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A b str a c t— For an elliptic 2 /th-order equation w ith constant (and only leading) real coefficients, 
we consider the  boundary  value problem  in which the (kj — l) s t  norm al derivatives, j  =  1 
are specified, where 1 <  k i < ■ ■ ■ < ki. If k j = j , then  it becomes the Dirichlet problem; and 
if kj = j  +  1, then  it becomes the N eum ann problem . We ob tain  a sufficient condition for this 
problem  to  be Fredholm  and present a formula for the index of the problem.

In the generalized N eum ann problem for an elliptic equation of even order 21, the successive 
normal derivatives (d /d n ) j , j  = 1 are given on the boundary of the domain. This problem 
was studied in [1] for the polyharm onic equation w ith the use of the Almansi representation. 
Another version of the Neum ann problem based on a variational principle was earlier suggested 
in [2].

In the present paper, for an elliptic equation w ith constant (and only leading) real coefficients, 
we consider the more general problem in which the (kj — l)st. normal derivatives, j  = 1 , . . . ,  I, are 
specified, where 1 <  k\ < ■ ■ ■ < k t. It becomes the Dirichlet problem for kj = j  and the above- 
m entioned Neum ann problem for kj = j  +  1. Therefore, it is natural to  refer to  this problem as a 
generalized D irichlet-N eum ann problem.

Consider the elliptic equation

d 2lu d 2lu
d y 21 ■—  d x 2l+1~i dyi

in a dom ain D  bounded by a simple sm ooth contour T on the plane. The ellipt.icity condition 
means th a t the roots of the characteristic polynomial

x (j ) =  j 2' -  V
3=1

do not lie on the  real axis. For th is polynomial, we also use the  representation

m m

x(z) = n  (z - vi)h n  -  "it ,
i= 1 i= 1

where the roots z/;, are pairwise distinct and lie in the upper half-plane. Clearly, their to ta l m ulti
plicity h  + ■ ■ ■ + lm is equal to  I.

Consider the matrices

B  = ( B u  . . . ,  B m) G C lxi , J  = diag ( J u C lxl (2 )
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w ith block entries B j  G C lxii and J , ,  G C l i X l i  of the form

/

Ji =

^  1

0 Vi
B i = (l,  0 , . . .  ,0),

\  0 0 0

The m atrix  J  defines the first-order canonical elliptic system

d± _  = o
dy dx

0
0

(3 )

and its solutions <fi(z) treated  as functions of the complex variable z  = x  +  iy  are referred to  as 
Douglis analytic functions [3]. These functions are real-analytic, and in a neighborhood of each 
point r  G D,  they can be expanded in uniformly and absolutely convergent generalized Taylor 
series

k= 0

here and throughout the  following, we use the  notation

(x  +  i y ) j  = x l  +  yJ,
d k(j) 
d x k '

By [4], the general solution of Eq. (f) can be represented in the form

u = R  eBcf);

(4 )

(5)

moreover, the relation u  =  0 is possible only if <fi is a polynomial of degree <1 — 2. More precisely, 
the  function <f) is uniquely determ ined under the 1(21 — f) conditions

R e B J r^ k)(0) = 0, 0 <  k < r < 21 -  1, (6 )

where, to  be definite, we assume th a t 0 e  D.
The generalized D irichlet-N eum ann problem is the problem of finding the solution u(x, y) of 

Eq. (f) in the dom ain D  w ith the boundary conditions

d k u
d n ki - i 9j, (7)

where n  =  ni  +  m 2 is the  unit outward normal. Here the fct.h normal derivative is treated  as the 
boundary differential operator

d  9  V  v -n i —  + no— \ u = y  
ox  oy J  ^

k \  k_r d ku
) n ln k r - — — —

r j  - d x rd y k~r (8)

Let z = z(s) = x(s)  +  iy(s),  0 <  s <  s r , be a natu ral param etrization of the contour T. 
The param eter s is the  arc length counted counterclockwise from a fixed point 2(0) e  T. Ac
cordingly, e(t) = z'(s),  t  = z(s),  is the unit tangent vector related to  the normal by the formula
e-i +  ie2 = i (??■! +  in2).

