ФИЗИКА. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

УДК 536.46

DOI 10.52575/2687-0959-2022-54-1-52-59

ПОЛУЧЕНИЕ И СВОЙСТВА НАНОКРИСТАЛЛОВ ZnS_xSe_{1-x}, СИНТЕЗИРОВАННЫХ МЕТОДОМ САМОРАСПРОСТРАНЯЮЩЕГОСЯ ВЫСОКОТЕМПЕРАТУРНОГО СИНТЕЗА

Е. Г. Плахтий, В. С. Захвалинский

(Статья представлена членом редакционной коллегии С. В. Блажевичем)

Белгородский государственный национальный исследовательский университет, г. Белгород, 308015, Россия

E-mail: plakhtii.ev@gmail.com

Аннотация. Методом самораспространяющегося высокотемпературного синтеза получены нанокристаллы твердых растворов $\operatorname{ZnS}_{x}\operatorname{Se}_{1-x}$. Полученная шихта представляет собой объединение нанокристаллов и поликристаллов. Поликристаллы образуются из-за высокой температуры реакции и невозможности мгновенного отведения тепла. Присутствует нелинейная зависимость заложенной шихты до синтеза и полученного после синтеза порошка. Рассчитаны размеры нанокристаллов $\operatorname{ZnS}_{x}\operatorname{Se}_{1-x}$ методом Дебая – Шеррера. Максимальные размеры составили для сульфида и селенида цинка 80 ± 5 нм и для всех остальных составов 60 ± 5 нм. Полученные нами степени микронапряжения и плотности дислокаций в нанокристаллах $\operatorname{ZnS}_{x}\operatorname{Se}_{1-x}$ характерны для однородных составов с высоким совершенством кристаллической структуры. Нанокристаллы для всех параметров x характеризуются присутствием гексагональной и кубической фазы. При уменьшении параметра x в нанокристаллах твердых растворов $\operatorname{ZnS}_{x}\operatorname{Se}_{1-x}$ доля кубической фазы возрастает. Локальное окружение примесных ионов Mn^{2+} зависит от состава твердого раствора. В $\operatorname{ZnS}_{x}\operatorname{Se}_{1-x}$ состава $0.4 \le x \le 1$ ионы Mn^{2+} окружены ионами серы с константой сверхтонкой структуры $A = 6.88 \div 6.91$ мТл, а в составах с $x \le 0.2$ ионы Mn^{2+} находятся в окружении ионов селена с константой сверхтонкой структуры = 6.55 мТл. В неосвещенных нанокристаллах $\operatorname{ZnS}_{x}\operatorname{Se}_{1-x}$ составов $0.8 \le x \le 1$ присутствует одиночная линия электронного парамагнитного резонанса (ЭПР) ионов Cr^+ с фактором g = 1.9998.

Ключевые слова: нанокристаллы ZnS_xSe_{1-x} , самораспространяющийся высокотемпературный синтез, рентгенодифракционный анализ, кристаллическая структура, спектры ЭПР

Для цитирования: Плахтий Е. Г., Захвалинский В. С. 2022. Получение и свойства нанокристаллов ZnS_xSe_{1-x}, синтезированных методом самораспространяющегося высокотемпературного синтеза. Прикладная математика & Физика. 54(1): 52–59. DOI 10.52575/2687-0959-2022-54-1-52-59

OBTAINING AND PROPERTIES OF ZnS_xSe_{1-x} NANOCRYSTALS SYNTHETIZED BY COMBUSTION SYNTHESIS

Evgenii Plakhtii, Vasily Zakhvalinskii

(Article submitted by a member of the editorial board S. V. Blazhevich)

Belgorod National Research University, Belgorod, 308015, Russia) E-mail: plakhtii.ev@gmail.com Received February, 04, 2021

