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Abstract. On the basis of general physics representations, the statistical model of multilayer
enamel-lacquer polymer coatings is proposed. Such coatings contain randomly distributed
air inclusions. The solution of statistical problem connected with the distribution of electric
breakdown voltages of such coatings permits to explain the observed the violation unimodality
of histograms of their dielectric strength.

1. Introduction
Investigation of the electric breakdown including its theoretical analysis has a great history. In
connection with this, see, for example, the monographs [1–6] where results of investigations on
each historical period. From our opinion, despite the absence of new principal approaches to the
study of this phenomenon, up to now, it is devoted the great attention for its investigation (see,
for example, [7–8]). It is dictated by aspiration to theoretical understanding of this physical
phenomenon and by the necessity of practical struggle with its consequences. At this, naturally,
the most attention is devoted to the study of electric breakdown in solids which accompanied
by degradation of their physical properties including their mechanical destruction.

Currently, we may analyze theoretically the electric breakdown of dielectric and high-
resistance semiconductor materials only by phenomenological representations, since consistent
realization of such an analysis at microscopic level leads to extremely complicated constructions
in frames of statistical physics. It is stipulated not only that the breakdown represents very
fast kinetic phenomenon in solid structure which consists of strong connected atoms. And
for its description by traditional methods of physical kinetics are unsuitable. It is connected
also with the breakdown is a consequence of very strong influence of external electric field on
the material such that it cannot be analyzed theoretically by perturbation theory methods.
Moreover, the availability of different defects randomly distributed in solid material under
consideration influences by correspondent way on kinetics of the electric breakdown. Statistical
account of this influence leads to supplement difficulties already at the step of the building of
adequate mathematical model, especially in the case when the defect density cannot consider as
some kind small value.

Thus, it is natural that theoretical analysis of electric breakdown in solid materials is based,
as a rule, on rather rough models of general physics. Each of them is oriented for the description



AMCSM 2020
Journal of Physics: Conference Series 1902 (2021) 012091

IOP Publishing
doi:10.1088/1742-6596/1902/1/012091

2

of one significant side of the phenomenon. Our work is devoted to theoretical analysis of the
famous experimentally observable effect [9]. It represents that the statistical distribution of
random breakdown voltages of polymer enamel-lacquer coatings is not unimodal. The proposed
analysis is based on the simple physical model that differs it from the work [10] where an attempt
of explanation of this effect is done using only some kind general property of small random
samples. In frames of such an approach they cannot to detect the physical reason generated the
effect. From our opinion it is not sufficient, since in theoretical physics, it is considered to be
that the appearance of nonunimodality should be connected with the presence of the definite
physical mechanism generated it. On the basis of our proposed analysis, one may assert that
the nonunimodality effect is the consequence of the specific space distribution of defects in the
coating film.

2. The phenomenology of electrical breakdown of enamel-lacquer coating
The electrical breakdown is stipulated by ionization with ties breaking between particles of
dielectric material directly under action of external electrical field.

The dielectric strength Ebr of solid dielectrics relative to the electrical breakdown is the
relation of breakdown voltage value of dielectric material to the layer thickness of the material
in the direction of applied voltage. It lies within relatively narrow limits, namely, 100 ÷ 1000
MV/m that is near to Ebr of strongly compressed gases and very clean liquids.

Presence of defects located by random way in the material and having some random sizes,
stipulates, in general case, the random character of breakdown voltages Ẽ. Statistical character
of breakdown voltages is not essential in the case when sample geometric sizes essentially exceed
geometric sizes of defects. It leads to smallness of statistical distribution dispersion.

Otherwise, in the case when the pointed out relation between sizes is not such great and
the distribution dispersion differs in a noticeable way from zero, one may observe explicitly the
statistical spread of breakdown voltages.

At the observation of majority of physical phenomena, such a situation is most common
when histograms of the measured physical values, having a statistical spread, possess the
unique maximal channel. In mathematical statistics this property of histograms is named the
unimodality. In connection with this they say about the unimodality of probability distributions
describing these random variables. The absence of the unimodality property of statistical
distribution points out the presence of some kind special physical mechanism due to which the
nonunimodality is broken. Just such a violation of unimodality of breakdown voltages observes
when the measurement of the dielectric strength of enamel-lacquer coatings is done.

