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FLUCTUATIONS IN ONE-DIMENSIONAL DYNAMIC SYSTEMS
Yu. D. Mendygulov and V. M. Moskovkin UDC 517.9

We consider one-dimensional dynamic systems with random fluctuations that are encountered in ap-
plications. analyze solutions, and investigate the stability of stationary points.

In applications we frequently encounter dynamic systems with one-dimensional phase spaces. Examples are pro-
vided by coastal systems in geomorphology. autonomous populations in biology, autocatalytic reactions in chemistry,
etc. [1. 2]. In general. such systems are described by equations of the form

dw

= F{uw),

where

w € [a.b]: abeR. (1)

In such systems. an important role is often played by a variety of fluctuations that are as likely to be associated
with fluctuations in macroscopic parameters as the stochastic nature of processes that occur in the systems themselves.
Following [2]. we will attempt to account for random fluctuations by replacing the deterministic equation (1) with the
stochastic differential equation (a stochastic Ito equation)

dw = F(w)dt + gdo(t), (2)

where the second term describes the contribution of fluctuations to w, and g is the amplitude of the fluctuations (which
we assume to be constant).
On do(t} we iinpose the conditions

{<(do(t))2> = dt. 3)

where (...) = fox(. Cplw, thwo, to)dw is the statistical average, and p(w, tjwoto) is the probability that the system
coordinate in the phase space at time ¢ will have the value w if it has the value wq at time ¢o.
Averaging {2). we obtain [to’s equation for the mean value [2]:

duw

Ti% = (F(w)). (4)
From Eq. (2) and the statistical independence of do(t) and w we obtain, for the probability distribution function.

the Tto-Fokker-Planck equation [2]:
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ogp 0 g° &
at —au'(F(u)p)+ 2 Ow?’

The formal solution of the Cauchy problem for this equation is of the form [3]

©
—
Dt
=

g* d* d X
) =exp (= lo) |5 5 — = F(w)] ¢ o(w), 0
plu.t) ew{( ) [.2 = (,H‘F(u)]},:(u) (6)
where >(w) = p(w. tg) is the initial condition.
We now introduce the notation p = -i‘—fu—,. so the function p(w.t) takes the form of the amplitude of the probability

(W¥-function) for a one-dimensional quantum particle with coordinate « and Hamiltonian H = -‘.7_,;})2 +pF(1V) [4]. Thus.
every one-dimenstonal stochastic system can be treated as a one-dimensional quantum particle with imaginary mass
iy~? that is subject to friction. It now follows. according to [4]. that p(w.t) = (w|t). where |uw) is the eigenvector of
the coordinate operator of a quantum particle. and |t) is the state vector of the particle. which depends on time and
is equal to

I1) = exp {=iH (t — to)} [to) = exp {=i(Ily + FL)(t = ta)} |to). (M)
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where |£p) is the state vector of the particle at time ¢,

g .
Hy = '_—%p', Hy = pF(w). (wlig) = pluw).

We represent |t} in the form
[ty = exp {=iHy(t — to)} o) + 7 ()]to); (8)

now. upon differentiation of expression (8). we obtain, for the operator I7(f). the equation

(_idLT/————lr'(Ho+H1)(,='—iHlexP{”“.HO(t—IO)}v ®)

from which it follows that

U1ty = exp (=iMo(t = to)} | exp (=iHa(d — 1)

x [—iH\ [ (8) — iHy exp {—iHo(8 — 1o)}] dO: . (10)

this last is clearly equivalent to the integral equation

{l—l—i/t dfexp {iHo(8 — t)} H,(()...}U(t):—i/ dfexp {iHo(f —t)}

x Hyexp {—iHo(8 — to)}. (11)

whose solution is

(23 9,
U(t)— "+l/ d() / den 1° / d91/ dﬂoexp{zHO 9 -1 }H1(9

n=0

x exp {iHo(Bn_1 — 04)} H1(Ba-1 ...exp{iHo(6o — 61)} Hy(6o) exp {—iHo(fg — o)} - (12)

Here we have used the known expansion for the operators (/ — A4)™! =3~ | A”. where A is an operator and I is the
identity operator. As a result,

plw.t) = (wt) = (wlexp {=iHo){t - to)} |to) + (w|U()]to)
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In the computation above we used the known formulas

PR GRISCAE O (. gy (8 Ul P
exp Ag v w) = .3 “:le.\p e Sly)

(alH,(0)]3) = (a|pF(w)|3) = ~id'(a — 3)F(3). (13)

where {o|H()|3) is the operator H; in the w-representation [4]. In the zero-th order theory of perturbations we have

e [T Ay, __(“_‘_y_)_}
po(u.r)—/_mg S .xp{ o | elo)
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t 0 3/2

_dy =) )
X/-xg zn(e_zo)e“p{ 292(0—10)}*@)- (14)

As we can see, the zero-th approximation (14) corresponds to expansion in the amplitude of the fluctuations to
1/g%, inclusive. Thus, this approximation is better for sufficiently large fluctuation amplitudes.
We now consider the stationary case of Eq. (5).

d !]2 d2
— ; S =0. 15
[F(w)ptw)] + L p(w) =0 (15)
Integration of Eq. (15) yields
2
p — = Fp=conslt. (16)
7
It follows from the physical meaning of p(w) that
lim p'(w) = lim p(w) =0. (17)
It follows that Eq. (16) now takes the form
2
P — = Flu)p =0, (18)
PE
whose solution is
9 ¢
p:(*exp{—;/F(w)du'}. (19)
e

where the constant C is found from the normalization conditions.

The extrema of the function (19) are found from the condition F(w) = 0.

Thus. the extrema of the function (19) correspond to the fixed point of the dynamic system (1). Let the function
(19) have a maximum or minimum at the point w. Now

F{w) = F'(t)(w — @) + Ofw — @f?). {20)

where O is the Landau symbol. If @ is a maximum point. F'(w) < 0 and it is clear from {20) that w is a stable
stationary point. If. however. @ is a minimum point. F'(w) > 0 and & is an unstable stationary point. Thus. in
measurements we most probably observe a system at a stable stationary point and least probably detect an unstable
point. with agrees with the case of the dynamic system (1) without fluctuations. If. however, the right side of (1)
depends on a parameter and the system loses stability at a stationary point when the parameter is changed, in the
case of stochastic dynamics. a change in the system parameter will cause the system to leave the neighborhood of a
stationary point when it becomes unstable to enter the neighborhood of another stable stationary point.
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