Throughout the following, we assume th a t T belongs to  the class (7fci’M+0, 0 <  n  < 1; th a t is, the 
periodic function z(s)  belongs to  the class C kl^ +E w ith some t  >  0. In particular, the functions 
and ??,2 and hence the coefficients of the differential operator (8) belong to  the class C'fc!_1,M+0(r) . 
We seek a solution of Eq. (I) in the class of functions u  G C 2l(D)  such th a t 4> G (i))  in



the  representation (5). It is convenient to  denote this function class by C (£)); obviously it is 
a Banach space with respect to  the norm  |«| =  1 0 1 ^ - 1 , Obviously for functions u  in this class, 
the  right-hand sides gj in (7) should lie in C kl~kj,^ ( r ) .

Let be the fct.h derivative of the function g e  C fc(L) with respect to  the arc length param e
ter s; i.e.,

9{k)[z(s)} = — g[z(s)}.

L e m m a  1. For each funct ion f  G C '(r), the equation

9{k) +  A j  g( t)dst =  / ,  
r

where A >  0, is uniquely solvable in the class C k(T).

P ro o f . Let us identify g w ith the function g[z(s)\. Then the considered equation can be reduced 
to  the equation

sr

T k,xg = / ,  (Tk,x) (g) = g{k)(s) +  A J g(s)ds
0

in the class C k of s r -periodic functions. (The periodicity condition also holds for the derivatives.) 
By virtue of the obvious relation

№ ,a )fc =  TM , A =  a ks k- \

we arrive a t the case k = 1. A simple verification shows th a t the operator Tl a : C r —> C r_1 is 
invertible for any positive integer r and for any a  > 0.

The D irichlet-N eum ann problem (1), (7) belongs to  the type of the Poincare problem  considered 
in [3]. All results in [3] rem ain valid for problem  (1), (7). The novelty is th a t, in our case, the 
condition for the problem to be Fredholm can be w ritten out in closed form in term s of generalized 
Vandermonde determ inants. Let us briefly describe related constructions in [3] as applied to  our 
problem.

Let hj(z)  be functions analytic in a neighborhood of each of the points i = 1 , . . . ,  m,  forming 
the spectrum  of the m atrix  J  in (2). Consider the upper-triangular m atrices hj (J.,,) = (hps)1*s=1 

w ith entries hps =  h^s~p') (Vi)/{s — p)l, p < s.
Given the vector function h = (/?i,. . . , /?.;),  by W h (ui) e  C lxli, following [4], we denote the 

m atrix  whose j t h  row coincides w ith the 1 x lt m atrix  B.Jij ( J ;). Its entries wps (z/;) have the form 
WpS (z/;) =  h (p ~ 1') [Vi)/{s — 1)!, p = 1 , . . . ,  I, s = 1 , . . . ,  li. By analogy with (2), we form the block 
m atrix  W h{v) = [Wh (z^) , . . . ,  W h (z/m)].

In this notation, we set

G(t) = W h{v), hj(z)  = [e-i(t) +  e2(t)z}h ~k3 [e2(t) -  e ^ z p ^ 1, t  G T, (9)

where, recall, e(t) = e-i(t) +  ?’e2(t) is the  unit tangent vector to  L at a point t.

T h e o re m  1. Let D  be a finite domain bounded by a smooth contour T of  the class C k,,fJ'+0, 
0 <  n  < 1, and let the condition

det.G'(t) / 0 ,  t e T ,  (10)

be satisfied in notation (9). Then problem (1), (7) is Fredholm in the class C kl~ 1,tl (D ) , and its 
index x  is given by the formula

k  =  — — arg det G + 2 1 (ki — I ) . (11)
7T r
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P ro o f . If g is the boundary value of a function v e  C k (D),  k < hi — 1, then the derivative g ^  
can be obtained by an application of the boundary operator

i"^m = {ê  + e'-§y) r + MtV (12)
to  v, where M k is a linear differential operator of order k — 1 w ith coefficients th a t belong to  the 
class C M+0(L) and can be expressed via the functions e-i and e2 and their derivatives. Therefore, 
by Lemma 1, we can rewrite the boundary condition (7) in the equivalent form

/  Qki ~ ly, \  (fci “ kj) f  Qki ~ iy,
( s ^ T t )  + S b ^ T - T * t = / ”  j  =  <13>

r

where we have set

f,=9{kl̂ ] + Jg^dsteC^T).