Let us consider a polymer enamel-lacquer coating without concretization of its chemical
composition. It has the form of multilayered film. The preparation technology of such coatings
represents of the consistent application of some layers 3÷10 of enamel-lacquer mixture dissolved
in a liquid organic solvent. The application of each layer accompanies the appearance of defects
in the distribution of polymer substance which have random geometric sizes. These defects
change the voltage of electrical breakdown of the layer at the place of their appearance and,
correspondingly, they change the breakdown voltage of total multilayered coating. Such defects
appear randomly when new lacquer layer is applied. They represent air inclusions. Defects
appear due to not predictable adhesion of small air bubbles to the surface of previous dried
layer of the film during the application of the subsequent layer of the lacquer. It is essential that
at the described physical scenario of defects appearance there is only one air inclusion appearing
along the thickness of each new layer.

Thus, defects appearance is a result of pointed out technological process of the formation of
film layers. Defects have the form which is similar the semisphere that is stipulated by surface
tension of the bubble, if we do not account the wettability effect of air bubble with dry coating
surface. At such a case each defect characterizes by one positive random variable, i.e. the bubble
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radius.
Availability of defects of described type in polymer coating reduces its electrical breakdown

voltage since the air dielectric strength is significantly less than dielectric strength of the coating
material. Due to randomness of defect radiuses, the electrical breakdown voltage should be also
the random variable. Therefore, results of experimental study of dielectric strength of described
polymer coatings realized according to definite rule are fixed in the form of statistical histograms
of breakdown voltages. On these histograms two maximums are observed [11].

It should be noted that, besides of described mechanism of appearing of random spread
of measured electrical breakdown voltages, the randomness may be also as the consequence
of randomness of the defect centers distribution in each coating layer. Such a mechanism of
randomness may be appeared experimentally in the case of small defect density in each layer
and finiteness of the sizes of terminals by which the electrical voltage is applied to coating
surface.

Namely, if we denote by l0 the average distance between defects in the fixed layer and l is
the terminal size, then such a situation may be if l ≈ l0. Possibility of terminal size influence
on the appearance of the nonunimodal distribution has been studied in [12] where it were
investigated probability distributions of maximums of small samples of independent positive
random variables. It is shown that, despite on small sample volume of random variables that
is in the case when the relation l/l0 is not large, the distribution of its maximum preserve the
unimodality of the distribution of corresponding random variables.

In present work we build the statistical model which permits to calculate the probability
distribution of breakdown voltage and, in its frames, we give explanation of unimodality of
experimentally observed histograms.

3. Statistical mathematical model
Let there be the film of enamel-lacquer coating consisting of N layers of equal thickness d. We
number the film layers by m = 1, ..., N in the order of their location in cross section of the film,

for example, bottom-up. The base of our statistical model are the point random fields {x̃(m)
km

}.
Here, the number m is the order number of the coating layer. Points x

(m)
km

of random fields
correspond to the location of semispheres centers on low surface of each layer m = 1 ÷ N . If
the point has the mark m = 2, ..., N then it is located in the plane dividing layers with numbers

m− 1 and m. The points x̃
(1)
k1

are located in the plane between the base and the coating. The

index km, m = 1÷N in each set {x̃(m)
km

} enumerates points where the defects centers are located

in the layer with the number m. With each random point x̃
(m)
km

the positive random variable

r
(m)
km

> 0 is connected, m = 1÷N . Its values are random radiuses of the defect which is located

at the point x̃
(m)
km

.
Since the density of the defect location is supposed small, we consider that they do not

influence to each other in each layer of the coating and, consequently, all air inclusions are
statistically independent. Moreover, since each layer is prepared independently from others, it
is natural to consider that the defects in different layers are also statistically independent to
each other. Thus, we have N copies of statistically equivalent two-dimensional point random
fields being statistically independent which are numbered by the index m = 1÷N . Due to the

statistical independence of points {x̃(m)
km

} in each random realization with fixed value m, we may
consider each such a field as the two-dimensional uniform poissonian one with some kind density
σ ∼ l−2

0 of point distribution on the plane. Since all defects are statistically independent, we

consider that all random variables r
(m)
km

, m = 1 ÷ N , k = 1, 2, 3, ... are independent and all of
them are equivalent to each other. We denote by w(r) their common probability density.

