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The boundary value problems for elliptic systems of the second order with leading and constant 
coefficients are considered in a half-plane. The investigation is based on the Bitsadze formula 
which represents a general solution of this system through a vector-valued analytic function. 
The transform ation of this formula is studied in Holder spaces with weight. As a consequence, 
the explicit formulas o f the solution to the problems are received. The applications to 
anisotropic elasticity are also given.

Keywords: Elliptic systems; Constant coefficients; Half-plane; Analytic functions; Boundary 
value problems; Explicit representations

A M S  Subject Classifications: 30E25; 35J55

1. Elliptic systems of the second order and /-analytic functions

Let us consider the elliptic system

a U u x x  +  ( a  12 +  a 2 \ ) u xy  +  C lllU yy =  0  ( 1)

w ith constant coefficients ay e  R lxl for vector-valued function u =  (u \ , . . .  ,uj). The 
ellipticity condition means tha t det <222 i 1 0 and roots o f the characteristic polynom ial

X =  det P, P(z) =  an +  (an  +  a2\)z  +  a2 2z2
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are no t real. Let v \ , . . . ,  vm be all different roots in the half-plane Im v  >  0 and l \ , . . .  ,lm 
be their multiplicities, l\ -\------ +  lm =  l.

L e m m a  1 There exist m atrixes b , J e  C lxl such that

det̂ ° - *=(«
J  =  diag ( / i , . . . ,  Jm), a(Ji) =  {v;}, (2)

a\\b +  {a\2 +  a2\)bJ +  a 2 ib J2 =  0 .

The matrix J  is defined uniquely to an accuracy o f  similarity and can be chosen in the 
Jordan form. The multiplicity and order o f  a eigenvalue v o f  this matrix coincide with the 
multiplicity o f  the characteristic polynomial x(x) and the order o f  pole o f  the matrix­
valued function P - \ z) at the point v, respectively.

Proof  Let us consider the block m atrix

A =  (  °  l ) e  C 2,x2Z,\a o  a\ J

where a$ =  —a ^ a n ,  o.\ =  —a ^ i a u  +  <221) and 0 (1) means the null (unit) m atrix. The 
identity

( z - A ) ( y )  =  ( *  2 °  )
VO z )  \ —a 0 z  — a \ Z  — a§ J

shows tha t the characteristic polynom ial o f A coincides w ith /(z )  to  accuracy of 
a constant multiplier. Let us introduce an invertible block-m atrix B  =  {bij)\ e  C 2,x2Z 
such th a t Bj2 =  Bj\, j  =  1,2, and AB =  5 diag ( / , / ) .  F rom  the last equality it follows 
th a t B \\J  =  B12 and Bi 1J  =  a$B\\ +  a\B 2 \. Putting B\\ =  B, we receive (2).

Obviously we can choose the m atrix J  here in the Jo rdan  form. I f  the pair 
is the other solution o f equation (2) then the matrixes d iag (/, J) and d i a g ( / i , / i )  are 
similar. Since a(J) =  cr(J\) c  {Im z > 0}, the matrixes J  and Ji have com m on Jordan  
form  and therefore are similar. The last assertion o f the lemma follows from  the 
above matrixes identity.

It is easy to show [1] tha t the condition detZ; ^  0 is equivalent to

d e t ^

According to  Bitsadze [2] the systems satisfying the condition det b ^  0 (det b =  0) are 
called weak (strong) connected. For example the Bitsadze system
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is strong connected and for it

b =

The Lam e system o f plane elasticity (in the isotropic case) [3]

m(wXx +  uyy) +  (X +  n) grad Div u =  0,

w ith positive coefficients X, n  is weak connected and for it

b = /  =
X -\- f±

The strong elliptic systems by Vishik [4] are defined by the condition P(t) > 0 ,  / e  R 
o f positive definiteness o f the m atrix P(t). M ore restricted requirem ent o f positive 
definiteness o f the block m atrix

is strong ellipticity by Somigliano [5]. The interm ediate class corresponds to 
strengthened ellipticity [6], it consists o f elliptic systems (1) for which a >  0 .

Let us consider the elliptic system o f the first-order

which corresponds to the C auchy-R iem ann system for /  =  i. The solution 
(j> =  .. ,(j>i) o f this system is a real analytic function and in a neighborhood of
each poin t zq =  xq +  iyo it expands in a generalized Taylor series

where, hereinafter we use, the m atrix  no tation  [x +  iy] =  x +  Jy, x, y  e  IRL F or 
Toeplitz m atrix  J, the system (3) was first investigated by Douglis [7] in the frame 
o f so called hypercomplex num bers. So the solutions <p o f the system (3) we call the 
function analytic in the Douglis sense or shortly /-analy tic  functions.

