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FORMULATION OF THE PROBLEM

Let D c  C  be a bounded domain with a piecewise 
smooth boundary T = dD without cuspidal points. Sup­
pose that the sel /7= {x,, x2, ..., x/f,} c  V contains all the 
angular points of the curve. A function (p e C(T\F) is 
piecewise continuous on T  if there exist one-sided lim­
its (p(x ± 0) at the points x e  F. A  continuously differen­
tiable mapping a: T\F —> I) is called a shift if a ' and its 
derivative a ' (with respect to the arc length parameter 
measured in a fixed direction) are piecewise continuous 
on T, a(x ± 0) e F. and a ’d  ± 0) *  0 for all a(T\F) c  T. 
In what follows, we consider only boundary shifts 
when a (l\F )  c  Y  and inner shifts for which this curve 
lies in D and is not tangent to T  at the points x e  F. For 
example, the identity mapping e(t) = / is a boundary 
shift.

We consider the second-order elliptic system

d2u . d2u 
2 ldx dydy

A d 11 _ A- A 0 2 -  U
dx

( 1 )

u + X  b*u ° ß* (2)

1 The article was translated by the author.
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We can also consider the case when the coefficients 
bs are defined only on a part F  of T. In this case, (2) is 
transformed into the following form:

I n r = /<0’ u + X  b*u ° ß* = /1 (2’)

with constant coefficients A,„ A, e Ulxl for an unknown 
vector-valued function u = (uu u2, uj) e C2(I)).

The problem of the Bitsadze-Samarskii type is for­
mulated as follows: Find a solution u e C (D ) to system 
(1) that satisfies the boundary condition

This problem can always be reduced to form (2) by 
extending (3̂  to the whole T  and setting b, = 0 on r \T .

In the case of a single shift, problem (1), (2') was 
first posed by Bitsadze and Samarskii [1] for the 
Laplace equation. For general elliptic systems and 
equations, it was investigated by many authors [2-7]. In 
this paper, a new approach to investigating this problem 
is developed. It is based on the reduction of the Bit­
sadze-Samarskii problem to a system of singular inte­
gral equations of the nonclassical type; the correspond­
ing theory was developed in [8].

Note that, for the solvability of problem (1), (2), we 
need compatibility conditions imposed on the right side 
/ a t  the points x e F. They can be described as follows.
There exists a function u e C (D ) such that the piece- 
wise continuous function

/  = u + ° ß*
5 =  1

where the I x  I matrix-valued functions hs(t) and the 
right-hand-side f ( i )  are piecewise continuous on T  and 
13̂ are inner shifts.

coincides w ith /a t the points x e F ;  i.e. /  (x; ± 0) = /(x ; 
± 0), 1 < j  < m. Obviously, the number of these linearly 
independent conditions is no less than ml. For example, 
for the Dirichlet problem, which corresponds to bs = 0, 
these conditions are reduced to/(T. + 0) = /(x ; -  0) and 
their number is equal to ml. Let us consider a more gen­
eral situation of this type.

Lemma 1. Suppose that there are sets 

F = ... z>Fn + 1 = 0 ,

Fp\F p +1 * 0 ,  0 < p < n ,
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such that (3/x ± 0) e Fp + 1 fo r  x e F„, bs (x ± 0) *  0 ,0  < p  
< n (in particular, b(x + 0) = b(x -  0) = 0 fo r  x e Fn).

Then the number o f linearly independent compati­
bility conditions is equal to ml

We may also consider problem (1), (2) in the class 
C(D\F) with a right s id e / e  C(T\F). In this case, no 
compatibility conditions are imposed.

The condition of ellipticity for (1) means that the 
determinant of the characteristic polynomial P(w) = w2 
-  Ajw -  A0 has no real roots. This system is closely con­
nected with the first-order elliptic system

-  n
dy dx (3)

where J e  C/:;/ is a Jordan matrix and the eigenvalues 
of its blocks lie in the upper half-plane. This system 
was first considered by Douglis [9], so its solutions are 
called analytic functions in the Douglis sense or, 
briefly, /-analytic functions. If the solution of the orig­
inal system (1) is sought in the form

u = Re5(() (4)

with some matrix B e  O xl, then, by virtue of (3), we 
have the matrix relation BJ2 -  A, BJ -  A qB = 0 for the 
pair B, J. It was shown in [10] that, on this pair, we can 
impose the supplementary condition

det
f  -  \

B B 

B J B J
* 0 .

