On Dirichlet-Type Problems for the Lavrent'ev—Bitsadze Equation

A. P. Soldatov^a

A bstract—The existence and uniqueness issues are discussed for several boundary value problems with Dirichlet data for the Lavrent'ev-Bitsadze equation in a mixed domain. A general mixed problem (according to Bitsadze's terminology) is considered in which the Dirichlet data are relaxed on a hyperbolic region of the boundary inside a characteristic sector with vertex on the type-change interval. In particular, conditions are pointed out under which the problem is uniquely solvable for any choice of this vertex.

Let *D* be a domain of the complex *z*-plane, $z = x + iy$, that is bounded for $y > 0$ and $y < 0$ by Lyapunov arcs σ and γ with endpoints $z = 0$ and $z = 1$. Suppose that at their endpoints these arcs do not form cusps with the segment $J = [0,1]$ of the real axis. In this domain we consider the Lavrent'ev-Bitsadze equation

$$
(\operatorname{sgn} y)u_{xx} + u_{yy} = 0.\tag{1}
$$

It is assumed that the angles θ_k^{\pm} , $k = 0, 1$, of the domains $D^{\pm} = D \cap {\pm y > 0}$ at the points $z = k$ are positive and that the arc γ is not tangent to the characteristics $x \pm y = \text{const}$ of equation (1). In particular, $0 < \theta_k^+ \leq \pi$, $0 < \theta_k^- < \pi/4$, and the domain D^- lies inside the characteristic triangle with base *J.*

By a solution to equation (1) in the domain *D* we mean a function *u* that is harmonic in D^+ , admits, together with its harmonic conjugate *v,* the limits

$$
u^+(x) = u(x, +0), v^+(x) = v(x, +0) \in C(0,1),
$$
\n⁽²⁾

and can be represented in the domain D^- by the d'Alembert formula

$$
2u(x,y) = (v+u)^{+}(x+y) - (v-u)^{+}(x-y). \tag{3}
$$

Under the assumption that $u^+, v^+ \in C^2(0,1)$, the function *u* belongs to $C^1(D^-)$ and is a classical solution to the string equation in the domain D^- . Note that if the function u^+ is locally Hölder continuous on the interval $(0,1)$, then it follows from the Privalov theorem [1] that the harmonic conjugate function *v* has boundary values (2) with the same property. Therefore, the condition on *v* in the above definition of a solution to equation (1) can be omitted.

Below, we consider solutions *u* to equation (1) in the class of functions that are locally Holder continuous in $D \setminus \{0,1\}$ and exhibit the power behavior

$$
u(z) = O(1)|z|^{\lambda_0}|1-z|^{\lambda_1}, \qquad \lambda_k > -\delta_k. \tag{4}
$$

Here $\delta = \delta_k$ is the first positive root of the equation $A(\delta \theta_k^+) + \delta A(\theta_k^-) = 0$, where $A(x) =$ arcoth(tan x). The function $A(x)$ is defined and π -periodic on the intervals $|x - \pi k| < \pi/4$, on each of which this function increases from $-\infty$ to $+\infty$. In particular, $3\pi/4 < \theta_k^+ \delta_k < \pi$.

 a Belgorod State University, ul. Pobedy 85, Belgorod, 308015 Russia.

A.P. SOLDATOV

In what follows, by $O(1)$ in (4) we will mean the class $H = H(D)$ of Hölder continuous functions. It is also convenient to use the class $H = H(\overline{D}; \tau_1, \ldots, \tau_n)$ of functions $u \in H$ that vanish at the points τ_j . We also introduce a subspace $\mathring{H}^{(1)} \subseteq \mathring{H}$ distinguished by the conditions $\rho u_x, \rho u_y \in \mathring{H}$, where $\rho(z) = |z - \tau_1| \dots |z - \tau_n|$. Below, the role of τ_j is mainly played by the points $z = 0, z = 1$, and $z = \tau$, $0 < \tau < 1$.