Abstract. We obtained nanocrystals of ZnS_xSe_{1-x} solid solutions by the combustion synthesis. The obtained charge is a combination of nanocrystals and polycrystals. The high reaction temperature and the impossibility of instantaneous heat removal form polycrystals. There is a nonlinear dependence of the incorporated charge before synthesis and the powder obtained after synthesis. The sizes of ZnS_xSe_{1-x} nanocrystals are calculated by the Debye-Scherrer method. The maximum dimensions were 80 ± 5 nm for zinc sulfide and selenide and 60 ± 5 nm for all other compositions. The obtained degrees of microstress and dislocation density in ZnS_xSe_{1-x} nanocrystals are typical for homogeneous compositions with a high perfection of the crystal structure. Nanocrystals for all parameters *x* are characterized by the presence of a hexagonal and cubic phase. The fraction of the cubic phase increases with a decrease in the parameter *x* in nanocrystals of ZnS_xSe_{1-x} solid solutions. The local environment of Mn^{2+} impurity ions depends on the composition of the solid solution. Sulfur ions with a hyperfine structure constant $A = 6.85 \div 6.91$ mT surround Mn^{2+} ions in ZnS_xSe_{1-x} of composition $0.4 \le x \le 1$, and selenium ions with a hyperfine structure constant A = 6.55 mT surround Mn^{2+} ions in compositions with $x \le 0.2$. There is a single line of electron paramagnetic resonance (EPR) of Cr⁺ ions with a factor g = 1.9998 in unilluminated ZnS_xSe_{1-x} nanocrystals with compositions $0.8 \le x \le 1$.

Key words: ZnS_xSe_{1-x} nanocrystals, combustion synthesis, X-ray diffraction analysis, crystal structure, EPR spectra

For citation: Plakhtii Evgenii, Zakhvalinskii Vasily. 2022. Obtaining and properties of ZnS_xSe_{1-x} nanocrystals synthetized by combustion synthesis. Applied Mathematics & Physics. 54(1): 52–59. (in Russian) DOI 10.52575/2687-0959-2022-54-1-52-59

1. Введение. Твердые растворы (TP) ZnS_xSe_{1-x} широко используются в твердотельной электронике, оптоэлектронике, акустоэлектронике, технике [7, 19, 23]. Эти соединения имеют ширину запрещенной зоны 2,6 - 3,91 эВ и являются перспективным материалом для оптоэлектронных приборов. Все химические элементы, их составляющие, нетоксичны и в изобилии имеются в земной коре. В последнее время применение данных твердых растворов в основном происходит в виде нанокристаллов (НК) [3, 5, 9]. Многие группы исследователей получают НК ZnS_xSe_{1-x} с помощью широкого спектра методов из газовой фазы (gas-based techniques): химического осаждения из паровой фазы (CVD), физического осаждения из паровой фазы (PVD), ионной имплантации (ion implantation), распыления (sputtering), лазерной абляции (laser ablation) и пиролиза аэрозоля (spray pyrolysis) [1, 2, 10, 16]. В этих технологиях возможность управления размером НК обеспечивают, регулируя параметры синтеза: температуру, давление, удельную мощность, расход газа и т. д. Также используются методы роста НК из растворов (solution-based techniques): восстановления (reduction), термического разложения (thermal decomposition), гидротермального процесса (hydrothermal process), печати (printing), а также используются основанные на гидролизе и алкоголизе (hydrolysis and alcoholysis) [8, 21, 24, 28]. Эти методы получения растворов представляют большой исследовательский интерес, так как они эффективны в синтезе НК с хорошим контролем размера, у них есть преимущества низкой температуры синтеза, технологической гибкости. Однако получение НК всеми перечисленными выше методами имеют некоторые недостатки, например, большую себестоимость и достаточно высокую сложность синтеза. Метод самораспространяющегося высокотемпературного синтеза (СВС) является одним из самых перспективных методов получения НК для соединений типа A₂B₆ и обладает рядом преимуществ. Этот метод характеризуется высокой скоростью получения НК, возможностью получения НК в больших объемах, низкой себестоимостью и энергопотреблением на единицу продукции, простотой используемого оборудования и его экологической безопасностью [15, 22]. Метод СВС позволяет получить порошкообразные НК ZnS_xSe_{1-x} путем легко реализуемой высокотемпературной реакции смеси мелкодисперсных порошков Zn, S и Se, производить легирование НК непосредственно в процессе синтеза путем добавления соответствующих примесей в шихту. На сегодняшний день группами исследователей получены методом СВС и изучены некоторые физические и оптические свойства нанокристаллов ZnS с размерами 80 – -1000 нм [4, 14, 20], а также получены кристаллы ZnSe размерами 1 – -100 мкм и частично исследованы физические и оптические свойства [18, 27]. Ранее нами были рассмотрены НК ZnS_xSe_{1-x} легированные марганцем [12, 13]. Однако получению чистых НК ZnS_xSe_{1-x} методом CBC и некоторых присущих им особенностям до сих пор не было уделено достаточно внимания. В данной статье рассматривается получение НК ZnS_xSe_{1-x} с шагом параметра состава x = 0.2 меньших размеров, с воспроизведенными и контролируемыми свойствами и низкой себестоимостью, преодолевающей ограничение дальнейшего расширения практического применения ТР НК ZnS_xSe_{1-x} .