Let U be the dielectric strength of polymer material and U0 be the dielectric strength of air.
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We represent the trajectory of electronic avalanche by which the electric breakdown is realized
in the form of line consisting of subsequently connected segments. Each rectilinear segment
connects two centers of defects located in neighboring layers of coating. Let the electronic
avalanche moves along the segment which connects the defect center in mth layer with the
defect center in (m+1)th layer (see, figure 1). Then, on the basis of general physics reasonings,
the electrical breakdown voltage of the layer is the sum of electrical breakdown voltage of mth
air bubble and electrical breakdown voltage of polymer material along the segment. The first
summand is equal U0r̃m according to the definition of the dielectric strength, and the second one

is equal U · (|x̃(m)
km

− x̃
(m+1)
km+1

|− r̃m). In a result, we have the sum U0r̃m+U · (|x̃(m)
km

− x̃
(m+1)
km+1

|− r̃m).

Figure 1. It is shown schematically the three layered coating with defects embedded in them.
The movement the electronic avalanche along the trajectory is shown by arrows.

Then the electrical breakdown voltage of the coating is equal

N∑
m=1

[
U0r̃m + U · (|x̃(m)

km
− x̃

(m+1)
km+1

| − r̃m)
]

(1)

in the case when the avalanche breakdown is developed along a random trajectory. Here k1,

..., kN are the marks of points in random fields with the numbers m = 1, ..., N , x̃
(1)
k1

≡ x̃1 and

x̃
(N+1)
kN+1

≡ x̃N+1 is the point on external plane of Nth layer of the coating.

However, it is clear that the avalanche is developed along those trajectory where the sum (1)
is minimal. At this, the initial point x̃1 and the ended one x̃N+1 should be coved by terminals
of electrical circuit with voltage applied to the polymer film. For simplicity, we consider that
these terminals have square form with the edge length ρ. Centers of these squares are located
against each other on opposite planes of the film such that squares are combined at the parallel
translation perpendicular to planes of coating.

We denote these squares by Σ for first layer and by Σ′ for last one. Thus, the random voltage
Ẽ of electrical breakdown connected with the random location of defects and their random sizes
is given according to (1) by the formula

Ẽ = min
x̃1∈Σ,x̃N+1∈Σ′

min
x̃
(2)
k2

,...,x̃
(N)
kN

N∑
m=1

[
U0r̃

(m)
km

+ U · (|x̃(m)
km

− x̃
(m+1)
km+1

| − r̃m)
]
. (2)

The problem consists of the determination of the probability distribution density f(E) of

this random variable if the density σ characterizing random fields {x̃(m)
km

}, m = 1 ÷ N , and
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the probability distribution density w(r) are fixed. At this, we consider that the average size
⟨r̃⟩ =

∫∞
0 rw(r)dr of the defect is much smaller than l0 such that defects in each layer do not

overlap with a suppressing probability.
It is clear that the statistical problem pointed out, despite of its formulation transparency, is

extremely complicated for the analysis, in view the necessity of enumeration of the continuum
of possible trajectories along which the electrical breakdown may be developed with the account
of their possible contribution in desired probability. Due to this reason, we construct now more
simple mathematical model on the basis of discretization of the described one. It allows to do
its relatively simple mathematical analysis.

We divide external plane of the film by l × l square net such that its lines are parallel to
corresponding sides of squares Σ and Σ′. Thus, we assume that the edge length of each square is
equal to l which satisfies the conditions ⟨r̃⟩ ≪ ρ ≪ l0. We introduce the coordinate description
of the net squares by pairs of integers ⟨i, j⟩ ∈ Z2. After that, we build planes through lines
generating square net on external film surface such that they are perpendicular to the film.
These planes divide the film by parallelepipeds. Squared bases of parallelepipeds are located in
opposite flat surfaces of the film. We name these parallelepipeds the channels. They are cut
by parallel planes which are borders of the film layers. In a result, each channel are divided on
same parallelepipeds with squared l × l bases located on planes which limit the film layers and
their heights are equal d. Each such a parallelepiped we name the cell. Thus, each channel is
split into N same cells put on each other. Each cell in the film is identified by triple of numbers,
namely, the pair ⟨i, j⟩ and the number m = 1÷N of the film layer where this cell is located.

