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FORMULATION OF THE PROBLEM

Let D < C be a bounded domain with a piecewise
smooth boundary I" = 9D without cuspidal points. Sup-
pose that the set F = {1, Ty, ..., T,,} < I contains all the
angular points of the curve. A function ¢ € C(IF) is
piecewise continuous on I' if there exist one-sided lim-
its (T £ 0) at the points T € F. A continuously differen-
tiable mapping o: T\F — D is called a shift if o and its
derivative o (with respect to the arc length parameter
measured in a fixed direction) are piecewise continuous
onl,otx0)e F,and (12 0)# 0 for all cI\F) c T
In what follows, we consider only boundary shifts
when o(I\F) < T" and inner shifts for which this curve
lies in D and is not tangent to I" at the points T € F. For
example, the identity mapping e(f) = t is a boundary
shift.

We consider the second-order elliptic system

oy’ oxdy 'y
with constant coefficients Ay, A, € R"*! for an unknown
vector-valued function u = (uy, u,, ..., u) € C*(D).

The problem of the Bitsadze—Samarskii type is for-

mulated as follows: Find a solution € C(D) to system
(1) that satisfies the boundary condition

[u+2bsuo BS] = /. )
r

s =

4,28 =0 (1)

where the [ X [ matrix-valued functions by(¥) and the
right-hand-side f(¢) are piecewise continuous on I" and
[, are inner shifts.
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We can also consider the case when the coefficients
b, are defined only on a part I"" of T". In this case, (2) is
transformed into the following form:

Ulpe = fo, [”"‘ stuo Bs] = f1. (29
-

s=1

This problem can always be reduced to form (2) by
extending [, to the whole I and setting b, = 0 on T\I"".

In the case of a single shift, problem (1), (2') was
first posed by Bitsadze and Samarskii [1] for the
Laplace equation. For general elliptic systems and
equations, it was investigated by many authors [2-7]. In
this paper, a new approach to investigating this problem
is developed. It is based on the reduction of the Bit-
sadze—Samarskii problem to a system of singular inte-
gral equations of the nonclassical type; the correspond-
ing theory was developed in [8].

Note that, for the solvability of problem (1), (2), we
need compatibility conditions imposed on the right side
Jat the points T € F. They can be described as follows.
There exists a function z € C(D) such that the piece-
wise continuous function

[Zt+ Zbu o BS]

coincides with fat the points T € F;i.e. f(T,£0)=f(T;
1 0), 1 £j <m. Obviously, the number of these lincarly
independent conditions is no less than ml. For example,
for the Dirichlet problem, which corresponds to b, = 0,
these conditions are reduced to f(T; + 0) = f(1, — 0) and
their number is equal to ml. Let us consider a more gen-
eral situation of this type.

Lemma 1. Suppose that there are sets
F=F>F>.0F, =¢,
FNF . # ¢, 0<p<n,

}:

T
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such that B(t+0) € F,,, forte F,, b,(t1£0)#0,0<p
<n (in particular, b(’c+0) b(t— (f) Oforte F,).

Then the number of linearly independent compati-
bility conditions is equal to ml

We may also consider problem (1), (2) in the class

C(D\F) with a right side f € C(I'\F). In this case, no
compatibility conditions are imposed.

The condition of ellipticity for (1) means that the
determinant of the characteristic polynomial P(w) = w?
—A;w— Ay has no real roots. This system is closely con-
nected with the first-order elliptic system

do 9o _
dy Jax 0, 3)

where J € C'*'is a Jordan matrix and the eigenvalues
of its blocks lie in the upper half-plane. This system
was first considered by Douglis [9], so its solutions are
called analytic functions in the Douglis sense or,
briefly, J-analytic functions. If the solution of the orig-
inal system (1) is sought in the form

u = ReB 4)

with some matrix B € C"*/, then, by virtue of (3), we
have the matrix relation BJ? — A,BJ — A B = 0 for the
pair B, J. It was shown in [10] that, on this pair, we can
impose the supplementary condition

det[ B E]:&O.
BJ BJ

In this case, formula (4) describes the general solution
of (1). In the upper half-plane Rew > 0, the zeroes of
det P(w) coincide with the eigenvalues v € o(J), includ-
ing their multiplicities. The degrees of the poles of the
matrix-valued functions P-'(w) and (w — J)! coincide
as well. The condition detB # 0 defines so-called
weakly connected elliptic systems (according to Bit-
sadze’s nomenclature [11]). This condition is necessary
for the Dirichlet problem to be Fredholm, so we assume
that it is fulfilled for boundary condition (2).

