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Abstract

Analytic description of X-ray emission from relativistic electrons crossing a thin aligned crystal is presented. The suggested
model takes into account contributions of the transition radiation and coherent bremsstrahlung on atomic strings and has no
limitations on the emitting particle energy.

0 2003 Elsevier B.V. All rights reserved.

PACS 78.70.-g; 78.70.Ck

1. When a relativistic electron moves in a crystal at small angleelative to a set of parallel atomic strings
an intensive emission appears. The yield of this emission (channeling radiation) is formed in the process of
coherent scattering of channeling and above-barrier particles by atomic strings. The emitted photon energy range
o > w. = 2y°W,. /R (y is the Lorentz factor of an emitting partick, is the critical angle of axial channeling,is
the screening radius in Fermi—Thomas atom model), where the channeling radiation spectrum has a maximum is
usually the subject of theoretical and experimental studies. On the other hand very intensive emission was observed
recently [1] in the small emitted photon energy range< . (emission from 500 MeV electrons crossing13i0)
crystal was observed within the range 30 Ke\w < 350 KeV« w, ~ 12 MeV; the measured yield was more
than ordinary bremsstrahlung by a factor of 8). Since the emission yield of channeling electrons is very small in the
rangew < w. the observed in the experiment [1] emission must be determined by the contribution of above-barrier
particles.

Properties of above-barrier particle emission on a single atomic string have been studied well (see, for example,
[2]), butin our case of small photon energies when the emission formation lkpgth 2y 2/w exceeds the average
electron path between consecutive collisions of emitting electron with atomic stiipgs (11 = 1/+/nod, no is
the density of atoms in the crystal,is the distance between neighbouring atoms in the string) it is necessary to
take into account the correlations between emission on different strings.
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An influence of such correlations was considered in [3], where the suppression of nondipole coherent
bremsstrahlung due to Landau—Pomeranchuk—Migdal effect was described as well as the suppression of dipole
coherent bremsstrahlung due to azimuthal multiple scattering of electrons by atomic strings.

In contrast with [3], where noncollimated emission from relativistic electrons moving in an unbounded crystal
was studied, the strongly collimated emission from a crystal with finite thickness is considered in our work. In
addition to this we take into account the contribution of transition radiation and its interference with coherent
bremsstrahlung. The final formula for emission spectral-angular distribution derived without limitations on emitting
electron energy differs very essentially from that describing the ordinary coherent bremsstrahlung on a single
atomic string.

2. Let us consider an emission from relativistic electrons crossing a layer of a medium with the thitkness
The general expression for Fourier-transform of emission field in wave-zone behind the layer has been obtained in
[4] in the form
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wherey, = y/,/1+ y2w3/w2, wo is the target's plasma frequency, two-dimensional angular variglesd

¥, = ¥(r) determine the unit vectar in the direction of emitted photon observatian=£ e, (1 — %@)2) + 0,

e,0 = 0) and the emitting particle velocity(z) = e, (1 — %y‘z — %Llflz) + ¥,, e, ¥, =0, g, is the normal to the

target’s surface, the anglés andy¥ represent the initial and final values of the emitting electron scattering angle
;.

It should be noted that the first and second terms in (1b) describe the contribution of transition radiation to total
emission yield (these terms tend to zero in the limjt— 0). The last term in (1b) corresponds to bremsstrahlung
contribution (this term tends to zerovfz) = const).

The general formula (1) can be applied to describe both amorphous and crystalline target. Let us consider the
last case assuming the axis of atomic strings to be parallel to thea¥s this takes place the scattering angle
W, ends up as an orientation angle between emitting electron velocity and string’s axis. In the photon energy range
w K w., Or more correctly
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where(¥) is the average orientational angle for electron beam, characteristics of photons emitted in the process
of electron collision with a single string depend strongly on the valueb,dfefore and after such collision only.
Considering the motion of emitting electrons in the crystal as a series of consecutive collisions with atomic strings
and assuming the emitted photon flux to be strongly collimated along the.a@? < y —2) one can obtain from
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(1b) the following expression for emission amplitude:
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whereW¥;_1 and ¥, are the values off before and aftekth collision, 7; is the time of free electron motion
between(k — 1)th andkth collisions.

The unique property of an electron coherent scattering by the average potential of atomic string has been used
under transformations of (1b')D.szl = lI/kZ = ¥2, |tis well known that only azimuthal angle of the vector¥ is
changed due to electron collision with atomic string. Therefore

Wi =W (e CoSx +€SiNXk), xk=xi+ Y Axj )
J<k
wherey; is the initial value ofy, Ay is the change of azimuthal angtein jth collision.
Formula for emission spectral-angular distribution following from (3)
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where the brackets) mean the averaging ovey andA x ;, describes the contribution of electrons with orientation
angley to total emission yield. Averaging ovey in (5) is performed with account of independence of different
accidental quantities;. The same is true for the accidental quantitteg; .
Using the distribution function [3} (t) = % exp(—t/T), T =1, /¥, one can obtain the formula
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To average the quantit, |2 over Ay ; one should use the following formulas
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where
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b is the impact parameter of electron collision with a string, the string potential is defineoas= ¢o f (p),

£(0) =1,¥2 = (2ep0)/(my).