F o r these functions the generalized Cauchy type integral

a n  an  
a 2\ a 22

dk(j) 
dxk ’

plays the same role as in the usual analytic theory. In  particular, under the same 
assum ption as in the classical case / =  i, we have the Cauchy form ula 2<p =  I(p+ and
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the Sohotski-Plem el form ula (/</>)* =  +  I*<P, where I*cp means the corresponding
singular integral.

The canonical system (3) is closely connected w ith the second-order system (1). 
F rom  (2) and (3) it immediately follows tha t the function

u =  Re b(f> (4)

satisfies the system (1). Conversely the /-analy tic  function <p here is restored by the 
form ula

(j)' =  2(b\ux +  c\Uy), ( j j  C5)

w ith block m atrix B  from  (2).
There exists a simple connection between /-analy tic  and usual analytic functions. 

Suppose firstly a(J) =  {v}. Then the direct check shows tha t the transform ation

/_1 vJ
(E f) (x  +  iy) =  J 2 - ( J -  v Y f ^ i x  +  vy), (6)

j =o J '

moves the analytic vector-valued functions ijt of complex variable x +  vy  into 
/-analy tic  functions <p =  This correspondence between the functions ijt and 
(p =  E\jr is invertible in the class C°°. M ore exactly

where v =  (i — Re v)/Im  v.
We can also consider the operation E  for scalar functions \j/. In  this case E\jr is / x  /- 

m atrix-valued function satisfying the equation (3). Thus for scalar function \j/(z) =  
we have the equality E\j/ =  [z]_1.

In  a general case if the vector ijt is written in the block form  ijt =  (\j/\, . . . ,  jjrm) 
(analogously the block diagonal m atrix  /  =  diag (J \ , . . . ,  Jm) in (2)), then under defini­
tion we have (E\jj)i =  E ^ i ,  i =  1 where Et is defined by (6) w ith respect
tO  V  =  Vi.

The transform ation E  together w ith (4) gives the know n Bitsadze form ula [2]

u =  R e b E f ,  (7)

which describes a general solution u o f ( 1) through analytic function \j/.
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2. Bitsadze transformation on the upper half-plane

There are two difficulties in using the transform ation E. Firstly, the vectors <p and ijt 
have different dom ains o f their definition, secondly, there are derivatives o f the function 
jjr in the form ula (6).

In  the case o f the half-plane D  =  {y >  0} considered below, bo th  these obstacles 
are absent. Really the affine transform ation x +  iy —>■ x +  vy is invariant in D  
and how the transform ation E  is invariant in the H older class with weight is 
shown next.

Let us rem em ber the definition o f these spaces. Let C^(D) be the usual H older space 
w ith the finite norm

......................   , I / M , \(p(zi) -  (p(z2)\
M =  Mo +  M m =  sup Mz)I +  sup — ---------- — .

D zi#z2 IZ1 — z2\

Let C =  C U {oo} be the R iem ann sphere and F  c  [R be a finite set containing the 
po in t r  =  oo. The family X =  (XT,x e  F} o f real num bers is called weighted order, 
these orders are equipped w ith natural operations. F o r XT =  v, r  e  F, we write 
A =  v e  K. Let us put

Or =
1, X  ^  oo,

— 1, r =  oo.
(8)

The weighted function px(z) is the sm ooth function on C \ F  which does no t tu rn  into 
0 everywhere and which is equal identically to  |z — r |Ar, r / o o ,  and |z p Ar, r  =  oo, in a 
neighborhood o f F. Then the space C%(D\F) is defined by the norm

M =  Ip - aM o +

The space C *^ , 0 < X <  1, o f differential functions is described by the conditions 
<px, <py e  C^_a. Below, the m ain interest represents the space

| (p e  C q j ( D ; F ) , <p(oo) =  o |,  0 < A. < 1. (9)

T heorem  1 The transformation E is invertible in the class (9). Accordingly the Bitsadze 
formula (7) establishes an isomorphism between the solutions u o f  (1) and analytic vector­
valued function \jr in this class. Nevertheless, ux(x, 0) =  R eb\//(x), uy(x, 0) =  R ebJi{r'(x) 
and therefore \//(x) =  2(b\ux +  c\uy)(x ,0).

