DERIVATION OF EQUATIONS OF SEISMIC AND ACOUSTIC
WAVE PROPAGATION AND EQUATIONS OF FILTRATION
VIA HOMOGENIZATION OF PERIODIC STRUCTURES
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ABSTRACT. A linear system of differential equations describing a joint motion of elastic porous body and
fluid occupying porous space is considered. Although the problem is linear, it is very hard to tackle due
to the fact that its main differential equations involve nonsmooth oscillatory coefficients, both big and
small, under the differentiation operators. The rigorous justification, under various conditions imposed
on physical parameters, is fulfilled for homogenization procedures as the dimensionless size of the pores
tends to zero, while the porous body is geometrically periodic. As the results for different ratios be-
tween physical parameters, we derive Biot’s equations of poroelasticity, a system consisting of nonisotropic
Lamé’s equations for the solid component and acoustic equations for the liquid component, nonisotropic
Lamé’s equations or equations of viscoelasticity for one-velocity continuum, decoupled system consisting
of Darcy’s system of filtration or acoustic equations for the liquid component (first approximation) and
nonisotropic Lamé’s equations for the solid component (second approximation), a system consisting of
nonisotropic Stokes equations for the liquid component and acoustic equations for the solid component,
nonisotropic Stokes equations for one-velocity continuum, or, finally a different type of acoustic equations
for one- or two-velocity continuum. The proofs are based on Nguetseng’s two-scale convergence method of
homogenization in periodic structures.

Introduction

In this article, a problem of modelling of small perturbations in elastic deformable medium, perforated
by a system of channels (pores) filled with liquid or gas, is considered. Such media are called elastic porous
media and they are a rather good approximation to real consolidated grounds. In present-day literature,
the field of study in mechanics corresponding to these media is called poromechanics [1]. The solid
component of such a medium has the name skeleton, and the domain that is filled with a fluid is named
a porous space. The exact mathematical model of elastic porous medium consists of the classical equations
of momentum and mass balance, which are stated in Euler variables, of the equations determining stress
fields in both solid and liquid phases, and of an endowing relation determining the behavior of the
interface between liquid and solid components. The latter relation expresses the fact that the interface
is a material surface, which amounts to the condition that it consists of the same material particles all
the time. Denoting by p the density of medium, by v the velocity, by P/ the stress tensor in the liquid
component, by P* the stress tensor in the rigid skeleton, and by x the characteristic (indicator) function
of porous space, we write the fundamental differential equations of the nonlinear model in the form

dp dx

dv
— = div, {xP’ + (1 — x)P* F, — fp-divv=0—2= =0,
T e {XP" + (1= )P} +p o T podivew m

where d/dt stands for the material derivative with respect to the time variable.

Clearly the above stated original model is a model with an unknown (free) boundary. The more
precise formulation of the nonlinear problem is not the focus of our present work. Instead, we aim to
study the problem linearized at the rest state. In continuum mechanics the methods of linearization
are developed rather deeply. The so-obtained linear model is a commonly accepted and basic one for
description of filtration and seismic acoustics in elastic porous media (see, e.g., [2-4]). In this model,



the characteristic function of the porous space ¥ is a known function for £ > 0. It is assumed that this
function coincides with the characteristic function of the porous space y given at the initial moment. In
dimensionless variables (without primes)

x'=Le, ' =71t, w =Lw, p,=pops, py=pops, F =gF

differential equations of the problem in a domain € € R? for the dimensionless displacement vector w of
the continuum medium have the form

ana;T;” — div, P + pF, (0.1)
p = —apx div, w. (0.2)
Here the stress tensor of whole continuum
P =xP/+(1-x)P*
coincides with an elastic stress tensor
P® = apD(x,w) + ax(div, w)l

in the solid skeleton (I is a spherical tensor) and with a viscous tensor

ow ow
f o _ _ .
P/ = OéMD<LE, i ) <p ay, divy, wr )]I

in the porous space and
o _ 1 -
p=xp;+(L=X)ps Dlw,u) = 5(Veut+ (Vou) ).