For example, using this notation, we can express condition (4) for the function *u* by the formula $u(z) = u_0(z)|z|^{-\delta_0} |1-z|^{-\delta_1}, u_0 \in \tilde{H}(\overline{D}; 0, 1)$. We also use similar classes for functions defined on curves.

We will say that a domain on the plane is *convex with respect to a family of curves* if each curve of this family intersects the domain along a connected set (which may be empty).

Theorem 1 (Soldatov [2-4]). *Suppose that the domain* D^- is convex with respect to the pencil *of straight lines passing through the point* $z = 0, 0 < \lambda_k < \delta_k$ are fixed for $k = 0, 1$, and a function f *is defined such that*

$$
f(t) = f_0(t)|t|^{\lambda_0}|1 - t|^{-\lambda_1}, \qquad f_0 \in \check{H}(\sigma \cup \gamma; 0, 1)
$$

Then the Dirichlet problem

$$
u\big|_{\sigma \cup \gamma} = f \tag{5}
$$

for equation (1) *is uniquely solvable in the class of functions*

$$
u(z) = u_0(z)|z|^{\lambda_0}|1-z|^{-\lambda_1}, \qquad u_0 \in \mathring{H}(\overline{D};0,1).
$$

If, in addition, $f_0 \in \mathring{H}^{(1)}(\sigma \cup \gamma; 0, 1)$, *then the function* u_0 *also belongs to* $\mathring{H}^{(1)}(\overline{D}; 0, 1)$.

A similar assertion holds for the point $z = 1$ (*in this case the signs of the exponents* λ_0 *and* $-\lambda_1$ *should be interchanged).*

Note that the second assertion of the theorem turns into the first one under the change of variables $x' = 1 - x$, $y' = y$, which preserves equation (1).

We can reformulate problem (1), (5) in terms of the harmonic function *u* in D^+ by "carrying over" the boundary condition from γ to $J = [0,1]$. To this end, we express the curve γ in the characteristic coordinates by the equation $x + y = \alpha(x - y)$. According to the assumptions made about γ , the function α is defined and continuously differentiable on the interval J; moreover, $0 < t < \alpha(t) < 1$ for $0 < t < 1$, $\alpha(0) = 0$, $\alpha(1) = 1$, and the derivative $\alpha'(t)$ is positive for $0 \le t \le 1$. The values $\alpha'(0) < 1$ and $\alpha'(1) > 1$ are related to the angles θ_0^- and θ_1^- of the domain D^- . Denote the inverse transformation α^{-1} by β .

Using the notation adopted and taking into account (2), we can rewrite the boundary condition (5) as

$$
u\big|_{\sigma} = f,\tag{6}
$$

$$
(v+u)^+ \circ \alpha - (v-u)^+ = f_0,\tag{70}
$$

where $f_0(x - y) = 2f(x + iy), x + iy \in \gamma$. The latter boundary condition can also be written in the equivalent form

$$
(v+u)^+ - (v-u)^+ \circ \beta = f_1,\tag{71}
$$

where $f_1(x + y) = 2f(x + iy), x + iy \in \gamma$.

It is easy to see that the domain D^- is convex with respect to the pencil of straight lines passing through the point $z = 0$ if and only if the following inequality holds:

$$
\alpha'(t) \ge \frac{\alpha(t)}{t}, \qquad 0 \le t \le 1.
$$
\n(80)

Indeed, in the characteristic variables $s = x + y$ and $t = x - y$, the domain D^- turns into $G =$ $\{(s,t) \mid 0 \leq s \leq \alpha(t), 0 \leq t \leq 1\}$. Inequality (8_0) is equivalent to the fact that the function $\ln[\alpha(t)/t]$, as well as $\alpha(t)/t$, monotonically increases. In particular,

$$
\frac{\alpha(t)}{t} \le \frac{\alpha(t_0)}{t_0}, \qquad t < t_0.
$$

Geometrically, this fact means that the graph of the function $\alpha(t)$, $0 \le t \le t_0$, lies above the secant line passing through the points $(0, 0)$ and $(t_0, \alpha(t_0))$. Therefore, the intersection of this line with *G* is connected.

