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The boundary value problems for elliptic systems of the second order with leading and constant
coefficients are considered in a half-plane. The investigation is based on the Bitsadze formula
which represents a general solution of this system through a vector-valued analytic function.
The transformation of this formula is studied in Holder spaces with weight. As a consequence,
the explicit formulas of the solution to the problems are received. The applications to
anisotropic elasticity are also given.
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1. Elliptic systems of the second order and J-analytic functions

Let us consider the elliptic system
ayytie, + (a2 + a1y, + axi, =0 ey

with constant coefficients a; € R for vector-valued function u = (uy,...,u;). The
ellipticity condition means that det @y # 0 and roots of the characteristic polynomial

x=detP, P(z)=an +(an+an)z+ anz’
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are not real. Let vy, .. ., v, be all different roots in the half-plane Imv > 0 and /7y, ..., 1],
be their multiplicities, /y +--- 4+ 1,, = L.

LemMMAa 1 There exist matrixes b,J € C™ such that

(b b

J=diag(J1,....Jn), o) = {v}, @)
anb + ((Z12 + (Zzl)bJ + (Zzzb]z =0.

The matrix J is defined uniquely to an accuracy of similarity and can be chosen in the
Jordan form. The multiplicity and order of a eigenvalue v of this matrix coincide with the
multiplicity of the characteristic polynomial y(x) and the order of pole of the matrix-
valued function P~'(z) at the point v, respectively.

Proof Let us consider the block matrix

A:(O 1)€szxzz,
ap a1

where ay = —ay)an, a1 = —a5,(a;p + ax1) and 0 (1) means the null (unit) matrix. The

identity
1 1 z 0
(Z_A)<0 z)_<—a0 zz—alz—ao)

shows that the characteristic polynomial of A coincides with x(z) to accuracy of
a constant multiplier. Let us introduce an invertible block-matrix B = (b,j)% e ¢
such that By, = By, j= 1,2, and AB = Bdiag(J,J). From the last equality it follows
that By1J = By and By1J = agBy1 + a1 Bay. Putting By; = B, we receive (2).

Obviously we can choose the matrix J here in the Jordan form. If the pair (b}, J1)
is the other solution of equation (2) then the matrixes diag(J,J) and diag(Jy,J;) are
similar. Since o(J) = o(J1) € {Im z > 0}, the matrixes J and J; have common Jordan
form and therefore are similar. The last assertion of the lemma follows from the
above matrixes identity.

It is easy to show [1] that the condition detb # 0 is equivalent to

det(/ P l(n dz) £ 0.
R

According to Bitsadze [2] the systems satisfying the condition detd # 0 (detb = 0) are
called weak (strong) connected. For example the Bitsadze system

0 -1
Uyy + 2e1,y, — Uy, =0, e:<1 0)
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is strong connected and for it

(L9 )

The Lame system of plane elasticity (in the isotropic case) [3]
Pty + 1) + (A + pygrad Divu = 0,

with positive coefficients A, u is weak connected and for it

(L) () e
i —& 0 i A+

The strong elliptic systems by Vishik [4] are defined by the condition P(¢) > 0, 1 € R
of positive definiteness of the matrix P(z). More restricted requirement of positive
definiteness of the block matrix

a— (@1 an
ar an

is strong ellipticity by Somigliano [5]. The intermediate class corresponds to
strengthened ellipticity [6], it consists of elliptic systems (1) for which a > 0.
Let us consider the elliptic system of the first-order

dp 0
——J—==0 3
ay ax ®
which corresponds to the Cauchy-Riemann system for J =1i. The solution
¢ = (¢1,...,¢;) of this system is a real analytic function and in a neighborhood of
each point zg = xp + iy it expands in a generalized Taylor series

- 1 & () w05
(/J’(Z):;E[Z—ZO](f’ (z0), @ :ﬁ’

where, hereinafter we use, the matrix notation [x+iy]=x+Jy, x, y€ R. For
Toeplitz matrix J, the system (3) was first investigated by Douglis [7] in the frame
of so called hypercomplex numbers. So the solutions ¢ of the system (3) we call the
function analytic in the Douglis sense or shortly J-analytic functions.