2. Методика эксперимента. Синтез НК твердых растворов ZnS_xSe_{1-x} с шагом состава x = 0.2 производился в кварцевой ампуле, помещенной в герметичный стальной реактор. В ампулу загружали механически смешанные порошки Zn, S и Se, взятые в соответствующих пропорциях. Предварительное перемешивание шихты проводилось с добавлением этилового спирта для улучшения процесса перемешивания. Соотношение S и Se в шихте при этом характеризуется параметром x_p . После сушки смеси инициация реакции синтеза проводилась тепловым импульсом, который обеспечивала нихромовая спираль, расположенная в верхней части реактора.

Синтез проводился при атмосферном давлении в воздушной среде. В полученных НК ZnS_xSe_{1-x} соотношение между *S* и *Se* определялось параметром *x*. Рентгенодифракционный анализ (РДА) полученных НК был проведен на дифрактометре ДРОН-2 с использованием излучения Со Ка. Спектры ЭПР исследовались на радиоспектрометре *RadiopanSE/X* – 2543. Изображение частиц НК было получено с помощью растрового электронного микроскопа *PEMMA* – 102 – 02.

3. Результаты эксперимента и их обсуждение. НК ZnS_xSe_{1-x} , полученные методом СВС, представляют собой порошок. Электронные микрофотографии данного порошка представлены на рис. 1. Как видно из представленных электронных микрофотографий, в данном порошке присутствуют крупные поликристаллы, поликристаллы со средними размерами 1 – 5 мкм и мелкие НК, которые можно увидеть при разрешении 5 мкм как легкую взвесь. Появление разных фракций происходит из-за особенностей реакции СВС – высоких температур синтеза ~ 1800 - 2200 К [17]. В связи с невозможностью мгновенного отвода избыточного тепла, образованные в результате синтеза НК соединяются в поликристаллы разных фракций со смешанной кристаллической структурой, которые при механическом давлении легко распадаются на НК.

(d)

WD=12.2mm 30.00kV x10.0k 5um

(e)

 $(p) = 14.9 \text{ mm} + \frac{30.00 \text{ kV} + 10.00 \text{ k}}{(p)} = 15.0 \text{ mm} + \frac{30.00 \text{ kV} + 10.00 \text{ k}}{(p)} = 1000 \text{ m} + \frac{1000 \text{ m}}{(p)} = 1000 \text{ m} + \frac{10000 \text{ m}}{(p)} = 1000 \text{ m} + \frac{10000 \text{ m}}{(p)$