A similar property of convexity with respect to the point $z = 1$ is expressed by the inequality

$$
\alpha'(t) \le \frac{1 - \alpha(t)}{1 - t}, \qquad 0 \le t \le 1.
$$
\n
$$
(8_1)
$$

The convexity of the domain D^- in the conventional sense is equivalent to the fact that the function α' monotonically increases. In this case, both conditions (8) are satisfied automatically.

If $f \in H(\sigma \cup \gamma)$, then, according to Theorem 1, there exists a unique solution $u \in C(D \setminus \{1\})$ to problem (1), (5) that has a logarithmic singularity at the point $z = 1$, as well as a unique solution with a similar property with respect to the point $z = 0$. However, as was first shown by Bitsadze [5], this problem is strongly overdetermined in the class $C(\overline{D})$, and the Dirichlet data should be relaxed on a certain part of the arc γ .

Let us fix a point $0 < \tau < 1$ and emit two characteristics $x \pm y = \tau$ from it into the domain D^{-} . These characteristics partition D^- into subdomains D_0^- , D_1^- , and D_τ^- . Similarly γ is partitioned into arcs $\gamma_0^-, \gamma_1^-,$ and γ_τ^- . The domains D_0^- and D_1^- are based on the segments $J_0 = [0, \tau]$ and $J_1 = [\tau, 1]$ of the real axis, respectively, and the boundary of the domain D_{τ}^- is composed of the arc γ_{τ} and the segments $l_k \subseteq \partial D_k^-$, $k = 0,1$, of the characteristics. If we again emit the characteristics from the endpoints of these segments lying on γ and continue this process, then we obtain a polygonal chain $L \subseteq D^-$ with an infinite number of segments that converge to the points $z = 0$ and $z = 1$. Let $n = (n_1, n_2)$ be the unit outward normal to the boundary of the domain *D*. By a *conormal* we mean a vector *v* with components $\nu_1 = \text{sgn } n_1$ and $\nu_2 = n_2$. Since the curve γ has no characteristic directions, the conormal is not tangent to γ .

Let us introduce a mixed domain $D(\tau)$ such that $D^+(\tau) = D^+$ and $D^-(\tau) = D_0^- \cup D_1^-$ and consider the following two Dirichlet problems for equation (1) in this domain:

$$
u|_{\sigma \cup \gamma_0 \cup \gamma_1} = f,\tag{5^+}
$$

$$
u\big|_{\sigma \cup \gamma_0 \cup \gamma_1} = f, \qquad u\big|_{l_0 \cup l_1} = 0. \tag{5^-}
$$

Of course, within the same class of functions problem (5^-) is overdetermined compared to (4) , and the latter is overdetermined compared to (5^+) . We seek a solution to problem (5^+) in the class *H* and a solution to problem (5^-) in the class of functions (4). In the case of the first problem, we can assume without loss of generality that the right-hand side $f \in H$ vanishes at the points $z = 0$ and $z = 1$; i.e., it belongs to $H(D; 0, 1)$. As for the second problem, according to (5^-) , the function f should vanish at the common endpoints z_k of the arcs γ_k and l_k .

Note that problems (5^{\pm}) can also be considered in the entire mixed domain *D*, because the function *u* can always be extended from $D(\tau)$ to *D* as a solution to the Goursat problem in the domain D_{τ}^- . In the case of the lower sign, this function is naturally extended by zero.

Theorem 2 (Soldatov [2-4]). *Suppose that the domain* D^- *is convex with respect to the pencils of straight lines passing through the points* $z = 0$ *and* $z = 1$. Then problem (5⁻) *is always solvable in the class* (4), and the homogeneous problem has exactly one linearly independent solution $u_{-} \in$ $C^1(\overline{D}\setminus L)$. Moreover, the product of the conormal derivative $\partial u_-/\partial \nu$ on $\sigma \cup \gamma_0 \cup \gamma_1$ and any *function in the class* $H(\sigma \cup \gamma; 0, 1)$ *is integrable.*

A.P. SOLDATOV

Now we turn to problem (5^+) and consider it first in the codimension 1 subspace $H(\overline{D};0,1)$ distinguished by the condition

$$
v(0) = v(1) = 0 \tag{9}
$$

imposed on the harmonic conjugate *v* of the function *u* in the domain D^+ (obviously, *v* is Hölder continuous in D^+).