For these functions the generalized Cauchy type integral

106 = [ Tleto. ¢

plays the same role as in the usual analytic theory. In particular, under the same
assumption as in the classical case J=1i, we have the Cauchy formula 2¢ = I¢t and
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the Sohotski-Plemel formula (I¢)™ = +¢ + I*p, where I*¢ means the corresponding
singular integral.

The canonical system (3) is closely connected with the second-order system (1).
From (2) and (3) it immediately follows that the function

u=Rebo €y

satisfies the system (1). Conversely the J-analytic function ¢ here is restored by the
formula

1

¢ = 2brux + cuy), (% Cl) _ B, (5)

with block matrix B from (2).
There exists a simple connection between J-analytic and usual analytic functions.
Suppose firstly o(J) = {v}. Then the direct check shows that the transformation

-1 i
(B0 1) = 327 = 00 ), ©
=0 /-

moves the analytic vector-valued functions ¥ of complex variable x+ vy into
J-analytic functions ¢ = Ev. This correspondence between the functions ¢ and
¢ = Ey is invertible in the class C*°. More exactly

-1

Wetin =35 () 0 - v/ g e+ o,

= Imv

where v = (i — Rev)/Im v.

We can also consider the operation E for scalar functions . In this case Evris /x [-
matrix-valued function satisfying the equation (3). Thus for scalar function y(z) = z~!
we have the equality Evy = [2] .

In a general case if the vector ¥ is written in the block form ¥ = (¥,..., ¥)
(analogously the block diagonal matrix J = diag (J1, ..., J») in (2)), then under defini-
tion we have (Ey), = Ejy, i=1,...,m, where E; is defined by (6) with respect
tov=uy;.

The transformation E together with (4) gives the known Bitsadze formula [2]

u = RebEY, @

which describes a general solution u of (1) through analytic function .
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2. Bitsadze transformation on the upper half-plane

There are two difficulties in using the transformation E. Firstly, the vectors ¢ and
have different domains of their definition, secondly, there are derivatives of the function
¥ in the formula (6).

In the case of the half-plane D = {y > 0} considered below, both these obstacles
are absent. Really the affine transformation x+ iy — x4+ vy is invariant in D
and how the transformation E is invariant in the Holder class with weight is
shown next.

Let us remember the definition of these spaces. Let C*(D) be the usual Holder space
with the finite norm

lp(z1) — @(22)]
lol = lglo + {¢}, = sup l@(z)] + sup ——————
D n#z 121 — 22|

Let C=CU{oo} be the Riemann sphere and F C R be a finite set containing the
point T = oco. The family A = (A;, 7 € F} of real numbers is called weighted order,
these orders are equipped with natural operations. For A, =v, 7€ F, we write
+ =veR. Let us put

]" 2
afz{ e ®)

-1, T=o00.

The weighted function p;(z) is the smooth function on C\ ¥ which does not turn into
0 everywhere and which is equal identically to |z — 7**, 7 # oo, and |z| **,71 = o0, ina
neighborhood of F. Then the space C¥(D; F) is defined by the norm

lel = 1ol + {Pop—2¢h,-

The space C(lx’)" , 0 <A <1, of differential functions is described by the conditions
@x. @y € Ci_ . Below, the main interest represents the space

{go € C(lx’)"(E;F),go(oo) = 0}, 0<i<l. €))]

THEOREM 1 The transformation E is invertible in the class (9). Accordingly the Bitsadze
SJormula (7) establishes an isomorphism between the solutions u of (1) and analytic vector-
valued function v in this class. Nevertheless, u,(x,0) = Reby/'(x), u,(x,0) = RebJy/(x)
and therefore ¥'(x) = 2(biuy + c11,)(x, 0).