By setting k = kj  in (8) and by applying the operator (12) to  the partial derivatives of v on the 
right-hand side in (8), we can rewrite the boundary condition (13) in the form

e' S i +e!Sy) \'h S i + n ! Sy) , +  =  ̂  (14)
r

where Lj  is a linear differential operator of order h  — 2 w ith coefficients in the class C M+0(L).
By using relation (3) and the notation accepted in (4), for the differentiation of the right-hand 

side of (5), we have the formula

d d ' k
a>i —— ha-;—  ( Re Bd>) = Re Ba, T <jy- a = a>i +  iao.

o x  oy )

Consequently, for J-analyt.ic functions (f) [solutions of the Douglis system (3)], the set of I bound
ary conditions (14) can be represented in the m atrix  form

f c i - 2

R e G ^ ‘- 1} +  Re ^
r=0

G U > ( r )  +  J  G°r <f>(r)ds = f ,  (15)

where /  =  ( / i , . . . , / / ) ,  the j t h  row of the m atrix  G coincides with the 1 x I m atrix  B e kJ kjn kj  1, 
j  = 1 , . . . , / ,  and the m atrix  coefficients G°r and Gj., whose specific form is inessential for our 
considerations, belong to  the class C M+0(L).

Therefore, problem (1), (7) is equivalent to  problem (6), (15) considered in the class (7fci~1,M (£)) 
of Douglis analytic vector functions.

Set =  -0; then

<fi =  c0 +  ZjC-l +  ' ' ' +  Zj‘ "Ck, - 2 +  0*'1 h‘\ z ) ,  cr G C ', (16)

where, for a positive integer n, we have set

Z

^ - n\ Z) = J ( t -  z y ^ d t j m -
o



In notation (4), we introduce the generalized Cauchy integral

(.Itp)(z) = j ( t -  z)^dt j<p(t) ,  z  £  I \  
r

If <p G C M(r) ,  then Itp G C ^ ( D ) ,  and the boundary values of the la tte r function satisfy the 
Sokhotskii-Plemelj formula [3]

2 (I<p)+ = ip +  Kip, (17)

where K  is the singular Cauchy integral

(Kip) (t0) = —  [  (t -  to )}1 dtjip(t), t 0 G L. (18)
7n  J  

r

As was shown in [3], if J  is a triangular m atrix, then  every J-analy tic  function ip G (D)  can 
be uniquely represented in the form

i p  =  I<p +  i£, £ g R ' ,  (19)

with a real function ip G C M(L).
If J  = i, then  the integral (18) becomes the classical singular operator

m  J  t  -  to
r

For each linear operator N ,  we introduce the operation of complex conjugation by the formula 
Nip = Nip. In particular, it follows from (18) th a t

(Kip) (to) = — \  [  ( t ~  to )}1 dtjip(t), to G L.
7T% J 

r

If k (to, t) G C M+0(L x L) and k(t, t) = 0, then  one can readily show th a t the integral operator

(Mip) (to) = J  to G L,
r

is compact in the space C M(L). The class of such operators will be denoted by 7^(r).
Let us use the following assertion (see [3]).
Let L G C'1,M+0. Then each of the operators

(Miip) (to) = (I<p){- n) (to) , t 0 e r ,  M 2 = K - S ,  M 3 = K  + K

belongs to  the class ^o(T).
By substitu ting the representation (19) into the expression (16), we obtain

m = v ( z )  + (I<p)(1- kl)(z), p(z) = Y ^ z kjCk,
k=o

where cr g C !, r = 0 , . . .  , k t — 2, and G R*.
By using the Sokhotskii-Plemelj formula (17) and the last relation, from the boundary value 

problem  (15), we arrive a t the equivalent singular equation

2fci —1
Re [G(l +  K)ip\ +  Rip +  ] T  a &  =  2 /, (20)

3=1
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where R  G % ( r )  and the I x I m atrix  functions a,j belong to  the class C M+0(L). The unknowns in 
this equation are a real /-vector function ip G C M(T) and a set (£,•), ^  G R*.

From condition (6), we obtain the relations

, 2fcj —1
/  c(t)ip(t)dst +  ^ 2  bj£,j =  0, c(t) G (21)

r  J=1

with some (1(21 — 1) x I) m atrix  functions bj of the class C M+0(L).
By the preceding, Eq. (20) can be rew ritten in the form

2fci —1
G( 1 +  S)ip +  G( 1 — S)ip +  R\ip +  2 'y '  =  4 /  (22)

j= i

with an operator Ri  in the class 7^(T) and the m atrix  function G given by relation (9). Here we 
have used the fact th a t the tangent vector e =  e-i +  ?'e2 and the normal vector n  =  +  i n 2 are
related by the formula e =  in.

The classical theory of singular integral equations [6, p. 315] can be applied to  system (21), (22). 
This theory implies th a t, under assum ption (10), the system  belongs to  the normal type and its 
index k  is given by the formula

x  =  Ind (G~1G) +  I (2kt -  1) -  1(21 -  1).