Theorem 3 (Soldatov [2-4]). *Suppose that the domain* D^- is convex with respect to the pencil *of straight lines passing through the points* $z = 0$ *and* $z = 1$. Then the homogeneous problem (5^+) *has only the zero solution in the class of functions* $u \in \widetilde{H(D; 0, 1)}$ *satisfying condition* (9), *while the inhomogeneous problem is solvable in this class if and only if*

$$
\int_{\sigma \cup \gamma_0 \cup \gamma_1} f \frac{\partial u_\tau}{\partial \nu} |dt| = 0.
$$
\n(10)

In particular, there are only two possibilities for this problem in the entire class $\widehat{H(D; 0, 1)}$ *:*

- (i) *problem* (5^+) *is uniquely solvable*;
- (ii) the homogeneous problem has one linearly independent solution u_+ , and condition (10) is *necessary and sufficient for the solvability of the inhomogeneous problem.*

This theorem is, in a sense, of conditional nature, and the question of which of these two alternatives holds requires an additional analysis. Note also that one can apply Theorem 1 in order to describe the behavior of the solution u to problem (5^+) and its derivative in the neighborhood of the points $z = 0$ and $z = 1$.

The question of whether problem (5) is well posed in the class *H* was intensively discussed (especially among mechanicians) in the mid-1950s. As pointed out above, this question was solved by Bitsadze [5]. In that paper, Bitsadze established that under certain conditions of geometrical character imposed on the domain $D(\tau)$ and on the choice of the point τ , the Dirichlet problem (5) is overdetermined in the class H and problem (5^+) is uniquely solvable in this class. These conditions are as follows: the inequality

$$
\text{Im}[z(1-z)(\tau - z)z'(s)] \ge 0 \tag{11}
$$

should hold on the arc σ , where $z = z(s)$, $0 \le s \le l$, is the natural parametric equation of this arc $(z(0) = 1, z(l) = 0)$, and there should exist a unique point $x_0 + iy_0 \in \gamma$ with the minimum ordinate such that, except for this point, the horizontal straight lines are not tangent to γ . In this case, one chooses the point τ inside the interval $(x_0 + y_0, x_0 - y_0)$, which guarantees the convexity of the domains D_0^- and D_1^- with respect to the horizontal lines.

Note that in terms of the translations α and $\beta = \alpha^{-1}$ appearing in (7), the convexity of the domains $D_k^-, k = 0, 1$, is equivalent to the inequalities

$$
\alpha'(t) \le 1, \quad 0 \le t \le \tau, \qquad \beta'(t) \le 1, \quad \tau \le t \le 1. \tag{12}
$$

Later, the Bitsadze requirements were slightly relaxed [6].

Theorem 4. *Suppose that the curve* σ *is such that*

$$
0 \le \arg z'(s) \le 2\pi,\tag{13}
$$

where a continuous branch of the argument is fixed by the condition $\arg z'(0) = \pi - \theta_1^+$ and the *notation* (11) *is used. Suppose also that the domains* D_0^- *and* D_1^- *are convex with respect to the horizontal lines. Then problem* (5^+) *is uniquely solvable in the class H.*