Proof For the analytic vector-value function ¥ in the class (9) we can write the
Cauchy formula

0 =5 [a=2v 0
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in the half-plane D. Since E(t —z) ' =[r—z]"', 7 € R, we have:
_ 1 1+
ENG =5 [[1-2" v O

It may be shown analogously [§] that the above integrals (9), (10) define boundary
operators from the space {y € Ci’“(IR,F), Y(oo) =0} to the class (8). Using the
Sohotski—Plemel formula for these integrals, we have

207 0) = 0 )+ = [ = 000t = 2 @)

So together with (4) and (5) we complete the proof.

3. The boundary value problems

Let us consider the problem
(p1ux + pauty + pow)| , = & (10)

for the equation (1) in the class (9), where the real / x [-matrix-valued functions p; are
continuous on R\F, and the right hand function g € C{' (R; F). More exactly the
functions p;, j=1,2 permit one side limits p; (r £0) at the points 7 € F (for 1 =00
they correspond p; (Foo)) and p; () — p; (t £0) € C¥**(I'110, 7) with some & > 0 for
the segment I';1o\7 € R\ F with the end r € F. As for the function p,, it belongs to
the class C}77. ., & > 0.

Because of Theorem 1 this problem reduces equivalently to the problem

Re(GY' + Goy)|, = ¢ (1)

with the coefficients G = p1b + p,bJ, Gy = pob for the analytic vector-valued function
Y (z). For the latter, one can use the result of classical theory [9-11]. In particular, with
the help of the canonical function X(z), their solution can be represented by the
explicit formula.

Using the Bitsadze transformation, we can reformulate these results to the original
problem (10). Under the definition, this problem belongs to normal type if the
matrix G = p1b + p,bJ satisfies the conditions

detG(1) #£0, te R\F;  detG(r+0)#£0, e F.

In this case, one can introduce the increment

arg(det G)|p, = Z Fargdet G(z £ 0), (12)
TeF
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which does not depend on the choice of arg and the family of invertible matrixes
0. = (GG Hr+0)GG )z —0), teF,

the eigenvalues w € o(Q;) of which lie on the unit circle |w| = 1.
With the matrix Q of this type, we can connect the piecewise constant function

6.0 =Y 1w([s- 5]+ 5), (13)

wealo) 27 27

which does not depend on the choice of arg . Here the notation [ ] means the integer part
of number and /(w) is a multiplicity of the eigenvalue w.

THEOREM 2 The problem (1), (10) in the class (9) is Fredholm if and only if it belongs to
normal type and e*™< ¢ 6(Q,), T € F. Its index is given by the formula

1
® = —;argdetG|R—ZX(kr,Qr)—l. (14)
TeF

From the definition (13) it follows that x(8, Q) = (27) ! argdet Q + integer. So the
right hand part of (14) is an integer.

Proof The problem (1), (10) is equivalent to (11) in the class (9). So it is sufficient to
prove the theorem for the problem (11).

The operator of differentiation ¢ — ¢/ is invertible from the class (9) to C}'__. For
Y1 =9 € C'  let us put Ty = ReGoyr. Under accepted assumptions with respect
to p; this operator is bounded CY (D;F)— C/"C (R;F) with some & > 0. Since
the embedding C!7 € C* is compact, the operator T is also compact C}' (D; F) —

Cl (R; F). So the problem (11) in the class (9) is the Fredholm equivalent to problem
ReGyn =g (15)

in the class C}’ , and their indexes coincide.
With the help of substitution v(2) = ¥1(2), Z= (z—1i)/(z+ i) the problem (15)
reduces to analogous one

Re 61/71 =g (157)

in the unit circle D = {|Z| < 1}. By this substitution the space Cl' (D; F) transforms
into Ciﬂg(ﬁ;ﬁ) and t = oo corresponds to 7 = 1.

The arguments from the proof of Theorem 3 in [12] for scalar case are also applicable
to the problem (15™) with the matrix coefficient G. So the Fredholm condition of this
problem is given by (12) and its index formula in the class C}'__ is the following:

- 1 ~
ae:l—;argdetG|3D— E XAy — 07, Qr) —ml,
TeF
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where m is a number of elements F. Taking into account (8) and the relation x(8 + 1) =
x(8) + [, we can rewrite this equality in the form (14) that completes the proof.