By virtue of the equivalence, the same result is valid for the  original problem. Elem entary 
transform ations reduce this formula to  (11), which completes the proof of the theorem.

In some cases, condition (10) and formula (11) can be described in closed form.

T h e o re m  2. Let one of  the following two conditions be satisfied:
(a) the characteristic polynomial of  Eq. (1) has a unique root in the upper half-plane;
(b) kj+1 -  kj = 1, 1 <  j  < I.
Then problem (1), (7) has the Fredholm property, and its index x  is zero.

P ro o f . We write hj(z)  = (e-i +  e2z ) kl~ 1 gj[w],  where

w = u(z),  u(z)  = 62 6l* , gj ( w ) = w k*~1, j  = l , . . . , l .
Ci +  e2z

As was shown in [4], the m atrix  W h has the following properties.
1. If a G C lxl, then a,Wh = W ah.
2. If ip(z) is a scalar analytic function, then W ^ h. = W hA,  where A  G C lxl is a block diagonal m a

trix  and the A r G C lrXlr, r = 1 , . . . ,  m,  are the triangular m atrices w ith entries [Ar]i • =  / ( j —i)l 
for all i < j .

3. If w(z)  is a scalar analytic function and « /  (z/;) /  0, i =  1 , . . . ,  m,  then

Wgow(v) = W g[w(u)\H,

where w(v)  stands for the set (w ( v i ) , . . . ,  w (vm)), H  G Clxl is a block diagonal m atrix, and 

H r = diag ^1, w ’ (vr) , . . . , [ w ’ (z/r ) f r 1J e C lrXlr, r  =  l , . . . , m .
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Then, by virtue of properties 2 and 3, we have

m
det•Git) = ]^[ [e-i(t) +  e2(t)z/J-f3('fc!~i3') d e tG 0(t), 

j = 1

where we have set
r < I \ e2(t) -  e-i(t)^

=  W,{w),  w,  =  e A t ) + e M v j - 

Since Ind(e-i +  e2Vj)\r = 1 for I m ^  >  0, it follows th a t

m
Ind G =  ^  lj iki — I j) +  Ind Go- (23)

j= i

As t goes around the contour L, the point e(t) of the unit circle makes a complete revolution; 
therefore, the condition det Go (t) /  0 is equivalent to  the condition

det Ws [w(e)] /  0, |e| =  1, (24)

where
w = iw i , . . . ,  w m) , Wjie) = (e2 -  e ^ ) / (e-i +  e2^ ) .

In view of (23), this condition is equivalent to  (10).
It was shown in [4] th a t if one of assum ptions (a) or (b) of the theorem  is satisfied, then 

condition (24) always holds. Therefore, it only remains to  show th a t the index of problem (1), (7) 
is zero.

Let assum ption (a) of the theorem  be true; i.e., let m  = 1. Then, by [4], the determ inant of the 
m atrix  W g has the form

ON A BOUNDARY VALUE PRO BLEM  FO R  A H IG H ER -O R D ER  EL L IPT IC  . . .

det  W g ( w i , .. - , w m) = (  kl. _  kj "j w p fc3 3).
a \   ̂ J /i>j

Therefore, the index of the m atrix  function Go is given by the relation

Ind Go = ^  ikj — j)  Ind uhit).
i =  1

The Cauchy index of the functions m;,(t) is the difference of the indices of the functions e2(t) — ei(t)z/;, 
and ei(t)  +  e2(t)z/;, and hence is zero. Consequently, Ind Go =  0, and this, together with (23), implies 
th a t k  =  0.

Let assum ption (b) of the theorem  be true. Then the determ inant W g is called a generalized 
Vandermonde determ inant and, as was shown in [4], can be represented in the closed form

hUdet, W g i w i , . . . ,  wm) = w\i{kl 1} Y [  iuh -  Wj)
i i>j

From this, for the index of the m atrix  function G0, we obtain

m
Ind G 0 =  ^  li (fci — 1) Ind Wiit) +  ^  Ijlj Ind iuk — Wj) it).

i=  1 i~>j

If i /  j ,  then for the difference {wt — Wj) it) occurring in the second sum, we obtain the expression
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and consequently, the Cauchy index of this function is equal to  —2. Hence we obtain

Ind Go =  - 2  ^  kl j  = It ~  I2,
i>j i

which, together w ith (23), implies th a t k  =  0.
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