 +

(
abcd

p

)
p− 1

p2
+

(
abcd

p2

)
p− 1

p3
+ · · ·+

(
abcd

pα

)
p− 1

pα+1
−

(
abcd

pα+1

)
1

pα+2

)
.

As a result, for (a; p) = (b; p) = (c; p) = (d; p) = 1, n = pαn1, (n1, p) = 1, and α ≥ 1 we have

∏

p
(a,p)=1, (b,p)=1,
(c,p)=1, (d,p)=1,
n=pαn1, α≥1,

(n1,p)=1

(
1−

(
abcd

p

)
1

p2

)(
1 +

(
abcd

p

)
1

p
+

(
abcd

p2

)
1

p2
+ · · ·+

(
abcd

pα

)
1

pα

)
.

If abcd is a quadratic residue modulo p, then

1−
(
abcd

p

)
1

p2
= 1− 1

p2
> 3/4,

(
1 +

(
abcd

p

)
1

p
+

(
abcd

p2

)
1

p2
+ · · · +

(
abcd

pα

)
1

pα

)
=

pα+1 − 1

pα(p− 1)
> 1.

If abcd is a quadratic nonresidue modulo p, then

1−
(
abcd

p

)
1

p2
= 1 +

1

p2
> 1,

(
1 +

(
abcd

p

)
1

p
+

(
abcd

p2

)
1

p2
+ · · ·+

(
abcd

pα

)
1

pα

)
=

pα+1 − (−1)α+1

pα(p+ 1)
>

1

2
.
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4.2. Case where one of the coefficients a, b, c, and d is divisible by p, (n, p) = 1. Let

a = pα1a1, (a1, p) = 1, (b, p) = 1, (c, p) = 1, (d, p) = 1, (n, p) = 1.

We find Φ(p):

Φ(p) =
1

p3

(
bcd

p

)
S3(p, 1, 0)

p∑

l=1
(l,p)=1

(
l

p

)
e−2πinl/p.

Using Lemma 3 (assertion 3.1), we obtain

Φ(p) =
1

p3

(−bcdn

p

)
S4(p, 1, 0) =

1

p

(−bcdn

p

)
.

Let 1 < α ≤ α1. Then

Φ(pα) =
1

p3α

(
bcd

pα

)
S3(pα, 1, 0)

pα∑

l=1
(l,pα)=1

(
l

pα

)
e−2πinl/pα .

If α is even, then
pα∑

l=1
(l,pα)=1

(
l

pα

)
e−2πinl/pα = K(pα,−n) = 0

by Lemma 2 on the Ramanujan sum (assertion 2.3). If α is odd, then

pα∑

l=1
(l,pα)=1

(
l

pα

)
e−2πinl/pα = Kp(p

α,−n) = 0

by Lemma 3 on the generalized Ramanujan sum (assertion 3.1). Then Φ(pα) = 0.
Let α > α1 ≥ 1. In this case,

Φ(pα) = pα1−4α

(
bcd

pα

)(
a1

pα−α1

)
S3(pα, 1, 0) S(pα−α1 , 1, 0)

pα∑

l=1
(l,pα)=1

(
l

p2α−α1

)
e−2πinl/pα .

We have
pα∑

l=1
(l,pα)=1

(
l

p2α−α1

)
e−2πinl/pα = 0

for even α1 due to Lemma 2 (assertion 2.3) and for odd α1 due to Lemma 3 (assertion 3.1). Then

Φ(pα) = 0.
We obtain the following factor:

∏

p
a=pα1a1, (a1,p)=1,
(b,p)=1, (c,p)=1,
(d,p)=1, (n,p)=1

(
1 +

(−bcdn

p

)
1

p

)
.

The expression in the brackets is greater than 1 if (−bcdn) is a quadratic residue modulo p and is

greater than 1/2 and tends to 1 as p increases if (−bcdn/p) = −1.
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4.3. Case where two coefficients are divisible by p, (n, p) = 1. Let

a = pα1a1, (a1, p) = 1, b = pβ1b1, (b1, p) = 1, (c, p) = 1, (d, p) = 1, (n, p) = 1.

We have

Φ(p) =
1

p2

(
cd

p

)
S2(p, 1, 0)

p∑

l=1
(l,p)=1

e−2πinl/p = −
(−cd

p

)
1

p
.

Let min(α1, β1) = α1.

4.3.1. For 1 < α ≤ α1, taking into account the assertion 2.3 of Lemma 2, we have

Φ(pα) =
1

p2α

(
cd

pα

)
S2(pα, 1, 0)

pα∑

l=1
(l,pα)=1

e−2πinl/pα = 0.

4.3.2. For α1 < α ≤ β1,

Φ(pα) = pα1−4α

(
cd

pα

)(
a1

pα−α1

)
S2(pα, 1, 0) S(pα−α1 , 1, 0)

pα∑

l=1
(l,pα)=1

(
l

pα−α1

)
e−2πinl/pα .

The Ramanujan sum
pα∑

l=1
(l,pα)=1

(
l

pα−α1

)
e−2πinl/pα

is equal to zero. For even α−α1 this follows from the assertion 2.3 of Lemma 2, for odd—from
the assertion 3.1 of Lemma 3. Therefore, Φ(pα) = 0.

4.3.3. For α1 ≤ β1 < α,

Φ(pα) = pα1+β1−4α

(
cd

pα

)(
a1

pα−α1

)(
b1

pα−β1

)

× S2(pα, 1, 0) S(pα−α1 , 1, 0) S(pα−β1 , 1, 0)

pα∑

l=1
(l,pα)=1

(
l

p2α−α1−β1

)
e−2πinl/pα .

As in the case (2), we have Φ(pα) = 0. We obtain the factor

∏

p
a=pα1a1, (a1,p)=1,

b=pβ1b1, (b1,p)=1,
(c,p)=1, (d,p)=1, (n,p)=1

(
1−

(−cd

p

)
1

p

)
.

The expression in the brackets is greater than 1/2 if (−cd) is a quadratic residue modulo p

and is greater than 1 and tends to 1 as p increases if (−cd/p) = −1.

4.4. Case where three coefficients are divisible by p, (n, p) = 1. Let

a = pα1a1, (a1, p) = 1, b = pβ1b1, (b1, p) = 1,

c = pγ1c1, (c1, p) = 1, (d, p) = 1, (n, p) = 1.

We find Φ(p):

Φ(p) =
1

p

(
d

p

)
S(p, 1, 0)

p∑

l=1
(l,p)=1

(
l

p

)
e−2πinl/p.
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Using the assertion 3.1 of Lemma 3, we obtain

Φ(p) =
1

p

(−dn

p

)
S2(p, 1, 0) =

(
dn

p

)
.

Let α1 ≤ β1 ≤ γ1. From the assertion 2.3 of Lemma 2 and the assertion 3.1 of Lemma 3 we obtain
Φ(pα) = 0. We have the following factor:

∏

p
a=pα1a1, (a1,p)=1,

b=pβ1b1, (b1,p)=1,
c=pγ1c1, (c,p)=1,
(d,p)=1, (n,p)=1

(
1 +

(
dn

p

))
.

The expression in the brackets vanishes in the case where dn is a quadratic nonresidue modulo p and
it is equal to 2 if dn is a quadratic residue modulo p.

4.5. Case where all coefficients are divisible by p, (n, p) = 1. Equation (1) has no solutions.
Thus, we have proved Theorem 1.

Theorems 2 and 3 are proved similarly. For calculating exact formulas for the function Φ(pα), the
assertions 2.4 of Lemma 2 and 3.2 of Lemma 3 are used.
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