The function ¢ in (4) is defined up to a constant vec-

tor n € C', ReBn = 0. In general, it is a multivalued
function in a multiply connected domain D. To be more

90

precise, its derivative ¢' = pp is a univalent function in
X

D. Thus, multivaluedness is of a logarithmic nature.

Representation (4) can be modified so that multival-
ued functions do not appear. Specifically, any solution
to system (1) can be uniquely represented as

k
u = ReBd + ZMj&j, € e R,

ji=1

0(z0) = 0, ()

where u; € C=(D) are completely defined [ x [ matrix-
valued functions whose columns satisty (1), z, is a fixed

point of D, and k is the number of connected compo-
nents of ' = dD

With the help of (5), problem (1), (2) reduces to the
equivalent problem

Re[B(b +> bBoo BS]

s=1

+2c& ©

j=1
0(z0) = 0,

for a J-analytic function ¢ and a vector & € R¥, where
¢; are piecewise continuous matrix-valued functions
deﬁned by u,. It is obvious that (6) is a finite-dimen-
sional pertur{)atlon of the problem

Re[&b +Y Goo BS] =/ (7)
s=1 T
with piecewise continuous / X [ matrix-valued functions
G=Band G,=bBonT.
The Fredholm solvability of problem (3), (7) was

studied in [12] for the case of a single shift. Let us con-
sider its particular case

Re(GO)|ry = for Re(GO+G 00 B)|r = f1,

where T" is a smooth arc and B(I™") divides D into two
subdomains. As was indicated in [13], this problem can
be reduced to the so-called generalized Riemann—Hil-
bert problem for J-analytic functions. In this context,
we can also note [14, 15], where this problem was con-
sidered for solutions of the linearized Stokes system
and for usual analytic functions, respectively.

MAIN RESULTS
We consider the problem in the weighted Holder
space C (D ; F) where 0 < < 1 and A < 0, and in the

modified weighted class C&) (D; F), where 0 < A < 1.
Let us recall their definitions [8]. Let Cil withA € Rbe

the space of all functions ¢ € C(D\F) that belong to

C*(K) for every compact subset K < D\F and O(1)|z —

1/* as z — T € F. To be more precise, in the curvilinear
sectors D, =D N {|lz—1]|<d},i=1,2,...,m, where 0
> ( is sufficiently small, we have ¢;(z) = @(z)|z — T]*~*

€ CY(D;), ¢,(t) = 0. The space Cjj, withO< A< 1is

a finite-dimensional expansion of C by smooth func-
tions that are constant in a neighborhood on D;. This
space is embedded in C™"®»( D), and the embedding
becomes an exact equality when A = L.

We will also use these spaces for piecewise contin-
uous functions defined on I'\F. The boundary of the sec-
tor D; consists of two smooth arcs I'y, (k= 1, 2) with a
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common endpoint T, which are called its lateral sides,
and of an arc of the circle |z — 1| = . It is convenient to
denote the one-sided limits @(t + 0) at the point T; by
O(Ty) = lime(¥) as t = 1;, t € [ For definiteness, we
numerate the lateral sides I';; so that T;; =T, + 0 and T,

=1, — 0. Now the space C&) (I', F) can be defined as
above by replacing D; with T';;.

We consider problem (1), (2) in the classes Cil LA <

0 and C&) , 0 << 1, with respect to solutions ¢ to (3),

(5). It is assumed that the data ¢', B', G, and b of the

problem belong to the class C&B)O T, F)=\UC " in

€>0
the former case and to the class C&ZOO) (T, F) in the lat-

ter case. Here, the derivatives on I\F' are meant with
respect to the parameter of length arc measured in the
positive direction (so that D is on the left). Under these
assumptions, the operators of the problems are bounded

from the space C&) (D, F) of solutions to system (1) to
the space C&) (T, F), 0 < A<1, and the same is true for

C%, % < 0. The Fredholm solvability and the index of
the problems are meant with respect to these operators.