= R e £ ( | > + X M&> <|>Uo) = °> (5)
j  = 1

where il e C°°(D) are completely defined I x I matrix­
valued functions whose columns satisfy (1), z(l is a fixed

point of D, and k is the number of connected compo­
nents of T = dD

With the help of (5), problem (1), (2) reduces to the 
equivalent problem

Re B t y + ^ b sBty o ßs + E c^ = f ’
' j= 1 (6)

for a /-analytic function Q and a vector c, e Ukl, where 
Cj are piecewise continuous matrix-valued functions 
defined by u,. It is obvious that (6) is a finite-dimen­
sional perturbation of the problem

Re G^) + ^ G ^ o ß s
5=1

= / (7)

In this case, formula (4) describes the general solution 
of (1). In the upper half-plane Rew > 0, the zeroes of 
det P(w) coincide with the eigenvalues v e a (/) , includ­
ing their multiplicities. The degrees of the poles of the 
matrix-valued functions P~\w) and (w -  /)  1 coincide 
as well. The condition det B *  0 defines so-called 
weakly connected elliptic systems (according to Bit- 
sadze’s nomenclature [11]). This condition is necessary 
for the Dirichlet problem to be Fredholm, so we assume 
that it is fulfilled for boundary condition (2).

The function (|) in (4) is defined up to a constant vec­
tor r| e O , ReBr\ = 0. In general, it is a multivalued 
function in a multiply connected domain D. To be more

precise, its derivative (()' = ^  is a univalent function in

D. Thus, multivaluedness is of a logarithmic nature.
Representation (4) can be modified so that multival­

ued functions do not appear. Specifically, any solution 
to system (1) can be uniquely represented as

with piecewise continuous I x I matrix-valued functions 
G = B  and Gs = b<B on T.

The Fredholm solvability of problem (3), (7) was 
studied in [12] for the case of a single shift. Let us con­
sider its particular case

Re(G «»|n r  = /o , Re(G(|) + G°§ ° (3)|r  = f u

where F  is a smooth arc and (3(F) divides D  into two 
subdomains. As was indicated in [13], this problem can 
be reduced to the so-called generalized Riemann-Hil- 
bert problem for /-analytic functions. In this context, 
we can also note [14,15], where this problem was con­
sidered for solutions of the linearized Stokes system 
and for usual analytic functions, respectively.

MAIN RESULTS 
We consider the problem in the weighted Holder 

space C x{D \F )  where 0 < |i < 1 and A. < 0. and in the 

modified weighted class C;^, ( I) ; F), where ( ) < / . <  1. 

Let us recall their definitions [8]. Let C£ with X e  [R be 

the space of all functions (p e C(D\F) that belong to 
(y-(K) for every compact subset K  c  D \F  and 0 (\)\z  -  
t |x as z —> x e F. To be more precise, in the curvilinear 
sectors Z); = D n  {|z- xj < 5}, i = 1 , 2 , m, where 5 
> 0 is sufficiently small, we have (p;(z) = cp(z)|z -  x.|!' '■

e C ^iD i), (p;(X;) = 0. The space with 0 < X<  1 is

a finite-dimensional expansion of C[' by smooth func­
tions that are constant in a neighborhood on IX. This
space is embedded in /-,( I) ), and the embedding 
becomes an exact equality when X = |i.

We will also use these spaces for piecewise contin­
uous functions defined on r\F . The boundary of the sec­
tor I), consists of two smooth arcs r,7. (k = 1,2) with a
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common endpoint x;, which are called its lateral sides, 
and of an arc of the circle \z -  x,| = 5. It is convenient to 
denote the one-sided limits (p(x ± 0) at the point x, by 
(p(x;k) = lim(p(0 as / —» x„ / e T ik. For definiteness, we 
numerate the lateral sides T ik so that x;, = x, + 0 and xi2

= X; -  0. Now the space C1',,, ( r ,  F) can be defined as

above by replacing /), with Y ik.

We consider problem (1), (2) in the classes , X<

0 and t , 0 < / < 1, with respect to solutions (() to (3), 
(5). It is assumed that the data <?', (3', G, and b of the
problem belong to the class Ctm (T, F) = C l ] * in-41 + e .

the former case and to the class C^++°0) (T, F) in the lat­
ter case. Here, the derivatives on T\F  are meant with 
respect to the parameter of length arc measured in the 
positive direction (so that D is on the left). Under these 
assumptions, the operators of the problems are bounded
from the space t ( D , F) of solutions to system (1) to 

the space ( F , F), 0 < A, <1, and the same is true for

, X < 0. The Fredholm solvability and the index of 
the problems are meant with respect to these operators.