Для расчета размеров НК была использована формула Дебая – Шеррера:

$$d = \frac{K\lambda}{\beta \cos(\theta)},\tag{1}$$

где *d* – средний размер кристаллов, *K* – безразмерный коэффициент формы частиц (постоянная Шеррера, для сферических частиц принимается равной 0.9), λ – длина волны рентгеновского излучения, β – ширина рефлекса в районе полувысоты (в радианах), θ — угол дифракции. Размеры НК ZnS_xSe_{1-x} , полученные из данных РДА приведенных на рис. 2 для составов x = 0, x = 1, находятся в пределах 80 ± 5 нм, а для всех остальных составов 60 ± 5 нм. Как видим по ширине рефлексов, минимальные размеры НК ZnS_xSe_{1-x} характерны для параметра x = 0.4, а максимальные – для состава x = 0. На рис. 2 в представлена расширенная область рентгенограмм от 28 до 38, где проявляется плавное движение рефлексов при изменении параметра состава x, что подтверждает получение ТР НК ZnS_xSe_{1-x} .

Рис. 2. Спектр РДА (a) и часть спектра РДА (b) НК ZnS_xSe_{1-x} : 1 – x = 1; 2 – x = 0.8; 3 – x = 0.6; 4 – x = 0.4; 5 – x = 0.2; 6 – x = 0. Эталонная штрих-диаграмма для вюрцита (x = 1, синий цвет) и сфалерита (x = 0, красный цвет) Fig. 2. XRD spectrum (a) and part of XRD spectrum (b) ZnS_xSe_{1-x} NC: 1 – x = 1; 2 – x = 0.8; 3 – x = 0.6; 4 – x = 0.4; 5 – x = 0.2; 6 – x = 0. Reference line diagram for wurtzite (x = 1, blue) and sphalerite (x = 0, red)

Для определения доли гексагональной и кубической фаз были использованы соотношения интенсивностей рефлексов плоскостей (100), (101), (002) отвечающих за гексагональную фазу и интенсивностей рефлексов плоскости (111), отвечающих за кубическую. Из рис. 2 видно, что в НК ZnS доля гексагональной фазы, составляет ~ (65 ± 5) %, кубической фазы ~ (35 ± 5) %, в НК ZnS_{0.8}Se_{0.2} – (70 ± 5) % и (30 ± 5) %, в НК ZnS_{0.6}Se_{0.4} – (70 ± 5) % и (30 ± 5) %, в НК ZnS_{0.4}Se_{0.6} – (55 ± 5) % и (45 ± 5) %, в НК ZnS_{0.2}Se_{0.8} – (15 ± 5) % и (85 ± 5) %, а в НК ZnSe – (5 ± 5) % и (95 ± 5) %, соответственно. Доля кубической фазы с уменьшением параметра х в НК ZnS_xSe_{1-x} возрастает. По данным РДА, с точностью до 2 %, в полученных TP не наблюдается присутствие других кристаллических фаз. Реакция СВС инициировалась мощным тепловым импульсом, который обеспечивал ток ~ 40 А, в работе [6] данный тепловой импульс обеспечивал ток ~ 27*A*. В работе [6] наблюдаются дополнительные фазы, в нашей работе данные фазы отсутствуют, можно сделать вывод, что величина первоначального температурного импульса, инициирующего CBC реакцию, влияет на размеры и на фазовый состав НК, что сходно с результатами, представленными другими авторами [25].