Proof  F o r the analytic vector-value function ijt in the class (9) we can write the 
Cauchy form ula

f ( z )  =  ^—. f  (t - z ) xf +(t)dt  
2m



in the half-plane D. Since E(t — z)_1 = [ t  — z]_1, / e  K, we have:

(E f)(z)  = ^ ~ .  f [t -  z r V + ( 0  dt.
Ztti J K

It m ay be shown analogously [8] th a t the above integrals (9), (10) define boundary 
operators from  the space {i/f e  CJ’M(R ,i7),^((X)) =  0} to the class (8). U sing the 
Sohotski-Plem el form ula for these integrals, we have

2ir+(to) = f+(to) + — f (t-  z0rV+(0 dt = 2(Eir)+(to).
7ZI J m.

So together w ith (4) and (5) we complete the proof.
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3. The boundary value problems

Let us consider the problem

(p \ux + p 2uy + p 0u)\R =  g  (10)

for the equation (1) in the class (9), where the real / x  /-matrix-valued functions pj are 
continuous on D?\_F, and the right hand  function g e  M ore exactly the
functions pj, j =  1,2 perm it one side limits p j (r  ± 0 )  a t the points x e  F  (for r  =  oo 
they correspond />y(=poo)) and pj (t) — pj  (r  ±  0) e  C^+E( r T±o ,r) with some e > 0 for 
the segment r T±0\ r  c  [R\_F with the end r  e  F. As for the function p Q, it belongs to 
the class C ^ +s, s >  0 .

Because o f Theorem  1 this problem  reduces equivalently to  the problem

R e(Gif' +  G0f ) \ R = g  (11)

w ith the coefficients G =  p \b  +  p 2bJ, Gq =  pob for the analytic vector-valued function 
F or the latter, one can use the result o f classical theory [9-11]. In  particular, with 

the help o f the canonical function X(z), their solution can be represented by the 
explicit form ula.

U sing the Bitsadze transform ation, we can reform ulate these results to  the original 
problem  (10). U nder the definition, this problem  belongs to  norm al type if the 
m atrix  G =  p \b  +  p 2bJ  satisfies the conditions

det G(i) ^  0, t e  U \F \  det G(x ±  0) ^  0, r e f .

In  this case, one can introduce the increment

arg(det G) | K =f arg det G(x ±  0),
zeF

(12)
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which does not depend on the choice o f arg and the family o f invertible matrixes

QT =  (G G ~')(r +  OXG G -'X t -  0), r e  F,

the eigenvalues w e  cr(QT) of which lie on the un it circle \w\ =  1.
W ith the m atrix Q o f this type, we can connect the piecewise constant function

ivecr(g)

(13)

which does no t depend on the choice o f a rg . Here the no tation  [ ] means the integer part 
o f num ber and l(w) is a m ultiplicity o f the eigenvalue w.

T h e o r e m  2 The problem (1), (10) in the class (9) is Fredholm if  and only if  it belongs to 
normal type and e2mkx <£ cr(QT), r e  F. Its index is given by the formula

® =  - - a r g d e t G |K -  ^ x ( A T, g T) -  /. (14)
71 z e F

From  the definition (13) it follows th a t /(<5, Q) =  (2ir)_1 arg det Q +  integer. So the 
right hand  part o f (14) is an integer.

Proof  The problem  (1), (10) is equivalent to (11) in the class (9). So it is sufficient to 
prove the theorem  for the problem  ( 11).

The operator o f differentiation ijt —>■ \j/ is invertible from  the class (9) to  C^_a. F or 
\j/x =  \j/ e  C%_a let us pu t Tij/\ =  ReGoir+. U nder accepted assum ptions w ith respect 
to  pj this operator is bounded C^_a(D;F) —>■ C^® +E([R;_F) w ith some e > 0. Since 
the em bedding c  is com pact, the operator T  is also com pact C%_a(D\F)  —>■ 
C^L0.(IR;i7). So the problem  (11) in the class (9) is the Fredholm  equivalent to  problem

Re Gifr\ =  g\ (15)

in the class C%_a and their indexes coincide.
W ith the help o f substitution =  ^ ( z ) ,  z = ( z — z)/(z+ z) the problem  (15) 

reduces to  analogous one

Re G f \  =  g\ (15~)

in the unit circle D  =  {|z| <  1}. By this substitution the space C%_a(D \F )  transform s 
into C}_a(D \F )  and r  =  oo corresponds to f  =  1.