Recall that the eigenvalues of the matrix J  of system 
(3) lie in the upper half-plane and coincide with the 
roots of the characteristic equation of the original sys­
tem (1). For every nonzero complex number q, we 
introduce the invertible matrix q, = Req + J\m q. It will 
be used below for the derivatives q = ct!(xik) of shifts at 
the points x, ± 0. These derivatives are meant with 
respect to the length arc parameter on T ik measured 
from the point x,. In particular, for the identity shift e(t) 
= t, the number e'(xik) is a unique tangent vector on T ik 
at the point x,. By assumption, the arcs r., and Ti2 are 
not tangent to each other at the point xh so e'(xn) * 
e'(xi2). From the same considerations, the limit values 
P(xifc) of an inner shift (3 = (3V belong to F, and if  (3(xijfe) = 
Xj, then the arc (3(Fik) is not tangent to the lateral sides 
of Dj at the point xr  Hence, the vector (3'(xijfe) lies 
between the tangent vectors on Vjk at the point xr

In this notation, for each shift a: T\F —> I) . we can 
introduce the matrices Qik(a)

Qik( a )  = [ a 'ix ^ j ie ' iX j^ Y j1, a ( x ik) = xjt

whose eigenvalues do not lie on the positive half-axis. 
Therefore, we can define the matrices In Q as the values 
of the analytic functions lrnv (0 < arg arg vr < 2k) of Q,

r
and we can define the complex degrees Qik{a) =

On the basis of these degrees and a piecewise con­
tinuous matrix-valued function G on T, we introduce 
the following m x m  block matrices:

(G; a )ij = {(G; o.)ijkr} x,

G (xik)Q l(  a ) ,  a (x ik) = xj, r=  1,
'  ‘ ’<8>

( G ; a W  = l G (xit)e L ( a ) . u (x ik) = xJ, r = 2 ,

10, a  (x ik) * x r

In the accepted notation, problem (1), (2) is associ­
ated with two matrices:

n

X  = (B-,e) + J j (bsB-,\3S)', Y = ( V , e ) ,
5=1

The former is called the end symbol of this problem.
The determinant of Y can be explicitly calculated. It 

expression shows that the function det YCQ has the

unique zero £ = 0 in the strip |ReQ < ^ and its degree

is equal to ml. For fixed Re£ = X, the function 
det(XF-1)(Q has a finite limit as Im£ —> «>, which, by 
virtue of the assumption det B *  0 is not equal to zero. 
Then, in the strips X < Re£ < 0 and 0 < Re£ < X, the 
function detX(Q has a finite number of zeroes. We 
denote this number, counting multiplicities, by -A(~k) 
and A(A), respectively. Thus, the piecewise constant 
function A(k) is monotone nondecreasing and, for A, < 
X2. the difference A(X2) -  A(/H) is equal to the number 
of zeroes of detX(Q counting multiplicities in the strip 

< Re ̂  < X2.
Nevertheless, if

d e t X ( Q * 0 ,  Re^ = X, (9)

then we can introduce the increment argdet(AT ')(/. + 
?oo) _ argdetfXK ')(/. -  ?°°) of a continuous branch of 
the argument, which is divisible by 2k . Regarded as a 
function of X, this increment is piecewise constant and, 
by Rouche’s theorem, argdet(AT ')| /; -  argdet(AT

'jl^ = 2ti[A(/.2) -  A(Xt)\. In particular, we can set
limargdet(AT ')| as 8 0, 8 > 0.

Theorem  1. Problem (1), (2) is Fredholm in the 
classes C^ , X <  0, and , 0 < X < 1, i f  and only if  it 
is o f the normal type and condition (9) holds. In this 
case, its index k  is given by the formula k =  -

^ a rg d e K X F -^ U -A a ) .

Let us consider the problem in the classes Cf0 =

exp[£ln<2ijfe(a)] and Qik (a) = e xp[^ lng ijt( a ) ] .

O  C e and C+o = L J  C |:. It may happen that the func-
e >  0 e > °

t io n / in  (2) belongs to C+0 ( r ,  F) for some solution of
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(1) in the class C4',, ( D , F). The question arises about 
the asymptotics of this solution at the vertex x, of the 
sector I).. To formulate the corresponding result, we 
introduce the analytic functions ln(z -  x,) in these sec­
tors. As above, they define the matrix-valued functions
ln(z -  xt) j  and (z -  X;)/. Note that z -  x»)/ [ln(z -  x^]* e

Re£ = ( U  = 0, 1, ....
Let us introduce nonnegative integer-valued func­

tions k(Q  and r(Q that characterize the degrees of 
zeroes and poles of the functions detX(Q and X '(£), 
respectively. If detX(£) *  0, we set kCQ = rCQ) = 0. 
Obviously, r(Q  < ki'Q for all C, and, in the above nota­
tions, A(0) is equal to the sum of ki'Q over Re£ = 0. 