3. Let us analyze all terms in the general formula (5) separately. Using (6) and (7) one can obtain for the
transition radiation contribution the following result:
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This formula can be reduced to more simple form
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within the photon energy range
T
7(%(2 +v?) <1, (10)

which is best matched to discussed influence of inter-string correlations on the coherent X-ray emission properties.
Indeed, the condition (10) means that the emission formation length exceeds the average electron path between twc
consecutive collisions with atomic strings.

The most interesting result following from (9) consists in the suppression of an interference between transition
radiation waves emitted from in and out-surfaces of the target due to emitting electron multiple scattering.

In contrast with (9) the contribution of coherent bremsstrahlung is proportional to the thickness of the crystalline
target
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where the critical frequency, is determined by
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Derived expression (11) differs from that describing the coherent bremsstrahlung of relativistic electrons on a single
atomic string [2] in many respects. Difference between high-energy limit of (1%} @.)
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and corresponding result of coherent bremsstrahlung theory is caused by off-axis (relative to electron beam axis)
collimation of emitted photon flux.

In accordance with (11) coherent bremsstrahlung is suppressed within the range of emitted photon energies
w < ywp due to well-known Ter-Mikaelian effect. More interesting and unexpected result, following from (11),
consists in the suppression of emission yield due to the saturation of emitting electron scattering angle, achieved
on the emission formation length. Indeed, emission intensity on the frequerscproportional to the square of
emitting particle scattering angle, achieved on the formation lehgil* 2)/*2/a), divided bylcon [2]. Sincelcon
increases when decreasingwf but the scattering angle is limited by the valug 2see (4)), emission intensity
must be suppressed in small frequency range. The discussed suppression effect can be manifested in the rang
w < wy as it follows formally from (11), but its real observation is possible under condjtiof< w. only, when
the influence of Ter-Mikaelian effect is negligible.

The detailed description of discussed effect will be presented in further publications. It is significant that the
result (11) is valid for both dipole and nondipole emission processes and consequently it takes into account the
Landau—Pomeranchuk—Migdal effect. Thus the manifestation of LMP-effect in aligned crystals may differ very
essentially from that taking place for ordinary bremsstrahlung in amorphous medium.

Let us consider now the interference term in the general formula (5). Formula
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shows a small contribution of such an interference in both low photon energy &argpwo, where transition
radiation dominates and high energy rarge- w, where the total emission is determined in the main by the
contribution of coherent bremsstrahlung. On the other hand, the contribution of (14) may be essential in the range
w ~ ywp, wy for thin enough crystals when the contributions of transition radiation and coherent bremsstrahlung
are comparable.

4. Letus concentrate attention on the coherent bremsstrahlung from above-barrier fraction of an electron beam
crossing a crystal along a string axis to elucidate the peculiarities of LPM effect manifestation and to estimate the
possibility to create an effective X-ray source based on such a kind of emission mechanism. Using the simplest
distribution function for emitting electrons(¥, 1) = exp—W¥?/ (W& + ¥21)] /7 (¥ + ¥2t), one can obtain the
following expression for the strongly collimated emission spectrum
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whereyy is the initial angular spread of electron beaﬁrﬁ-,: 1/y2Lge, Lge = %LR , L is the radiation length (the
expression (15) takes into account the change of the orientation énfyieemitting electrons due to incoherent
multiple scattering of such electrons by crystalline atoms},w/y wo.
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Fig. 1. The spectrum of collimated coherent bremsstrahlung from relativistic electron beam, crossing an ajigi@d:igstal. The curves
have been calculated for the electron beam initial angular spkgad 0.25 x 10~3 rad, the electron path in the target= 0.523 mm. The
curves 1-4 correspond to the electron energies 250, 500, 1000 and 2000 MeV, respectively.
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The functionw d N®/dw d?®, calculated by (15) for $110) crystal with fixed thickness and different electron
beam energies, is presented in Fig. 1. In accordance with presented curves the emission yield increases essentially
when increasing of electron beam energy, but this process is attended by the widening of photon energy range,
where the discussed suppression effect takes place.

The curve 2 has been calculated for experimental conditions [1]. The theory and data correspond to each other
with an accuracy of about 30% within the photon energy range 30ke)< 150 keV, but the discrepancy
increases in range 150 ke¥ w < 360 keV, where the calculated emission density saturates in contrast with
obtained data showing the continuing growth of the emission density (it should be noted that statistical errors are
large in this range). Such a discrepancy may be connected with the contribution of channeling particle emission in
small photon energy range due to incoherent scattering processes.
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