4. The problems with constant coefficients

Let us consider the problem

(pll/lx +p2uy)|3D =g, D€ |R1><] (16)

for which the matrix G = p1b + p2bJ € €™ In this case we can essentially complete the
Theorem 2.

THeoREM 3 If'det G = 0, then the homogeneous problem (1), (16) in the class (9) has an
infinite number of linear independent solutions. For example 1if Gn = 0 for some n € c,
n #£0, then the function u = Re b(Evy)n is a solution of the homogeneous problem (1),
(15) for each scalar analytic function g belonging to the class (9).

If det G # 0, then the condition

/R g(H)di =0 (17)

is necessary and sufficient for one-to-one solvability of the problem in the considered class
and its solution is given by the formula

u(x,y) = Re l/ bt—x—Jy)'Gf(d, f(n)= /t g(s) ds. (18)
TJR —00

Note that by virtue of (17) the function f € C(lx’)" has values f (oc) = 0 and therefore
in (18) the integral exists.

Proof 1In the case considered, the problem (11) transforms to
ReGy' = g. (19)

If detG =0, Gn =0 then the function ¥(z) = vy(z)n with scalar and analytic g
satisfies the homogeneous problem (19).

Let det G # 0. Since the analytic function Gy belongs to C} _(D; F), 0 < & < 1, we
can write the Cauchy formula for this problem in half-plane D. In particular, the
condition (17) is necessary for solvability of the problem (19) and so for solvability
of (16). From this condition it follows that f (+o0) = f(—o0) = 0 and we can assume
Y(oo) = f (00) = 0. Using the Schwarz formula [9] for the function Gy, we get the
representation

1—z

-1
vo= L[S0
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By virtue of (7) and the equality E(ft—z) '=[r—z]"', 1€R, we come to the
formula (18).

For the given system (1) we can always find the matrixes p; € R>! such that
det(p1b1 + p2bJ) # 0 i.e. the matrixes for which the problem (16) is correct. For exam-
ple in the case of Bitsadze system it is sufficient to put py = p, p» =1, where p £ s+ te
for each s,7 € R. On the other hand, for each of the matrixes py, p» € R™/ there always
exists the elliptic system (1) for which det(pi1b + p2bJ) = 0. So a “universal” problem
of type (16) which is correct for each elliptic system (1) does not exist. But for nonlocal
problems the situation is quite different.

THEOREM 4  The problem of Carleman type
u(x,0) + u(—x,0) = (x),  u,(x,0) — u,(—x,0) = g'(x) (20)

is uniquely solvable for each elliptic system (1) in the class (9) and its solution is given
by the formula

u(x.y) = Re = / bt —x — Iy (S + )i, @1)
TJR

where by and ¢, are defined in (5).

Proof According to Theorem 1 we can represent the equalities (20) in the form
Reb{y(x) + v(—=x)} =/, RebJ{y/(x) — ¥/ (—x)} = £ ().

Integrating the last relation and using notation (5) we have

Y() + (=) =1 (x), [ =201f+ ).
Putting

- ¥(z2), Imz > 0,
v = { —(—z), Imz>0,

we can rewrite the above boundary condition in the linear conjugation form
¥t — ¢~ =f. So based on the Sohotski—Plemel formula, we can give the solution of
this problem in the explicit form

Y(z) = i AU, dl, zeD.

mifg t—z

Substituting it into (7) we get (21).
The boundary condition (16) we can integrate and write in a simpler form. Let us
introduce the conjugate function v to the solution u of the equation (1) by the rule

Ve = oty + anty, vy = —(anuy, + aniy).
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Substituting the representation (4) we get
v=RecEy, c=anb+ anbJ. (22)

Since u, = a5, (vx — azuty), from (15) we can move to the boundary condition

Gutt)|,=f. f@)= / ¢(s)ds,

—0

with the coefficients p = p; — paayy'ax1, q = pras, . In this case G = pb + gc. For G=b
(G = ¢) we have the first (second) boundary value problem i.e. the Dirichlet (Neumann)
problem.

It is convenient to reformulate the Theorem 4 for these problems.