Each cell characterizing by the triple ⟨i, j,m⟩ may contain no more that one defect and the
probability of such an random event is equal v < 1. Such a situation is provided by inequalities
⟨r̃⟩ ≪ l ≪ l0. The value of the probability v is determined by choosing of the ratio l/l0 and v
is the free parameter of the model. The random radius of the semisphere of defect containing

in this cell we denote by r̃
(m)
i,j .

Since random point field {x̃(m)
km

} are poissonian one, i.e. all their points are statistically
independent, we consider that all random events of hit or missing defects centers in each cell are
statistically independent.

Thus, after the conducted discretization, we have conversed random point fields {x̃(m)
km

} on
borders of layers into random point fields on discrete set with points describing by the collections
⟨i, j,m⟩.

Since random sizes r̃
(m)
km

in the initial model are not statistically depend on field points {x̃(m)
km

}
at each value m = 1 ÷ N , it is natural to suppose that just as well all random variables r̃

(m)
i,j ,

⟨i, j⟩ ∈ Z2, m = 1, ..., N are statistically independent. These random variables are identically
distributed with the density w(·).

Now we consider that the value l is chosen by such a way that the breakdown electronic
avalanche is developed in a fixed channel and it cannot penetrate during movement in neighbor
channels. Moreover, we consider that l ≪ d. It permits to neglect by difference between the
length of each trajectory segment and the thickness d of the film layer. Therefore, it is allowed

to place points x̃
(1)
k1

and x̃N+1 in centers of bases of corresponding channels and to consider them
not random.

At such assumptions the sum (1) in the channel defined by the pair ⟨i, j⟩ is equal

U0r̃i,j + U(Nd− r̃i,j) = UNd− (U − U0)r̃i,j

where random variables

r̃i,j =
N∑

m=1

r̃
(m)
i,j
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represent summed ”sizes” of air inclusions in each channel defined by the pair ⟨i, j⟩ and consisting
of N subsequently laid cells. Then the formula (2) is written in the form

Ẽ = min
⟨i,j⟩∈Σ

[UNd− (U − U0)r̃i,j ] = UNd− (U − U0) max
⟨i,j⟩∈Σ

r̃i,j

where the minimization on x̃1 is replaced by the minimization on all channels which coordinates
are located in the domain coved by terminal of applied electrical voltage, and the minimization
on x̃N+1 is not necessary, since the upper cell of each channel is defined by the choosing of
their lower cell. The necessity of the internal minimization that is present in the formula (2)
is not needed since corresponding trajectories transform in straight segments with initial points
⟨i, j, 1⟩.

Thus, in the simplified model, the electrical breakdown voltage is determined completely by
difference of electrical breakdown voltage of the polymer material without defects and electrical
breakdown voltage of the air layer having the thickness equal to the sum of all sizes of air
inclusions.

Since random variables r̃
(m)
i,j , ⟨i, j⟩ ∈ Z2, m = 1 ÷ N are independent, then the random

variables r̃i,j are also independent. Introducing the value E0 = UNd of electrical breakdown
voltage of the polymer material and the positive difference ν = U −U0 of dielectric strengths of
polymer and air, we write down the basic formula for random variable Ẽ in the form

Ẽ = E0 − ν max
⟨i,j⟩∈Σ

r̃i,j (3)

where random variables r̃i,j are statistically independent and equivalently distributed. Each
of them represents the sum of independent random variables equivalently distributed with the
density w(r).