ON DIRICHLET-TYPE PROBLEMS FOR THE LAVRENT'EV-BITSADZE EQUATION

Proof. Since this result has not been published, we give its complete proof. By Theorem 3, it suffices to establish the uniqueness of a solution to the problem in question. Suppose that the homogeneous problem has a nonzero solution $u + iv \in H$, which belongs to the class $H^{(1)}(\overline{D^+}; 0,1)$ according to Theorem 3. The homogeneous boundary conditions (5^+) on γ_0 can be rewritten in the form (7_0) on the interval $J_0 = [0, \tau]$, and those on γ_1 can be rewritten in the form (7_1) on the interval $J_1 = [\tau, 1]$. Thus,

$$
u\big|_{\sigma} = 0,\tag{14}
$$

$$
[(v+u)^{+} \circ \alpha - (v-u)^{+}] \big|_{J_{0}} = 0, \qquad [(v+u)^{+} - (v-u)^{+} \circ \beta] \big|_{J_{1}} = 0. \tag{15}
$$

As already mentioned, the behavior of the derivative of the analytic function $\phi = u + iv$ near the points $z = 0$ and $z = 1$ can be described by Theorem 1. In our case, for any $\varepsilon > 0$ we have

$$
\phi'(z) = O(1)|z - k|^{\delta_k - \varepsilon - 1} \quad \text{as} \quad z \to k.
$$

To describe similar behavior of ϕ' in the neighborhood of the point $z = \tau$, we make use of the boundary condition (15). It shows that for a sufficiently small $c > 0$

$$
(v-u)^+(t) = g_0(t), \quad \tau - c \le t \le \tau,
$$
 $(v+u)^+(t) = g_1(t), \quad \tau \le t \le \tau + c,$

with some functions g_k whose derivatives are H-continuous. As is well known [7], this implies

$$
\phi'(z) = O(1)|z - \tau|^{-\varepsilon - \frac{1}{2}} \quad \text{as} \quad z \to \tau.
$$

Recall that $\theta_k^+ \delta_k > 3\pi/2$ and, in particular, $2\delta_k - 1 > 0$. Hence, the function $(\phi')^2$ admits only weak singularities at the points $z = 0, \tau, 1$. More precisely,

$$
z(z - \tau)(z - 1)[\phi'(z)]^2 \in \mathring{H}(\overline{D}; 0, \tau, 1).
$$
 (16)

Let us set $h(s) = \arg z'(s)$ for brevity and introduce the functions $h_1 = \max(h - 2\pi, -\pi)$ and $h_2 = \min(h - \pi, 0)$; these functions, as well as h, belong to the class H[0, l]. In view of (13) we have the inequality $h_1 \leq h_2$. Since $h(0) = \pi - \theta_1^+$ and $h(l) = \pi + \theta_0^+$, the values of the functions h_j at the endpoints of the interval are related by the inequalities $h_1(0) \leq -\pi \leq h_2(0)$ and $h_1(l) \leq 0 \leq h_2(l)$. Therefore, there exists a function $\varphi \in H[0, l]$ such that

$$
h_1 \le \varphi \le h_2, \qquad \varphi(0) = -\pi, \qquad \varphi(l) = 0. \tag{17}
$$

So, if the imaginary part Im f of an analytic function $f(z)$ in D^+ solves the Dirichlet problem

$$
\operatorname{Im} f\big|_{\sigma} = \varphi, \qquad \operatorname{Im} f\big|_{J_0} = 0, \qquad \operatorname{Im} f\big|_{J_1} = -\pi,\tag{18}
$$

then it is easy to see that $(z - \tau)^{-1} e^{f(z)} \in H(\overline{D^+})$. In view of (17), it follows that we can apply Cauchy's theorem to the function $[\phi'(z)]^2 e^{f(z)}$, which yields

$$
-\operatorname{Im}\left(\int_{\sigma} + \int_{J_0} + \int_{J_1}\right) [\phi'(z)]^2 e^{f(z)} dz = I_{\sigma} + I_0 + I_1 = 0. \tag{19}
$$

Consider all three terms of this equality separately. In view of (14) , on the arc σ we have $\phi[z(s)] = iv[z(s)]$. Differentiating this equality, we obtain $[\phi'(z)]^2 z' = -|\phi'|^2 e^{-ih}$, which, combined with (18), gives

$$
I_{\sigma} = \int\limits_{0}^{l} |\phi'|^2 e^{\text{Re } f} \sin[\varphi(s) - h(s)] ds.
$$