Recall that the eigenvalues of the matrix J of system
(3) lie in the upper half-plane and coincide with the
roots of the characteristic equation of the original sys-
tem (1). For every nonzero complex number g, we
introduce the invertible matrix g; = Req + JImg. It will
be used below for the derivatives g = o'(t;,) of shifts at
the points T; £ 0. These derivatives are meant with
respect to the length arc parameter on I';, measured
from the point T, In particular, for the identity shift e(r)
= t, the number ¢'(T;) is a unique tangent vector on I';;,
at the point T;. By assumption, the arcs I';; and T, are
not tangent to each other at the point T;, so €'(t;;) #
€'(T,). From the same considerations, the limit values
B(t;) of an inner shift B = 3, belong to F, and if B(t;,) =
T, then the arc (") is not tangent to the lateral sides
of D; at the point T, Hence, the vector B'(t,) lies
between the tangent vectors on I, at the point T;.

In this notation, for each shift o: I\F — D, we can
introduce the matrices Q; (o)

Oy (o) = [04'(’51'1{)]][6'(’5;1)];1, oUTy) = T,

whose eigenvalues do not lie on the positive half-axis.
Therefore, we can define the matrices InQ as the values

of the analytic functions Inw (0 < arg argw <2x) of Q,

and we can define the complex degrees Ql-gk (a) =

expl£InQ;(0)] and 0% (o) = exp[¢In 0y (00 1.

On the basis of these degrees and a piecewise con-
tinuous matrix-valued function G on I', we introduce
the following m X m block matrices:

(G; &)y = {(G; Wiy h1»
G(1)05%(0), Ty =1, r=1,

(_;(ﬂclk)élgk(a), OL(‘Clk) = T], r = 2,
0, oTy)#T;

. (3)
(G; W)y, =

In the accepted notation, problem (1), (2) is associ-
ated with two matrices:

X = (Bie)+ Y (bB:B), Y=(le),
s=1
The former is called the end symbol of this problem.

The determinant of ¥ can be explicitly calculated. It
expression shows that the function detY({) has the

unique zero { = 0 in the strip [Re(| < % and its degree

is equal to ml. For fixed Re{ = A, the function
det(XY~')() has a finite limit as Im{ — oo, which, by
virtue of the assumption detB # 0 is not equal to zero.
Then, in the strips A < Re{ < 0 and 0 <Rel < A, the
function detX({) has a finite number of zeroes. We
denote this number, counting multiplicities, by —A(L)
and A(L), respectively. Thus, the piecewise constant
function A(A) is monotone nondecreasing and, for A; <
Ay, the difference A(A,) — A(A,) is equal to the number
of zeroes of detX({) counting multiplicities in the strip
M <Rel <A,

Nevertheless, if
detX({)=0, Rel = A, 9)

then we can introduce the increment argdet(XY )(A +
feo) — argdet(XY ')A — ie) of a continuous branch of
the argument, which is divisible by 2r. Regarded as a
function of A, this increment is piecewise constant and,

by Rouche’s theorem, arg det(XY*l)Ix2 —argdet(XY
l)lM = 2n[A(A,) — A(A))]. In particular, we can set
limargdet(XY1)| ,ase — 0,e> 0.

Theorem 1. Problem (1), (2) is Fredholm in the
classes C,, . <0, and Ci;,, 0 <A< 1, tf and only if it

is of the normal type and condition (9) holds. In this
case, its index X is given by the formula x= —

1 1
5 g det(XYH] o — AV).

Let us consider the problem in the classes C", =
M C". and C', =\ CY . It may happen that the func-

e>0 e>0

tion fin (2) belongs to Cfo (I', F) for some solution of
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(1) in the class C", (D, F). The question arises about
the asymptotics of this solution at the vertex T; of the
sector D,. To formulate the corresponding result, we
introduce the analytic functions In(z — T;) in these sec-
tors. As above, they define the matrix-valued functions
In(z - 1;), and (z — ri)§ . Note that z — ri)§ [In(z—7),l* e
C"(D;,1),Re(=0,k=0,1, ....