Theorem 2. Suppose that the function f  in (2)
belongs to C+o ( r ,  F) fo r  some solution u(z) e C% ( I ) , 
F) o f (I).

Then, fo r  any sector I),, there exist ck(Q  e 0 , 0 < 
k < r(Q -  1 such that

u(z)-R eB ^> i( z ) e  C + 0( A , X ; ) ,

KQ-i
M * ) = I  X  — x,-)5[ln(z — X1-)j]*Cjt(C).

Re^ = 0 k = 0

Of course, the inner sum in the expression for is 
equal to zero for rCQ = 0; therefore, the outer sum is 
finite.

Corollary. I fr (0) < 1, r(Q  = 0 fo r  £ *  0, and Re£ =
0, then, under the assumptions o f Theorem 2, u e
CT+0) (Dj, Xj).

This corollary shows that if u e  C;u ,,, ( D ,, F) and 
the function/does not satisfy the compatibility condi­
tions, then the solution it permits logarithmic singular­
ities at the points x e F .

Note that the linear independent solvability condi­
tions in the definition of the index of the problem 
include the compatibility conditions for 0 < X < 1. Let 
us denote by k+ and kr the indices of problem (1), (2) in
the classes C1',, and C;u+ri), respectively. According to
Theorem 1, they are connected by the relation kt -  k+ = 
A(0). If the conditions of the corollary are fulfilled, then 
A(0) = k(0) and the number of compatibility conditions 
is equal to k(0).

In the scalar case 1 = 1 ,  Eq. (1) reduces to the 
Laplace equation by a change of variables. In particu­
lar, the maximum principle holds for this equation. This 
fact allows us to completely study the solvability of the 
problem.

Theorem 3. Suppose that I = 1, the inequality
n

^ | f c s| < 1  holds, and the conditions o f Lemma 1 are
5 =  1

fulfilled. Then, under the compatibility conditions,

problem  (1), (2) is uniquely solved in the class C£,

~  < X < 1/2.

Note that, in this theorem, the condition on r(Q  
imposed in the corollary is satisfied and k(0) = m.

We can complete Theorems 1 and 2 by adding the 
corresponding result on the smoothness of the solution.

Theorem  4. Under the assumptions o f Theorem 1, 
let the solution u be such that f  in (2) is continuously
differentiable on T\F a n d f  e  i (X, F). Then the par­
tial derivatives ux and uy o f the solution u belong to

C x - i ( D  ,F). Analogously, i f f  e + 0 (T, F) in Theo­
rem 2, then the partial derivatives o f the difference 
u(z) -  ReBfyiiz) belong to C4̂  + 0 ( A , x;) in the sector Dt.

If a shift a  satisfies the condition a(x ; + 0) = a(x, -  
0) = x;, 1 < i < m, then matrix (8) has the block diagonal

structure (G; a),.  = (G; a) ,  8y, where the diagonals 
blocks

(G; a ) ; = G (xn ) Q k  a )  
G {x i2) Q i { a )

G{xiX) Q k  a )  

ö ( x i2) ß k a )

Qik = [a ' ( x 1. , ) ] / [ e' (x l l ) ]?
are associated with the corresponding sectors /),.

Let all the shifts (3V satisfy this condition. Then the end 
symbol X  of the problem has the same block diagonal
structure (Xj8y)I with diagonals blocks X. = (B ; e) ; = 

y  ( bsB; pv ) , . Moreover, Fhas the same structure with
5

= (1; e ) i . In this case, we can regard the weighted 
order X as a vector whose coordinates Xt are associated

with the corresponding space c£ ( D , , x,).

Theorem 1 also holds in this case. It is only neces­
sary to replace (9) by the condition detX(^) *  0, Re£ = 
Xb l < i < m .  The index formula in this case has the form

K =

K; =  -

m m
i - ^ a r g d e t ^ . F ^ U - X A ^ . ) ,

2 k
i = 1

where A* is defined with respect to X. as above. In the 
same way, Theorem 2 is valid when the characteristic 
r(Q  of poles is meant with respect to X.(^).
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