According to (17), the function $e^{f(t)}$ is real on the intervals J_k , so that

$$
I_k = -2 \int_{J_k} e^f u' v' dt = -\frac{1}{2} \int_{J_k} \left[(v' + u')^2 - (v' - u')^2 \right] dt.
$$

Substituting here the expression obtained by differentiating (15), we obtain

$$
2I_0 = \int_0^{\tau} (e^{f\circ\alpha} - e^f\alpha')[(v'-u')^2 \circ \alpha]\alpha' dt + \int_{\alpha(\tau)}^{\tau} e^f(v'-u')^2 dt,
$$

$$
2I_1 = \int_{\tau}^1 (e^{\operatorname{Re}f\circ\beta} - e^{\operatorname{Re}f}\beta')[(v'+u')^2 \circ \beta]\beta' dt + \int_{\tau}^{\beta(\tau)} e^{\operatorname{Re}f}(v'+u')^2 dt
$$

Now, notice that by virtue of (17) the function φ is bounded between 0 and $-\pi$, so that Ref decreases on J_0 and increases on J_1 . Therefore, in view of (12),

$$
\left(e^{f\circ\alpha}-e^f\alpha'\right)\big|_{J_0}\leq 0,\qquad \left(e^{\operatorname{Re}f\circ\beta}-e^{\operatorname{Re}f}\beta'\right)\big|_{J_1}\geq 0.
$$

In addition, (17) implies the inequality $-2\pi \leq \varphi - h \leq -\pi$, according to which the function $\sin[\varphi(s) - h(s)]$ is nonnegative on [0,*l*]. Thus, all terms in (19) are represented as sums of positive definite integrals. Consequently, the integrands in all these integrals identically vanish; hence, $\phi = 0$, which contradicts the assumption $\phi \neq 0$.

Theorem 4, just as Bitsadze's theorem, contains an implicit constraint on the choice of the point τ . The question arises as to whether it is possible to remove this constraint for some domains *D*. In the canonical case, when σ and γ are the arcs of a circle and a hyperbola, respectively, this question can indeed be answered positively with the use of the approach pointed out in [4]. The following theorem extends this class of domains.

Theorem 5. Suppose that the arc γ is of class C^2 , the domain D^- is convex, and the do*main* D^+ *is convex with respect to the circles that are tangent to the real axis outside the interval* $J = [0,1]$ *(including the family of straight lines parallel to this axis). Then problem* (5^+) *is uniquely* solvable in the class H for any choice of the point τ .

Proof. We give a proof of this theorem separately for the cases of $\alpha'(\tau) = 1$ and $\alpha'(\tau) \neq 1$. Let $\alpha'(\tau) = 1$. As already pointed out above, the domain D^- is convex if and only if $\alpha'' \geq 0$ (by assumption, the arc γ and, hence, the function α are of class C^2). Therefore, $\alpha'(t) \leq 1$ for $t \leq \tau$ and $\alpha'(t) \geq 1$ for $t \geq \tau$. Since

$$
\beta'(t) = \frac{1}{\alpha'[\beta(t)]} \le 1, \qquad \beta(t) \ge \tau = \beta[\alpha(\tau)],
$$

it follows that $\beta'(t) \leq 1$ for $t \geq \tau$. Thus, condition (12) of Theorem 4 holds for the domains D_k^- . Let us verify that condition (13) of this theorem is also valid.

By assumption, the domain D^+ is convex with respect to the family of horizontal lines. Let us take a point z_0 on σ with the maximum ordinate y; this point divides σ into two arcs σ_k with the endpoints $z = z_0$ and $z = k$, $k = 0, 1$. Then the ordinate *y* as a function of the arc length *s* monotonically increases on the curve σ_1 . Therefore, $y'(s) \geq 0$ or, which is the same, the unit vector $z'(s)$ lies in the upper half-plane. Similarly we can verify that on σ_0 the vector z' lies in the lower half-plane. In other words, $0 \le \arg z' \le \pi$ on σ_1 and $\pi \le \arg z' \le 2\pi$ on σ_0 . Thus, the conditions of Theorem 4 are completely satisfied, and hence problem (5^+) is uniquely solvable in the class *H*.