Linear size ρ of electric terminals exceeds in significant way the linear size l. Consequently,
the electronic avalanche may be realized in any channels covered by the square Σ. It is realized
namely in that channel where the difference between sum of thicknesses of polymer material of
all cells in the channel and sum of defect sizes in them is minimal. Therefore, it is necessary
to calculate the maximum on all channels when the random variable Ẽ defining. Using (3), the
probability Pr{Ẽ < E} of the electrical breakdown origin in the case when Ẽ exceeds some kind
voltage E reduces to the determining of the probability distribution of the sample maximum of
independent and equivalently distributed variables

Pr{Ẽ < E} = Pr

{
max
i,j

r̃i,j > s

}
where s = (E0 − E)/ν, since the inequality E > E0 − νmaxi,j r̃i,j is equivalent s < maxi,j r̃i,j .
Then

Pr

{
max
⟨i,j⟩∈Σ

r̃i,j > s

}
= 1− Pr

{
max
⟨i,j⟩∈Σ

r̃i,j < s

}
where we have used the supposition about the continuity of probability distribution of typical
random variable r̃i,j at s > 0.

Using properties of statistical independence of random variables r̃i,j equivalently distributed
with random variable r̃0,0, we find

Pr{Ẽ < E} = 1− (Pr{r̃0,0 < s})M

where s ≥ 0, since we consider that E > E0, and also we introduce the designation M = |Σ| of
the channels number with bases located in Σ.
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Consequently, the distribution density of the random variable Ẽ is equal

f(E) =
d

dE
Pr{Ẽ < E} = ν−1M · [QN (s)]M−1 · qN (s)|s=(E0−E)/ν (4)

where it is taken into account that ds/dE = −ν−1, and we introduce the designations of the
probability QN (s) = Pr {r̃0,0 < s} and its density

qN (s) =
d

ds
QN (s) . (5)

The unimodal distributions of the random variable r̃0,0 which are contained in the definite
class of such distributions have been applied for the study of the density qN (s) in the article
[12]. It is shown that the availability of the multiplier [QN (s)]M−1 in the formula (4), generally
speaking, does not lead to violation of unimodality of the distribution density f(E) when qN (s) is
unimodal density of this class. Therefore, one may attempt to explain the unimodality violation
of the electrical breakdown voltages distribution of multilayered film by the unimodality violation
of the density qN (s). In present work we solve namely this problem.

First of all, we shall find the explicit formula for this density. We note that due to practical
reasons, the number M does not very large. Therefore, make no sense to apply the limit
distribution laws of the maximum of the sum of independent equivalently distributed variables,
which correspond the case when M → ∞.

The probability QN (s) consists of the sum of probabilities of random events {r̃0,0 <
s, and k cells contain defects} which are the product of independent at k > 0 events {r̃0,0 < s}
and {k cells contain defects}. The probability of last event which is connected with the sequence
of independent trials is equal

Pr{k layers contain inclusions} =

(
N

k

)
(1− v)N−kvk .

At k = 0 the conditional probability Pr{r̃0,0 < s|k = 0} is equal to the Heviside function θ(s),
since in this case r̃0,0 = 0. Then, using the formula of complete probability, we obtain the
following expression

QN (s) = Pr{r̃0,0 < s} = (1− v)Nθ(s) +
N∑
k=1

(
N

k

)
vk(1− v)N−kPr{r̃0,0 < s|k ̸= 0} . (6)

Thus, the desired probability is defined completely by the probability distribution of typical
random variable r̃0,0. The last represents the probability distribution of the sum of k independent
equivalently distributed with the density w(r) random variables. Therefore (see, for example,
[13]), it is equal

Pr{r̃0,0 ≤ s|k ̸= 0} =

s∫
0

(w ∗ ... ∗ w)︸ ︷︷ ︸
k

(r)dr (7)

where the symbol ∗ denotes the binary convolution operation of probability distributions. For
two arbitrary densities g1 and g2 of nonnegative random variables this operation is defined by
the formula

(g1 ∗ g2)(r) =
r∫

0+

g1(r
′)g2(r − r′)dr′ . (8)
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In a result, the distribution density qN (s) is given, according to (5–7), by the following formula

qN (s) = (1− v)Nδ(s) +
N∑
k=1

(
N

k

)
vk(1− v)N−k (w ∗ ... ∗ w)︸ ︷︷ ︸

k

(s) (9)

where we take into account that dθ(s)/ds = δ(s) is the Dirac function. We note that this formula
permits the write in more compact form of Nth degree of the convolution operation

qN (s) = (δ(r)(1− v) + vw(r))N∗ (s) . (10)

Availability of δ-functional singularity at the point s = 0 in the distribution density qN (s)
expression leads to the availability of δ-functional singularity at the point E = E0 of the
distribution density f(E) that gives the maximum on histograms of experimental data. Thus,
for availability of the probability distribution nonunimodality of electrical breakdown voltages,
it is sufficient to show that the distribution density qN (s) has, at least, one more top at some
kind point s ̸= 0.