Параметры кристаллической решетки НК ТР ZnSxSe1-х в кубической фазе находились в пределах от a = 5.377 Å(для x = 1) до a = 5.630 Å(для x = 0) (Таблица 1). Данные значения хорошо коррелируют с параметрами кристаллической решетки монокристаллов ТР ZnS_xSe_{1-x} [26], которые находятся в пределах a = 5, 4093 Å(для x = 1) до a = 5, 6687 Å(для x = 0). Полученные нами параметры кристаллической решетки меньше, чем в монокристаллах, это свидетельствует о деформационных напряжениях, присущих для HK. Степени микронапряжений кристаллической решетки НК ZnS_xSe_{1-x} (Δ d/d) лежали в пределах от $4.1 \cdot 10^{-4}$ до $16 \cdot 10^{-4}$. Минимальная степень микронапряжений была характерна для составов с x = 0.8, а максимальная – с x = 0.4. Плотности дислокаций лежали в пределах от $2.5 \cdot 10^{10}$ до $20 \cdot 10^{10}$. Минимальная плотность дислокаций была характерна для составов с x = 1 и x = 0, а максимальная – для составов с x = 0.2 и x = 0.4. Полученные нами степени микронапряжения и плотности дислокаций характерны для достаточно однородных составов с высоким совершенством кристаллической структуры [11], что позволяет получить широкое применение синтезированных нами НК в различных сферах практической деятельности. Как видно из таблицы 1, присутствует нелинейная зависимость заложенного состава до реакции и полученных после синтеза порошков.

N⁰	Состав до реакции $CBC, S_x $ %	Состав после CBC, параметр решетки, А	Состав после CBC, РДА, S _x %	L1, размер кристаллов по линии 32 ⁰ ,Å	L2, размер кристаллов по линии 64 ⁰ , Å	L, максимальный размер кристаллов, Å	М, степень микро- напряжений %, · 10 ⁻⁴	D, плотность дислокаций см ⁻² , 10 ¹⁰
1	100	5.385	100	722	433	825	9,6	5,91
2	80	5.396	95.3	558	488	645	13,2	8,3
3	60	5.410	89.8	531	298	591	17,7	14,2
4	40	5.436	79.3	448	313	510	18,3	20,4
5	20	5.559	29.4	600	482	652	7,45	8,85
6	0	5.632	0	725	494	822	0,55	5,85

Таблица 1. Данные РДА НК ZnS_xSe_{1-x}
Table 1. Data X-Ray NC ZnS_xSe_{1-x}

Спектры ЭПР НК ТР $\text{ZnS}_x\text{Se}_{1-x}$ приведены на рис. 3. Заметим, что во всех составах наблюдается сверхтонкая структура, состоящая из шести эквидистантных линий, характерных для парамагнитных центров Mn^{2+} . Для синтеза НК ZnS_xSe_{1-x} использовались химически чистые исходные материалы. В паспорте материалов присутствует марганец в количестве 10^{-2} вес. %. Лучше всего ионы Mn^{2+} встраиваются в кристаллическую решетку сульфида и селенида цинка, что можно увидеть по наиболее интенсивному сигналу. В смешанных твердых растворах интенсивность сигнала ЭПР, присущего ионам Mn^{2+} , слабее на порядок, что можно связать с неравновесностью структуры НК ТР $\text{ZnS}_x\text{Se}_{1-x}$. В составах с $0.4 \le x \le 1$ наблюдается сдвоенность линий, что свидетельствует о наложении друг на друга двух спектров ЭПР ионов Mn^{2+} , находящихся в разном локальном окружении.

Гексагональному локальному окружению, скорее всего, принадлежит спектр ионов Mn^{2+} с константой сверхтонкой структуры A = 7.16 мТл. Кубическому локальному окружению, скорее всего, принадлежит спектр ионов Mn^{2+} с константой сверхтонкой структуры A = 6.90 мТл. Константы сверхтонкой структуры ионов Mn^{2+} , которые мы получили, хорошо коррелируют с константами сверхтонкой структуры ионов Mn^{2+} , которые мы получили, хорошо коррелируют с константами сверхтонкой структуры ионов Mn^{2+} для объемных кристаллов и НК ZnS_xSe_{1-x} :Mn [12]. В составах близких к ZnSe наблюдалась одна шестерка эквидистантных линий, характерных для парамагнитных центров Mn^{2+} . По данным ЭПР, именно в этих составах скачком меняется локальное окружение ионов Mn^{2+} – они окружены ионами селена. Константа сверхтонкого расщепления скачком при этом уменьшается до величины A = 6.55 мТл, что коррелирует с полученными нами данными для ZnS_xSe_{1-x} :Mn. Это позволяет сделать заключение, что ионы Mn^{2+} , находящиеся в разном локальном окружении, проявляют себя по-разному в спектрах

