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TWINNING OF ALLOY VT1-0
AFTER TOTAL ANNEALING
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Twinning, that occurs in titanium VT1-0 crystals under the action of a concentrated stress, is studied by mi-
cro-indentation methods, recording of acoustic signals and probe microscopy. Some parameters and descrip-
tion of forms of a twinned interlayer in polycrystalline titanium VT1-0 are provided. The possibility of study-
ing this process by recording acoustic emission signals is demonstrated.
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INTRODUCTION

A qualitative study of plastic strain in metals is difficult
due to their opacity and intense slip preceding and accompa-
nying twinning. For this reason in order to reveal the features
of twin generation and growth in metals a considerable series
of experiments under strictly controlled conditions is ne-
cessary.

Wedge-shaped deformation twins may be caused by the
action of a concentrated load, for example indentation of a
diamond pyramid in the plane of a specimen. Their genera-
tion is initiated by a stress concentrator that is connected
with the geometric features of the indenter. Here with this
method mechanical twins occupy a limited volume at stress
concentrators. However, the concentrators formed by the
stress field within the volume of titanium crystals, elastic
twins and other defects remain inaccessible for study by
means of optical instruments.

The aim of this work is to study the effect of thermal an-
nealing on formation and development of twins formed as a
result of the occurrence of an external concentrated stress
within the volume of polycrystalline titanium, by means of
acoustic emission and probe microscopy.
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METHODS OF STUDY

The material used for the study3was titanium VT1-0 in
the form of bar O 6 mm. Bar was rolled at 500°C to a thick-
ness of 1.5 mm. Electro-erosion was used to cut specimens
with a size of 10 x 10 mm from the plates obtained and they
were annealed in a vacuum furnace at 700°C for 60 min. An-
nealed specimens were ground and electropolished.

An area with the size of 1x 1 mm was selected in speci-
mens where by means of a Quanta 200 3D scanning electron
microscope the orientation of the crystal lattice was deter-
mined in each of the test grains. Processing ofthe results was
carried out using an OIM Analysis 5.2 program. Within
grains with an orientation of (0001) by means of a DM-8B
microhardness instrument a concentrated elastic stress field
was created with action of loads of 0.1, 0.25 1.0, 2.0, and
3.0 N lasting 15 sec. The distance between indentations did
not exceed 100 |im (Fig. 1a). After each loading with a dia-
mond pyramid in the metal the region around an indentation
was photographed, after which repeated loading was made in
the same place with a higher load. The AE signals were re-
corded during loading. An experiment was carried out as fol-
lows: a titanium specimen was placed directly on the AE
piezoelectric transducer and the whole specimen - trans-

Studies were performed using equipment of the BelGU Collective
Use Center.
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Fig. 1. Pyramid impressions in a martensitic surface
area (a), mechanical twinning around indentations | (b),
11 (c), 111 (d), formed as a result of the action of a load
of 0.5 N on an indenter, (x 1500) and curves for the

change in AE parameter (e - g ): xis time; U is stress of
recorded AE signals (thin lines); E is AE signal energy
(points x).

ducer system was installed on the table of a microhardness and an Ntegra Aura probe microscope. Images (SPM-
instrument. images) obtained by means of the scanning probe micro-

Twins that formed after indentation were studied by scope were analyzed by means of an Image Analysis 2
means of a digital camera of the microhardness instrument program.
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TABLE 1. Parameters of Twins and Indentation Dimensions, Formed Under the Action of Stepped Loading in the Same Cell

Impres-

sion PN "
1 2 3 4
| 0.10 0
0.25 2 2.8 9.0
0.50 3 4.2 13.7 16.1
1 0.10 4 4.1 4.0 4.6 4.1
0.25 6 8.4 3.2 4.3 13.6
0.50 8 8.4 3.2 12.0 1.2
11 0.10 3 7.4 6.5 4.6
0.25 8 15.5 6.4 12.0 4.1
0.50 10 23.2 4.4 114 15

For arrangement see Fig. 1.
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Twin* linear dimensions, «m

/, nm h, Iim
6 7 8 9 10
9.3 1.878
16.6 3.350
26.27  5.308
10.83  2.188
4.4 17.7 3.576
17.7 13.6 4.5 15 2592  5.236
105 2.121
8.8 9.8 75 18.08  3.652
5.8 10.0 231 145 31 2597  5.246

Notations: P is load on indenter; n* is number of twins; I is indentation diagonal size; h is pyramid immersion depth.