4. Analysis of the statistical model
In this section we show that, in the case when typical sizes of defects are very small in comparison
with d and the values of parameter v are not very small, the density qN (s) has the top at nonzero
point.

In practice, the type of the probability density

w(r) =
d

dr
Pr{r̃ < r} ,

d∫
0

w(r)dr = 1

and its parameters as well as the probability v are not known. Therefore, at the theoretical
analysis, it is necessary to operate with some kind model density and to choose the values of
model parameters by means of processing of statistical experimental data. Then, it is reasonable
to analyze possibilities of qualitative behavior of the distribution density f(E) using some kind
rather wide class of probability distributions with the aim of finding of adequate density in
frames of our general model.

Following the aim of present work, it is necessary to find such type of model densities w(r)
which lead to the violation of unimodality of the distribution density f(E) or, that is the same,
to the violation of unimodality of the distribution density (10).

In the model, proposed in the work [10], it was supposed that w(r) = w0e
−λr at 0 < r < d,

λ ∼ ⟨r̃⟩ > 0 and out of the segment [0, d] the density w(r) is equal to zero, where w0 =
λ(1− e−λd)−1. In this case, one may represent the formula of density in the form

w(r) = w0u(r)e
−λr , u(r) = θ(d− r)θ(r) (11)

where θ(·) is the Heviside function defined as θ(r) = {1 at r ≥ 0; 0 at r < 0}.
We shall analyze the case when λd is very large value such that ⟨r̃⟩ = λ−1 ≪ d. Then, we

may consider that w(r) is exponential. The using of such a distribution density is justified by
the fact that defects with very small sizes are most probable, namely, the probability P (r) of
the defect generation which has the size less than r should be P (r) = 1 − λr + o(r) at r → 0.
Therefore, further we suppose that w(r) = λ exp(−λr). For the density of such a type, on the
basis of the definition (8), we have

(w ∗ ... ∗ w)︸ ︷︷ ︸
k

(s) = λke−λs
∫ s

0
dr1

∫ r1

0
dr2...

∫ rk−2

0
drk−1 =

λksk−1

(k − 1)!
e−λs .
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Thus, according to (9), at s > 0 we have

qN (s) = exp(−λs)RN (s) , RN (s) =
N∑
k=1

sk−1

(k − 1)!

(
N

k

)
(vλ)k(1− v)N−k . (12)

Our analysis of unimodality of the density (11) is based on the following simple algebraic
statement.

Theorem 1. Let PN (s) be the polynomial of N degree which has the form PN (s) =

snP1,N−n(s) − P2,n(s) where polynomials P1,N−n(s) = a
(1)
0 sN−n + ... + a

(1)
N−n and P2,n(s) =

a
(2)
0 sn+ ...+a

(2)
n have degrees N−n and n, correspondingly, a

(1)
0 > 0, a

(2)
0 > 0 and all coefficients

of them are nonnegative. Then the polynomial PN (s) has the unique root at s > 0.

Proof. Let P
(j)
N (s) = [snP1,N−n]

(j) − P
(j)
2,n(s), j = 1 ÷ n be the derivatives of the polynomial

PN (s) up to the nth degree inclusively. According to the definition of this polynomial,

P
(j)
N (0) ≤ 0, j = 1 ÷ n. Besides, P

(n)
N (0) = −a

(2)
0 n! < 0. Consequently, each derivative

decreases in the neighborhood of the point s = 0 at s > 0. Besides, P
(j)
N (s) → ∞ at s → ∞

with j = 0, 1, ..., n, since the asymptotical behavior of these derivatives has the following form

P
(j)
N (s) ∼ [snP1,N−n(s)]

(j) ∼ a
(1)
0 [N !/(N − n)!]sN−n. Therefore, each of these derivatives has a

root at s > 0.
Let us prove using the consistent descent from of the largest order j = n of derivative to the

order j = 1, that this root is unique for each function P
(j)
N (s).