ЭПР НК ZnS_xSe_{1-x}. Соответственно, спектры ЭПР также позволяют охарактеризовать наличие или отсутствие фаз в НК ZnS_xSe_{1-x}. Наличие смешанной кристаллической структуры HKZnS_xSe_{1-x} в составах с $0.4 \le x \le 1$ и наличие, в основном, кубической фазы в составах с $0 \le x \le 0.2$, установленное нами по спектрам РДА, полностью соответствует данным ЭПР. Также наблюдается одиночная линия ЭПР с g = 1.9998, связанная с ионами Cr⁺. Такая же линия ЭПР была замечена и в НК ZnS_xSe_{1-x}:Mn [12]. Это может свидетельствовать о том, что Cr присутствует в исходной шихте в виде неконтролируемой примеси.

Рис. 3. Спектр (a) и часть спектра (b) ЭПР НК ZnS_xSe_{1-x} в зависимости от параметра x: 1 – x = 1; 2 – x = 0.8; 3 – x = 0.6; 4 – x = 0.4; 5 – x = 0.2; 6 – x = 0

Fig. 3. Spectrum (a) and part of the spectrum (b) EPR of NC ZnS_xSe_{1-x} depending on the parameter x: 1 - x = 1; 2 - x = 0.8; 3 - x = 0.6; 4 - x = 0.4; 5 - x = 0.2; 6 - x = 0

В спектрах ЭПР НК ZnS_xSe_{1-x} , приведенных на рис. 3 а, в составах с $0.2 \le x \le 0.6$ присутствуют широкие линии поглощения с центром в районе 150 мТл, они же сильно ослабленные наблюдаются для составов с $0.8 \le x \le 1$. Данную широкую линию поглощения можно связать с неоднородностью структуры, полученной в процессе CBC.

4. Заключение. Синтезированы НК твердых растворов $\text{ZnS}_x\text{Se}_{1-x}$ методом СВС с шагом параметра x = 0.2. Присутствует нелинейная зависимость заложенной шихты до синтеза и полученного после синтеза порошка. Полученные нами степени микронапряжения и плотности дислокаций характерны для однородных составов с высоким совершенством кристаллической структуры. НК для всех параметров состава x характерно присутствие гексагональной и кубической фазы. При уменьшении параметра x в НК ТР $\text{ZnS}_x\text{Se}_{1-x}$ доля кубической фазы возрастает. В спектрах ЭПР во всех составах наблюдается сверхтонкая структура, характерная для парамагнитных центров Mn^{2+} . В составах с $0.4 \le x \le 1$ наблюдается сдвоенность линий ЭПР, которая обусловлена разным локальным окружением ионов Mn^{2+} . По изменению констант сверхтонкой структуры ЭПР от величины $A = 6.88 \div 6.91$ мТл до величины A = 6.55 мТл можно сделать заключение, что в составах с $0.4 \le x \le 1$ ионы Mn^{2+} окружены ионами серы, а в составах с $x \le 0.2$ ионы Mn^{2+} находятся в окружении ионов селена. В неосвещенных НК $\text{ZnS}_x\text{Se}_{1-x}$ в составах с $0.8 \le x \le 1$ присутствует одиночная линиия ЭПР ионов Cr^+ .