Let us introduce nonnegative integer-valued func-
tions k({) and () that characterize the degrees of
zeroes and poles of the functions detX({) and X ({),
respectively. If detX({) # 0, we set k(0) =n({) = 0.
Obviously, #({) < k({) for all { and, in the above nota-
tions, A(0) is equal to the sum of k({) over Re{ = 0.

Theorem 2. Suppose that the function f in (2)

belongs to C, (T, F) for some solution u(z) e C', (D,
F) of (D).

Then, for any sector D,, there exist c({) € C, 0 <
k< r(Q) — 1 such that

u(z) - ReBo;(z) € Chy(Di 1),
g -1

k
02 = Y D (z-w)lin(z-1), 1 cu({).
Re{=0 k=0

Of course, the inner sum in the expression for ¢ is
equal to zero for r({) = 0; therefore, the outer sum is
finite.

Corollary. If /(0) < 1, ) =0 for {20, and Re( =
0, then, under the assumptions of Theorem 2, u €

CEL+0) (D;, ).

This corollary shows that if u e CEL,O) (D;, F) and
the function f does not satisfy the compatibility condi-
tions, then the solution # permits logarithmic singular-
ities at the points T € F.

Note that the linear independent solvability condi-
tions in the definition of the index of the problem
include the compatibility conditions for 0 < A < 1. Let
us denote by k* and x the indices of problem (1), (2) in

the classes C', and Cf,,,, respectively. According to

Theorem 1, they are connected by the relation k- — x* =
A(0). If the conditions of the corollary are fulfilled, then
A(0) = k(0) and the number of compatibility conditions
is equal to k(0).

In the scalar case [ = 1, Eq. (1) reduces to the
Laplace equation by a change of variables. In particu-
lar, the maximum principle holds for this equation. This
fact allows us to completely study the solvability of the
problem.

Theorem 3. Suppose that | = 1, the inequality
z |by| <1 holds, and the conditions of Lemma 1 are

s=1
Julfilled. Then, under the compatibility conditions,

problem (1), (2) is uniquely solved in the class Ch ,
—% <A< 1/2.

Note that, in this theorem, the condition on r({)
imposed in the corollary is satisfied and k(0) = m.

We can complete Theorems 1 and 2 by adding the
corresponding result on the smoothness of the solution.

Theorem 4. Under the assumptions of Theorem 1,
let the solution u be such that fin (2) is continuously

differentiable on T\F and f' € C5_, (T, F). Then the par-
tial derivatives u, and u, of the solution u belong to
C, (D, F). Analogously, if f € C",,, (T, F) in Theo-
rem 2, then the partial derivatives of the difference
u(z) —ReBo;(z) belong to C*, , (D ,T.) in the sector D;.

If a shift o satisfies the condition olT; + 0) = (T, —
0)=r1, 1 £i<m, then matrix (8) has the block diagonal
structure (G; oc);j = (G; oc); )
blocks

i» where the diagonals

G oy = | G G0 |
G(t)Qh(w)  G(1) Qo)

1 1 71
Qi = [t le' ()],
are associated with the corresponding sectors D,

Let all the shifts [, satisfy this condition. Then the end
symbol X of the problem has the same block diagonal

structure (XiSij),ln with diagonals blocks X; = (B; e); =
2( b.B; BS);. Moreover, Y has the same structure with

s
Y, =(1, e);. In this case, we can regard the weighted
order A as a vector whose coordinates A, are associated
with the corresponding space Ci (D;, T).

Theorem 1 also holds in this case. It is only neces-
sary to replace (9) by the condition detX,(0) #0, Re{ =
As, 1 <i<m. The index formula in this case has the form

1 - 1 -

K, = — 2_7t21‘ argdet(X,Y; )‘70 - Z;Ai(li)’
where A, is defined with respect to X; as above. In the
same way, Theorem 2 is valid when the characteristic
r(Q) of poles is meant with respect to X,(0).
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