ON DIRICHLET-TYPE PROBLEMS FOR THE LAVRENT'EV-BITSADZE EQUATION

Let us turn to the case of $\alpha'(\tau) \neq 1$. Consider the function $f(a) = [a - \alpha(\tau)]^2(a - \tau)^{-2}$ on the real axis outside the interval $(0,1)$. This function strictly monotonically decreases from 1 to $f(0)$ on $(-\infty,0]$ and from $f(1)$ to 1 on $[1,\infty)$. As pointed out above, under the assumption that the domain D^- is convex, both inequalities (8) hold; therefore, there exists a unique point a at which

$$
\left[\frac{a-\alpha(\tau)}{a-\tau}\right]^2 = \alpha'(\tau). \tag{20}
$$

Consider the linear-fractional transformation

$$
\omega(z) = \frac{z}{b(1-z) + z}, \qquad b = \frac{a}{a+1} > 0,
$$
\n(21)

which maps the upper half-plane, as well as the interval $[0,1]$, onto itself and leaves the points $z = 0$ and $z = 1$ fixed. Denote by \tilde{D}^+ , $\tilde{\sigma}$, and $\tilde{\tau}$ the images of D^+ , σ , and τ , respectively, under this transformation and set $\tilde{\alpha} = \omega \circ \alpha \circ \omega^{-1}$ and $\tilde{\beta} = \omega \circ \beta \circ \omega^{-1}$. We will regard a solution *u* to problem (5^+) in the domain D^+ as a solution to the problem with the boundary conditions (6) and (7₀) and (7₁) on J_0 and J_1 , respectively. Then the substitution $(\tilde{u} + i\tilde{v})[\omega(z)] = (u + iv)(z)$ leads to a similar problem in the domain \tilde{D}^+ with respect to $\tilde{\sigma}$ and to the translations $\tilde{\alpha}$ and $\tilde{\beta}$. Therefore, it remains to verify that the latter problem satisfies the conditions of Theorem 4.

Under the transformation ω , the circles tangent to the real axis at the point α turn into straight lines parallel to this axis. Therefore, the domain \overrightarrow{D}^+ is convex with respect to these lines, and so, as shown above, the curve $\tilde{\sigma}$ satisfies condition (13). Consider the translations $\tilde{\alpha}$ and β . The inverse transformation of (21) is obtained by replacing b with $1/b$; hence, we obtain the following expressions for the derivatives of the translations:

$$
\widetilde{\alpha}'[\omega(t)] = \alpha'(t) \left[\frac{t-a}{\alpha(t) - a} \right]^2, \qquad \widetilde{\beta}'[\omega(t)] = \beta'(t) \left[\frac{t-a}{\beta(t) - a} \right]^2.
$$

Therefore, conditions (12) for the translations $\tilde{\alpha}$ and $\tilde{\beta}$ and the point $\tilde{\tau}$ reduce to the inequalities

$$
\alpha'(t)\bigg[\frac{t-a}{\alpha(t)-a}\bigg]^2\leq 1,\quad 0\leq t\leq \tau,\qquad \beta'(t)\bigg[\frac{t-a}{\beta(t)-a}\bigg]^2\leq 1,\quad \tau\leq t\leq 1.
$$

Obviously, to prove these inequalities, it suffices to establish that

$$
[f(t) - 1](t - \tau) \ge 0, \qquad f(t) = \alpha'(t) \left[\frac{t - a}{\alpha(t) - a} \right]^2. \tag{22}
$$