The argum ents from  the p ro o f o f Theorem  3 in [12] for scalar case are also applicable 
to  the problem  (15~) w ith the m atrix  coefficient G. So the Fredholm  condition o f this 
problem  is given by (12) and its index form ula in the class C%_a is the following:

£  =  / -  -  arg det G | d3 -  ^  x(AT -  <xT, QT) -  ml,
71 zeF
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where m is a num ber o f elements F. Taking into account (8) and the relation /(<5 +  1) =  
x(<5) +  /, we can rewrite this equality in the form  (14) tha t completes the proof.

4. The problems with constant coefficients

Let us consider the problem

{p iux +  p 2uy)\w  =  g, pj e  D«ZxZ (16)

for which the m atrix G =  p \b  +  p 2bJ e  C lxl. In  this case we can essentially complete the 
Theorem  2.

T h e o r e m  3 I f  det G =  0, then the homogeneous problem (1), (16) in the class (9) has an 
infinite number o f  linear independent solutions. For example if  Grj =  0 for some r/ e  Cl, 
rj ^  0, then the function u =  Re b(E\/fo)r] is a solution o f  the homogeneous problem (1), 
(15) for each scalar analytic function i{rQ belonging to the class (9).

I f  det G ^  0, then the condition

f  g(t)
Ju

dt =  0 (17)

is necessary and sufficient for  one-to-one solvability o f  the problem in the considered class 
and its solution is given by the formula

u(x, y) =  Re — f  b(t — x — Jy) XG ' /  (t) dt, f  (t) =  f g(s) ds. (18)
J—oo

N ote th a t by virtue o f (17) the function/  e  has values /  (±oo) =  0 and therefore
in (18) the integral exists.

P roof  In  the case considered, the problem  (11) transform s to

R e G f ' = g .  (19)

I f  det G =  0, Gt] =  0 then the function \j/(z) =  ir0(z)r] w ith scalar and analytic 
satisfies the hom ogeneous problem  (19).

Let det G /  0. Since the analytic function G\j/ belongs to  C%_a(D \F ),  0 < X <  1, we 
can write the Cauchy form ula for this problem  in half-plane D. In  particular, the 
condition (17) is necessary for solvability o f the problem  (19) and so for solvability 
o f (16). F rom  this condition it follows tha t /  (+oo) =  /  (—oo) =  0 and we can assume 
ijt(oo) =  /  (oo) =  0. U sing the Schwarz form ula [9] for the function Gijr, we get the 
representation



By virtue o f (7) and the equality E(t — z)_1 =  [t — z]_1, / e R ,  we come to the 
form ula (18).

F o r the given system (1) we can always find the matrixes pj e  R lxl such tha t 
det(p \b \ +  p 2bJ) 7  ̂ 0 i.e. the matrixes for which the problem  (16) is correct. F o r exam ­
ple in the case o f Bitsadze system it is sufficient to  pu t p\  =  p, p 2 =  1, where p  s + t e  
for each ^ , / e R .  On the other hand, for each of the matrixes p \ ,p 2 e  [R,xZ there always 
exists the elliptic system (1) for which det(p\b  +  p 2bJ) =  0. So a “ universal” problem  
o f type (16) which is correct for each elliptic system (1) does no t exist. But for nonlocal 
problem s the situation is quite different.

T h e o r e m  4  The problem o f  Carleman type

On elliptic boundary value problems on upper half-plane

u(x, 0) +  u(—x, 0) =  /  (x), uy(x, 0) — uy(—x, 0) =  g'(x) (20)

is uniquely solvable for  each elliptic system (1) in the class (9) and its solution is given 
by the formula

u(x, y)  =  R e — f  b(t — x — Jy)~l ( b \ f  +  c\g)(t)dt, (21)
71 Jm.

where b\ and Ci are defined in (5).

P roof  A ccording to Theorem  1 we can represent the equalities (20) in the form  

Reft{i/f(x) +  =  f ,  R  ebJ{ij/(x) — ij/(—x)} =  g'(x).

Integrating the last relation and using no tation  (5) we have

f (x )  +  f ( - x )  = f ( x ) ,  f  =  2(bxf  +  cxg).

Putting

f (z ) ,  Im z  > 0,
1 Im z  > 0,

we can rewrite the above boundary  condition in the linear conjugation form 
\jf + — =  / .  So based on the Sohotski-Plem el form ula, we can give the solution of
this problem  in the explicit form

f(z) = — f
Hi J m.