References

- 1. Ahmed N., Darwish S., Alahmari A.M. 2016. Laser ablation and laser-hybrid ablation processes: a review. Materials and Manufacturing Processes, 31(9): 1121-1142.
- 2. Ardekani S.R., Aghdam A. S. R., Nazari M., Bayat A., Yazdani E., Saievar-Iranizad E. 2019. A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter. Journal of Analytical and Applied Pyrolysis, 141: 104631.
- 3. Aviles M. A., Gotor F. J. 2021. Tuning the excitation wavelength of luminescent Mn^{2+} -doped ZnS_xSe_{1-x} obtained by mechanically induced self-sustaining reaction. Optical Materials, 117: 111121.
- Bacherikov Yu. Yu., Baran N. P., Vorona I. P., Gilchuk A. V., Zhuk A. G., Polishchuk Y. O., Korsunska N. E. 2017. Structural and optical properties of ZnS: Mn micro-powders, synthesized from the charge with a different Zn/S ratio. Journal of Materials Science: Materials in Electronics, 28 (12): 8569-8578.
- 5. Brahim T., Bouazra A., Said M. 2021. Temperature, hydrostatic pression and composition x effects on intersubband energy levels in ZnSe /ZnS_xSe_{1-x} core-shell quantum dot. Optik, 225: 165860.
- Bulaniy M. F., Kovalenko A. V., Morozov A. S., Khmelenko O. V. 2017. Obtaining of nanocrystals ZnS: Mn by means of self-propagating high-temperature synthesis. Journal of Nano-and Electronic Physics, 9 (2): 2007-1.
- Chen D., Wang A., Buntine M. A., Jia G. 2019. Recent Advances in Zinc Containing Colloidal Semiconductor Nanocrystals for Optoelectronic and Energy Conversion Applications. Chem Electro Chem, 6(3): 4709-4724.
- Chiu H.-C., Yeh C.-S. 2007. Hydrothermal synthesis of SnO₂ nanoparticles and their gas-sensing of alcohol. The Journal of Physical Chemistry C, 111 (20): 7256-7259.
- Chukavin A. I., Valeev R. G., Beltiukov A. N. 2019. Observation of excitons at room temperature in ZnS_xSe_{1-x} nanostructures embedded in a porous Al₂O₃ template. Materials Chemistry and Physics, 235: 121748
- Fang X., Zhai T., Gautam U.K., Li L., Wu L., Bando Y., Golberg D. 2011. ZnS nanostructures: from synthesis to applications. Progress in Materials Science, 56(2): 175-287.
- Ivashchenko M. M., Buryk, I. P., Opanasyuk, A. S., Nam, D., Cheong, H., Vaziev, J. G., Bibyk, V. V. 2015. Influence of deposition conditions on morphological, structural, optical and electro-physical properties of ZnSe films obtained by close-spaced vacuum sublimation. Materials Science in Semiconductor Processing, 36(13-19).
- 12. Kovalenko A. V., Plakhtii Y. G., Khmelenko O. V. 2018. The peculiarities of the properties of ZnS_xSe_{1-x} nanocrystals obtained by self-propagating high-temperature synthesis. Functional materials, 4: 665 669.
- 13. Kovalenko A. V., Plakhtii Y. G., Khmelenko O. V. 2019. Research of photoluminescence spectra of ZnS_xSe_{1-x} : Mn nanocrystals obtained by method of self-propagation high-temperature synthesis. Journal of nano-and electronic physics, 11(4): 04031-1-04031-5.
- 14. Kozitskii S. V., Pisarskii V. P., Ulanova O. O. 1998. Structure and phase composition of zinc sulfide produced by self-propagating high-temperature synthesis. Combustion, Explosion and Shock Waves, 34(1): 34-39.
- 15. Levashov E. A. Mukasyan A. S., Rogachev A. S., Shtansky D. V. 2017. Self-propagating high-temperature synthesis of advanced materials and coatings. International Materials Reviews, 62(4): 203-239.
- 16. Lee G. J., Wu J. J. 2017. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications A review. Powder technology, 318: 8-22.
- 17. Liu G., Chen K., Li J. 2018. Combustion synthesis: An effective tool for preparing inorganic materials. Scripta Materialia, 157: 167-173.
- Liu G., Yuan X., Li J., Chen K., Li Y., Li L. 2016. Combustion synthesis of ZnSe with strong red emission. Materials & Design, 97: 33-44.
- Lu J., Liu H., Sun C., Zheng M., Nripan M., Chen G. S., Subodh G. M., Zhang X., Sow C.H. 2012. Optical and electrical applications of ZnS_xSe_{1-x} nanowires-network with uniform and controllable stoichiometry. Nanoscale, 4(3): 976-981.