According to (20), the equation

$$
f(t) = 1\tag{23}
$$

has a root τ . Let us verify that this equation has no other roots on the interval [0, 1]. Indeed, suppose the contrary, and let $f(\tau_0) = 0$ and, say, $\tau_0 < \tau$. Then the function $(a-t)^2 \alpha'(t) - [a-\alpha(t)]^2$ vanishes at the ends of the interval $[\tau_0, \tau]$. Therefore, there exists a point t_0 in the interval (τ_0, τ) at which the derivative of this function vanishes:

$$
-2(a-t_0)\alpha'(t_0) + (a-t_0)^2\alpha''(t_0) + 2[a-\alpha(t_0)]\alpha'(t_0) = 0.
$$

Hence, $(a - t_0)^2 \alpha''(t_0) + 2[t_0 - \alpha(t_0)]\alpha'(t_0) = 0$, which is impossible because the first term here is nonnegative and the second is positive.

A.P. SOLDATOV

Now, consider the function

$$
g(t) = \frac{1}{t-a} - \frac{1}{\alpha(t) - a}, \qquad 0 \le t \le 1,
$$

which is nonpositive and vanishes at the ends of the interval $[0,1]$. Using the notation (22) , we can write the derivative of this function as $g'(t) = (t-a)^{-2}[f(t)-1]$. In view of the above facts about equation (23), the derivative q' vanishes at the unique point τ , at which the function q attains its minimum. As a result, we arrive at inequality (22), which completes the proof of the theorem.

Suppose that under the conditions of Theorem 5 the function f belongs to $H(\sigma \cup \gamma)$ and $u_\tau(z)$ is a solution to problem (5^+) with the right-hand side $f|_{\sigma\cup\gamma_0\cup\gamma_1}$. As $\tau\to 1$, the arc γ_τ "vanishes," and it is natural to expect that u_{τ} tends to the solution *u* of the Dirichlet problem. As pointed out above, this solution has a logarithmic singularity at the point $z = 1$. Similarly, as $\tau \to 0$, the limit solution admits a logarithmic singularity at the point *z =* 0.

The question of whether alternative (ii) of Theorem 3 holds still remains open.

ACKNOWLEDGMENTS

This work was supported by the Federal Target Program "Scientific and Scientific-Pedagogical Personnel of Innovative Russia" for 2009-2013 (state contract nos. P693 and 02.740.11.0613).

REFERENCES

- 1. G. M. Goluzin, *Geometric Theory of Functions of a Complex Variable* (Nauka, Moscow, 1966; Am. Math. Soc., Providence, RI, 1969).
- 2. A. P. Soldatov, "Problems of Dirichlet Type for the Lavrent'ev-Bitsadze Equation. I: Uniqueness Theorems," Dokl. Akad. Nauk **332** (6), 696-698 (1993) [Russ. Acad. Sei., Dokl. Math. **48** (2), 410-414 (1994)].
- 3. A. P. Soldatov, "Problems of Dirichlet Type for the Lavrent'ev-Bitsadze Equation. II: Existence Theorems," Dokl. Akad. Nauk **333** (1), 16-18 (1993) [Russ. Acad. Sei., Dokl. Math. **48** (3), 433-437 (1994)].
- 4. A. P. Soldatov, "The Dirichlet Problems for the Lavrent'ev-Bitsadze Equation," Diff. Uravn. **30** (11), 2001-2009 (1994) [Diff. Eqns. **3 0 ,** 1846-1853 (1994)].
- 5. A. V. Bitsadze, "Ill-Posedness of the Dirichlet Problem for Equations of Mixed Type," Dokl. Akad. Nauk SSSR **122** (2), 167-170 (1958).
- 6. A. P. Soldatov, " On Some Boundary Value Problems in Function Theory with a Non-Carleman-Type Shift," Candidate (Phys.-Math.) Dissertation (Steklov Inst. Math., Moscow, 1974).
- 7. N. I. Muskhelishvili, *Singular Integral Equations: Boundary Value Problems in Function Theory and Some of Their Applications to Mathematical Physics* (Nauka, Moscow, 1968); Engl, transl. of the 2nd ed.: *Singular Integral Equations* (Wolters-Noordhoff, Groningen, 1967).

Translated, by I. Nikitin