THEOREM 5 (a) Let the system (1) be weak connected, i.e. detb £ 0. Then the Dirichlet
problem is uniquely solvable in the class (9) and its solution u and the conjugate function
v are defined by the formulas

u(x,y) = Re i / bt—x—Jy) bl f (na,
Tl Jr

v(x,y) = Re %/R c(t—x—Jy) b (0 dr.

If this system is strong connected then the homogeneous problem has an infinite number of
linear independent solutions.

(b) In notations (20) let det ¢ # 0. Then the Neumann problem is uniquely solvable in the
class (9) and its solution u and the conjugate function v are defined by the formulas

u(x,y) = Re i / b(t—x—Jy) ' (0 dr,
Tl Jr

v(x,y) = Re i/ c(t—x—=Jy) e (0 ar.
Tl Jr

If detc =0, then the homogeneous problem has an infinite number of linear independent
solutions.

This effect connected with Dirichlet problem was firstly opened by Bitsadze [13] in
1948 (for his system in the unit circle). In particular, for strong elliptic systems the
Dirichlet problem is always uniquely solvable, but for Neumann problem it cannot
be asserted even for strengthened elliptic systems. For example, the system

Uy — (g + qT)qu + Uy = 0,

where the matrix ¢ € R>/ is orthogonal and det(l & ¢) # 0, is strengthened elliptic
but the correspondence matrix ¢ = gb — bJ is not invertible.

It may be shown [1] that the condition detc # 0 is fulfilled for strengthened system
(1) with additional requirement rang a > 2/ — 1, a = {aij}%.
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5. Application to anisotropic plane elasticity

The plane elastic medium is characterized by the displacement vector u = (u;, u;) and
by stress and deformation tensors

o1 03 g1 &3
o= , &= ,
o3 0) 3 &p
where &1 =uwu1y, & =uy, 263 =u,+uy. The vectors & =(o1,02,03) and
& = (&1, &2, 2¢3) are connected by Hooke law i.e. by linear relation [14,15]

o1 o4 O3
o=oa8, o=|as ar oag | >0.

o5 Og O3

If the external forces are absent then the equilibrium equations have the form
oayx + 0@y =0, where o(; means jth column of the matrix o. Using the Hooke law
we receive the Lame system (1) for the replacement vector « with the coefficients defined
from the matrix

o] Og O 0Oy

a—(a“ 6112)_ a5 @3 3 o

1 ax O O3 a3 0O

o4 O5 O5 0O

This system is strengthened elliptic and ranga = 3. In terms of conjugate function v we
can write the expression of the stress tensor o in the form o(y = —v,,, o) = vy

So the Neumann problem on the upper half-plane corresponds to setting up the
normal component oy of the tensor . The solutions of the Dirichlet and Neumann
problems are given by the above formulae (D) and (N) respectively.

For the matrix J taken in the Jordan form only the two following cases

@J:(‘g 02) vy £ 3 aw:(g 1)

are possible. According to these cases the matrixes b and ¢ can be described
explicitly [16].
Let scalar polynomials p;, ¢g;, i = 1,2,3 be defined from the equalities

P:<P1 P3), Q:<P2 —P3),

P3 P2 24!

R(z) = (an + an2)0(2) = ( e )
-2 43
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(1) Columns of matrixes b and ¢ are determined by equalities

Omy(vi) Ray(vi)
o = ki ® e = ki o i=1,2,
Qo (v), Roy(vy),

where k; 20 and upper (below) equality is chosen under condition ¢(v;) #0
(q1(vi) # 0).

(i1) Columns of the matrix b are given by the equalities
by =kiQm(,  bey=kiQy(V) +kQm(v)

with arbitrary k; € C, ki # 0. The matrix c is defined analogously with respect to
R(2).

In the orthotropic medium when a5 = @g = 0, the characteristic equation det P = 0
is biquadratic and its roots are described explicitly. In particular for isotropic
medium we have the case (ii) with v =i and expressions

10 2% w1
b:<. ) :M<l @ ) oo it 3M
1 =

2 i(&+2) N
With respect to another function theoretical approaches to orthotropic elasticity
see [17-19].
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