= € D .
t — z

Substituting it into (7) we get (21).
The boundary condition (16) we can integrate and write in a simpler form. Let us 

introduce the conjugate function v to  the solution u o f the equation (1) by the rule
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Substituting the representation (4) we get

v =  Re cEifr, c =  a.2 \b +  0 2 2 b J. (22)

Since uy =  0 22  (vx ~  a 2 \ u x ) ,  from  (15) we can move to the boundary  condition

w ith the coefficients p  =  p\ — P2 ^2 2 a2 i, <1 =  P2 a2i -  1° this case G = p b  +  qc. F o r G =  b 
(G =  c) we have the first (second) boundary value problem  i.e. the D irichlet (Neum ann) 
problem .

It is convenient to  reform ulate the Theorem  4 for these problems.

T h e o r e m  5 (a) Let the system (1) be weak connected, i.e. det b ^  0. Then the Dirichlet 
problem is uniquely solvable in the class (9) and its solution u and the conjugate function 
v are defined by the formulas

I f  this system is strong connected then the homogeneous problem has an infinite number o f  
linear independent solutions.

(b) In notations (20) let det c / 0 .  Then the Neumann problem is uniquely solvable in the 
class (9) and its solution u and the conjugate function v are defined by the formulas

I f  det c =  0, then the homogeneous problem has an infinite number o f  linear independent 
solutions.

This effect connected w ith Dirichlet problem  was firstly opened by Bitsadze [13] in 
1948 (for his system in the unit circle). In  particular, for strong elliptic systems the 
D irichlet problem  is always uniquely solvable, bu t for N eum ann problem  it cannot 
be asserted even for strengthened elliptic systems. F o r example, the system

where the m atrix q e  R lxl is orthogonal and det(l ±  q) ^  0 , is strengthened elliptic 
bu t the correspondence m atrix c =  qb — bJ  is no t invertible.

I t m ay be shown [1] th a t the condition d e tc  ^  0 is fulfilled for strengthened system 
( 1) w ith additional requirem ent rang a >  21 — 1, a =  {ay}\.

(q q )uxy uyy — 0 ,
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5. Application to anisotropic plane elasticity

The plane elastic medium  is characterized by the displacem ent vector u =  (u \ ,  u2)  and 
by stress and deform ation tensors

o \  a 3 

O3 02

£i e3

£3 £ 2

where b \ = u \ x, £2  =  u2y, 2.sj, =  u\y +  u2x. The vectors 0  =  (01 , 02 , 03) and
s =  (g j,62, 263) are connected by H ooke law i.e. by linear relation [14,15]

o  =  as, a
• «4 as

a4 a2 a6 
\ a 5 a6 a 3

>  0 .

I f  the external forces are absent then the equilibrium  equations have the form 
0 (1)* +  <T(2)y =  0, where oy) means y'th colum n o f the m atrix  o. Using the H ooke law 
we receive the Lame system (1) for the replacem ent vector u with the coefficients defined 
from  the m atrix

flu (212 

«21 «22

/  «1 « 6 « 6 a 4\

« 6 « 3 «3 a 5

« 6 « 3 «3 a 5

\ « 4 « 5 « 5 « 2 /

This system is strengthened elliptic and rang a =  3. In  term s o f conjugate function v we 
can write the expression o f the stress tensor o  in the form  0 (i) =  — vy , 0 (2) =  vx.

So the N eum ann problem  on the upper half-plane corresponds to  setting up the 
norm al com ponent 0 (2) o f the tensor o. The solutions o f the Dirichlet and N eum ann 
problem s are given by the above form ulae (D) and (N) respectively.

F o r the m atrix J  taken in the Jo rdan  form  only the two following cases

( i ) /  =
v\ 0
0 v2 , vi ^  v2; (ii) /  =

v 1 
0 v

are possible. According to these cases the matrixes b and c can be described 
explicitly [16].

Let scalar polynomials p t, qu i =  1,2,3 be defined from  the equalities

P  =
P1 P 3

\ P 3  P2 )

R(z) =  {a2\ + a21z)Q(z) =
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(i) Columns o f  matrixes b and c are determined by equalities

where ki ^  0 and upper {below) equality is chosen under condition q2(vi) ^  0
(q\0 ;) ^  0).

(ii) Columns o f  the matrix b are given by the equalities

fyi) =  k x Q( i)(v), b( 2) =  k x Q'(1)(v) +  k2Q( i)(v)

with arbitrary kj e  C, kx ^  0. The matrix c is defined analogously with respect to

In  the orthotropic medium  when oc5 =  oc6 =  0, the characteristic equation d e tP  =  0 
is b iquadratic and its roots are described explicitly. In  particular for isotropic 
m edium  we have the case (ii) w ith v =  i and expressions

W ith respect to  another function theoretical approaches to  orthotropic elasticity 
see [17-19].
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