At j = n, due to positivity of coefficients of the polynomial P1,N−n(s), the polynomial P
(n)
N (s)

increases at s > 0. Therefore, it has the unique root. But in this case, the polynomial P
(n−1)
N (s)

has the unique minimum at s > 0, which is less than zero, since it decreases in the neighborhood
of the point s = 0. Then, it also has a unique root at s > 0.

Suppose, we have proved the uniqueness of the root of the derivative P
(j)
N (s). Then the

function P
(j−1)
N (s) has the unique minimum at s > 0 and it decreases at sufficiently small positive

values s. In this case, the minimum is negative and, therefore, this function has a unique root
at s > 0. Since j is arbitrary, we have proved that each derivative of order j = 0, 1, ..., n has a
unique root at s > 0. In particular, the polynomial PN (s) has such a property. End of proof.

Now, using (12), we differentiate the density qN (s):

q′
N
(s) = exp(−λs)[R′

N (s)− λRN (s)] , R′
N (s) =

N∑
k=2

sk−2

(k − 2)!

(
N

k

)
(vλ)k(1− v)N−k

where

R′
N (s)− λRN (s) = − λ

N !
(vλ)NsN−1 +

+λ
N−2∑
k=0

sk

k!

(vλ)k+1(1− v)N−k−2

(k + 2)

(
N

k + 1

)
[(N − k − 1)v − (1− v)(k + 2)] . (13)

At s > 0 the equation q′
N
(s) = 0 for extremal points of the density qN (s) is reduced, on the

bases of (13), to the equation λRN (s)−R′
N (s) = 0. Then, if the inequality

(N − k − 1)v − (1− v)(k + 2) < 0, (14)

takes place for all k = 0, 1, ..., N−2, coefficients at all degrees sk, k = 0, 1, ..., N−2 are negative.
Therefore, the density qN (s) decreases at s > 0. Consequently, it is unimodal with the top in
s = 0.
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If parameters v and N such that it is realized the opposite inequality at some values
k = 0÷N − 2, then it is possible the appearance another nonzero top. It is important to note
that the parameter λ is not present in the inequality (14) and, consequently, the unimodality
violation does not depend on defect sizes in frames of the model under consideration.

From (14) it follows that (N + 1)v < k + 2. Consequently, it takes place for all k if
v < 2/(N + 1). Besides, if v > N/(N + 1), then k + 2 > N , that is impossible, and therefore,
the opposite inequality (N − k − 1)v − (1 − v)(k + 2) > 0 takes place at these values v and
at all permissible values k. Thus, there is such a value k∗ that coefficients of the polynomial
[RN (s) − λR′(s)] are positive when k ≤ k∗, besides the coefficient at the term sN−1, and they
are negative at k > k∗. Applying the above algebraic statement, one may assert that the density
qN (s) is unimodal at v < 2/(N+1), and it has another one supplementary top at v > 2/(N+1).

5. Conclusion
On the basis of general physics presentations, the statistical model has been built such that
it permits to find the physical reason of appearance of more than one top in the distribution
of electrical breakdown voltages. At this, the resulting breakdown voltage represented by the
minimum of independent equivalently distributed random breakdown voltages of small regions
of the polymer film with such typical sizes that they are comparable with average distance l0
between air inclusions in layers of coating. In turn, the average distance l0 much more exceeds
both average defect size and the characteristic width l of electronic avalanche that realizes the
electrical breakdown.

It is shown that, at condition of smallness of average defect size in comparison with thickness
d of layer, the violation of unimodality of electrical breakdown voltages distribution of dielectric
enamel-lacquer coatings is connected with that it may be located no more than one defect in
the layer of coating and the distribution density σ of defects is sufficiently small. At this, one
of tops of the density f(E) coincides with the breakdown voltage E0 of the material without
defects.
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