RESULTS AND DISCUSSION

In order to form a mechanical twin presence of a nonuni-
form, decreasing quite rapidly over the depth of a crystal,
elastic stress field is necessary, that was created in this exper-
iment by an external load on a diamond pyramid. Here with
this deformation method mechanical twins occupy a limited
volume at stress concentrators and do not embrace the whole
crystal cross section. In order to estimate the size of the re-
gion within which twinning dislocations are generated, a
stepwise increase in loading on a pyramid was provided, that
promoted creation of conditions for stagewise development
of wedge-shaped twins.

Results of experiments showed that a source of twinning
dislocations is different areas oftest specimens with the same
crystal lattice orientation in a martensitic crystal may em-
brace zones that are different in magnitude (Fig. 1).

It is possible to assess the size of zones within which a
dislocation source operates drawing on twinning of new lay-
ers of the crystal lattice during an increase in load on the in-
denter.

It has been established that sources of twinning disloca-
tions in different areas of pyramid action with the same crys-
tal lattice operation in a parent crystal, differ with respect to
activity and AE development intensity (Fig. 1,e- g ).

It may be assumed that the activity of the source of
twinning dislocations depends on stress created by other bar-
riers, that may be dislocations at the boundaries of a crystal
block, etc.

The lack of a rigid functional connection between the
size of indentations, the amount and magnitude of mechani-
cal twins around indentations and their dimensions (see Ta-
ble 1), has been established.

All of the twins around an indentation have a wedge-
shaped form with a reduction from the mouth to the tip of
both thickness and slope of the plane (Fig. 2a). Typical
profilograms are presented in Fig. 2b for the slopes of a twin

plane with respect to the parent crystal. The crown of a
twinning plane here has a saw-tooth form (Fig. 2¢).

During indentation of a pyramid into a plane of a speci-
men in all three indentations the site of twinning develops,
whose presence and development is recorded by means of
AE signals (Fig. 1, e-g). The first signals have similar pa-
rameters within limits 0f 0.2 - 0.5 V. The amount and magni-
tude of signals increase with deeper penetration of the pyra-
mid into the parent surface of a specimen.

The duration of pyramid penetration before total stop-
ping in grains with the same orientation (0001) and AE acti-
vity is different. In the first indentation with a load of 0.5 N
there is movement of twinning dislocations lasting about
0.025 sec and further action of this stress for the next 15 sec
does give rise to development of acoustic signals. In a second
indentation this process lasts 0.045 sec, and the third
0.053 sec with a simultaneous emergence at the surface in
areas of load operation of several mechanical twins. This fea-
ture of AE development may be explained by the structural
state within the volume of action of a concentrated stress.
Thus, annealing at 700°C does not resolve the problem of
uniform distribution of internal stresses within the volume of
titanium.

However, after ceasing action of an external load in the
first indentation with a load on the indenter of 0.1 N no me-
chanical twins are detected at the surface (see Table 1), that
were only recorded with a load of 2.5 N. AE signals in the
second and third indentations differ markedly with respect to
parameters from signals in the first indentation. The magni-
tude of the load on a pyramid of 0.1 N apparently is insuffi-
cient in order to overcome barriers opposing twin generation,
that is indicative for the first impression. Formation of a me-
chanical twin is possible with a load greater than some
threshold value. A twin nucleus may form when the magni-
tude of the external force operating on a dislocation source
exceeds the total force for retarding twinning dislocations,
including mainly frictional sources and surface tension. In



order to from a mechanical twin, apart from the opposing
forces indicated, with presence of a concentrated stress in the
area of indenter action, it is necessary to overcome forces
due to other random factors, that vary from specimen to
specimen and even within the same specimen in different
areas [1].

In view of this subsequent increases in load on an in-
denter and action of a concentrated stress in the same inden-
tations leads not only to reproducibility of existing twins in
an indented area, but also to emergence at the surface of
newly existing twins with a simultaneous change in linear di-
mensions.

The data obtained indicate that in the test range of loads
an assembly of twinning dislocations, forming at an inter-
face, behave as a single whole. Movement of a group of ad-
vancing dislocations in this zone at the tip of a twin depends
on distantly operating forces of repulsion between disloca-
tions of the same sign at boundaries. As arule, a stepwise in-
creasing change in external force leads to marked growth of
individual twins.