- Markov A. A., Filimonov I. A., Poletaev A. V., Vadchenko S. G., Martirosyan K. S. 2013. Generation of charge carriers during combustion synthesis of sulfides. International Journal of Self-Propagating High-Temperature Synthesis, 22(2): 69-76.
- 21. Rakshit T., Mandal S., Mishra P., Dhar A., Manna I., Ray S. K. 2012. Optical and bio-sensing characteristics of ZnO nanotubes grown by hydrothermal method. Journal of nanoscience and nanotechnology, 12: 308–315.
- 22. Rogachev A. S., Mukasyan A. S. 2015. Combustion for material synthesis: CRC Press Taylor & Francis Group : 398.
- 23. Sadekar H. K., Ghule A. V., Sharma R. 2011. Bandgap engineering by substitution of S by Se in nanostructured ZnS_xSe_{1-x} thin films grown by soft chemical route for nontoxic optoelectronic device applications. Journal of Alloys and Compounds, 509(18): 5525-5531.
- 24. Sirringhaus H., Tessler N., Friend R.H. 1998. Integrated optoelectronic devices based on conjugated polymers. Science, 280(5370): 1741-1744.
- 25. Sytschev A. E., Merzhanov A. G. 2004. Self-propagating high-temperature synthesis of nanomaterials. Russian chemical reviews, 73(2): 147-159.
- 26. Taguchi T., Kawakami Y., Yamada Y. 1993. Interface properties and the effect of strain of ZnSe/ZnS strainedlayer superlattices. Physica B: Condensed Matter, 191(1-2): 23-44.
- 27. Tian Z., Chen Z., Yuan X., Cui W., Zhang J., Sun S., Liu G. 2019. Preparation of ZnSe powder by vapor reaction during combustion synthesis. Ceramics International, 45 (14): 18135-18139.
- 28. Varkey A. J., Fort A. F. 1993. Some optical properties of silver peroxide (AgO) and silver oxide (Ag₂O) films produced by chemical-bath deposition. Solar Energy Materials and Solar Cells, 29(3): 253-259.

Конфликт интересов: о потенциальном конфликте интересов не сообщалось. Conflict of interest: no potential conflict of interest related to this article was reported.

Получена 04.02.2022

СВЕДЕНИЯ ОБ АВТОРАХ

Плахтий Евгений Георгиевич – соискатель кафедры теоретической и экспериментальной физики института инженерных и цифровых технологий Белгородского государственного национального исследовательского университета

http://orcid.org/0000-0003-3805-5026

ул. Победы, 85, г. Белгород, 308015, Россия E-mail: plakhtii.ev@gmail.com

Захвалинский Василий Сергеевич – доктор физико-математических наук, профессор, профессор кафедры теоретической и экспериментальной физики института инженерных и цифровых технологий Белгородского государственного национального исследовательского университета

http://orcid.org/0000-0001-7055-8243

ул. Победы, 85, г. Белгород, 308015, Россия

E-mail: zakhvalinskii@bsu.edu.ru

INFORMATION ABOUT THE AUTHORS

Evgenii Plakhtii – aspirant of the Department of Theoreticaland Experimental Physics of the Institute of Engineering and Digital Technologies, Belgorod State National Research University, Belgorod, Russia

Vasily Zakhvalinsky – PhD, Professor, Professor of the Department of Theoreticaland Experimental Physics of the Institute of Engineering and Digital Technologies, Belgorod State National Research University, Belgorod, Russia