However, sometimes there is a disproportionate rapid in-
crease in the dimensions of individual twins, that with a sub-
sequent increase in load cannot be distinguished from their
neighbors. Apparently elastic twins are encountered with an
internal stress concentrator, sharply increasing shear stresses
in the twinning plane. This concentrator together with a force
with an external stress promotes activation of twinning pro-
cesses in a dislocation region, temporarily, when action of
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Fig. 2. General form of a twin (SPM-
image) (a), profilograms (b ), from which
twinning plane slope with respect to the
mother zone was determined (numbers 7,
2, 3, 4 in Fig. 2a indicate the area of re-
cording the corresponding profilograms),
and profile of a section along the edge of
a twinned interlayer over line 5 (c).

stoppers is not neutralized by an increasing external stress,
around them there may be formation of an accumulation of
twinning dislocations of one sign, due to which after over-
coming internal stresses there is sharp jump or generation
of a new mechanical twin, or a marked increase in an exist-
ing one.

A change in linear dimensions and shape of a twin
interlayer with an increase in concentrated stress corresponds
to the dislocation theory criterion [1].

Preservation of twins after removing a load is connected
with formation of friction forces. Presence of friction forces,
preventing twin recovery, is specifically caused by distortion
of the lattice at twinning dislocation interfaces and is caused
by slip, accompanying twinning. In particular, this is indi-
cated by the acoustic signals within the limits of 0.2 - 0.5V,
preceding discharge of a powerful acoustic signal accompa-
nying emergence of a mechanical twin at a surface.

With an increase in loading rate formation of twins re-
mains almost constant, but the number emerging at a surface
and linear dimensions of mechanical twins increase mark-
edly. The feature observed is apparently connected with the
deep penetration of a concentrated stress and capture of new
dislocation interlayers, on whose basis there is elastic twin
formation [2].

Propagation of a twin interlayer into polycrystalline tita-
nium is accompanied by slip, both in the parent crystal, and
within the body of a twin. Lines of basic slip, preceding
twinning, pass through the whole field of a crystal, intersect-
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Fig. 3. SPM-image ofawedge-shaped elastic twin, obtained as a re-
sult of micro-indentation: 1) slip bands; 2 ) accommodation bands.

ing a twin interlayer arising after slip (Fig. 3). Traces ofthese
lines as a result of twin layer development, change their ori-
entation. Dislocations accomplishing this slip, stop at the
boundary of a twin interlayer. The angle between basic slip
lines in a parent crystal and traces of them in a twin inter-
layer is 6°.

Ahead of the boundary of a twin interlayer a depression
forms with transition into a little convexity (Fig. 2b). Ahead
of the peak of twin layer a swelling also forms, and the sur-
face of a crystal in the accommodation region is also inclined
with respect to the crystal surface at an angle whose magni-
tude depends on the size of the twin formed. The angle be-
tween twin interlayers and the parent plane does not remain
constant, and it changes from the mouth to the tip of a twin
interlayer within the limits from about 8° to 0°.

Similar studies have been performed for zinc single crys-
tals in [3]. Here it was noted that formation of an accommo-
dation region ahead of the twin interlayer plane is separated
from the twin by a thin layer of parent crystal with a width of
several microns, due to whose presence there is repulsion of
the accommodation region from a twin [4].

Repulsion of the accommodation region is explained by
reaction of twinning dislocations and total dislocations in the
accommodation region, as aresult of which aregion close to
the boundary is liberated from dislocations and takes the ori-
entation of the parent crystal [4]. The angle between the ac-
commodation plane and the basic parent plane is also not

constant, and it depends on the length and width of a twin,
that in turn affects the magnitude ofthe accommodation zone
beyond the plane of twinning interlayer occurrence [5].

CONCLUSIONS

1. It has been established that the annealing temperature
regime adopted at 700°C for titanium VT1-0 does not re-
solve the problem of uniform distribution of defects, that af-
fect the intensity of mechanical twin development during ac-
tion of a concentrated stepped load.

2. A source of twinning dislocations in different area ofa
test specimen with the same crystal lattice orientation in the
parent crystal may embrace zones that are different in mag-
nitude.

3. Absence of a rigid functional connection has been es-
tablished between the dimensions of indentations, the num-
ber and size of twins, that form around them in titanium.

4. The acoustic emission method makes it possible to de-
termine the sequence of slip development preceding forma-
tion of amechanical twin in titanium.

5. The intensity of mechanical twin formation in titanium
does not depend on the rate of indenter penetration into the
parent plane of a specimen, but it depends on the structural
state of a crystal and the depth of pyramid penetration, that is
apparently connected with capture of new dislocation layers,
on the basis of which there is formation of elastic twins.
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