The dimensionless constants a; (i = 7, v, ...) are defined by the formulas

L v 2u c2p I n 2A
a - — a o s a o —_, a o s a o s
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) ay = )
g7? Y 7Lgpo

where 1 is the viscosity of fluid (gas), v is the bulk viscosity of fluid (gas), A and 7 are elastic Lamé’s
constants, ¢ is the speed of sound in fluid (gas), L is the characteristic size of the domain in consideration,
7 is the characteristic time of the process, py and p, are respectively mean dimensionless densities of liquid
and rigid phases, correlated with mean density of water, and g is the value of acceleration of gravity.
The problem is endowed with homogeneous initial and boundary conditions
w|i—o = 0, ow =0, e, (0.3)
ot |,_o

w=0, weS=00, t>0. (0.4)

The corresponding mathematical model, described by system (0.1), (0.2), contains a natural small param-
eter £, which is the characteristic size of pores [ divided by the characteristic size L of the entire porous
body:

8:3.

Our aim is to derive all possible limiting regimes (homogenized equations) as £ \ 0. Such an approxima-
tion significantly simplifies the original problem and at the same time preserves all of its main features.
But even this approach is too hard to work out, and some additional simplifying assumptions are neces-
sary. In terms of geometrical properties of the medium, the most appropriate is to simplify the problem
postulating that the porous structure is periodic. We accept the following constraints.



Assumption 1. Domain Q = (0,1)% is a periodic repetition of an elementary cell Y* = Y, where
Y = (0,1)® and quantity 1/¢ is integer, so that € always contains an integer number of elementary
cells Y7, Let Y, be the “solid part” of ¥, and the “liquid part” Y7 is its open complement. We denote
v = Y} N dYs, and 7 is a piecewise Cl-surface. The porous space Q2% is the periodic repetition of the
elementary cell £Yr, and the solid skeleton € is the periodic repetition of the elementary cell eY,. The
boundary I'* = 95 N 9625 is the periodic repetition in € of the boundary e. The “solid skeleton” (15 is
a connected domain.

In these assumptions
= £ Z = £ £ £
x(@) = x"(z) :x<g), p=0"(®) =X (2)ps + (1 =X (=) ps;

where x(y) is a characteristic function of Y} in Y. In our model x(y) is a known function.

We say that a porous space is disconnected (isolated pores) if yNIY = @.

Suppose that all dimensionless parameters depend on the small parameter £ of the model and there
exist limits (finite or infinite)

. . . . Qy
il\I‘I(l)Oéﬂ(é“) = Mo, il\I)I(l)OQ(é“) = Ao, il\I‘I(l)OéT(é“) = 70, il\rf(l)g_2 = U1,
.o Qi . .
i{% =2 AL, i%ap(e) = Px; i{% () = no-

The first research with the aim of finding limiting regimes in the case where the skeleton was assumed
to be an absolutely rigid body was carried out by E. Sanchez-Palencia and L. Tartar. Sanchez-Palencia
[3, Sec. 7.2] formally obtained Darcy’s law of filtration using the method of two-scale asymptotic expan-
sions, and L. Tartar [3, Appendix] mathematically rigorously justified the homogenization procedure.
Using the same method of two-scale expansions J. Keller and R. Burridge [2] derived formally the system
of Biot’s equations [5] from the system (0.1)—(0.4) in the case

po =0, 0<pr, Ao, 70 < 0.

Under the same assumptions as in [2], a rigorous justification of Biot’s model was given by G. Nguet-
seng [6] and later by Th. Clopeaut et al in [7]. Also R. Gilbert et al [4] derived a system of equations
of viscoelasticity in which all the physical parameters were fixed independent of . The most complete
results have been obtained by author [8,9] for the cases

-1 -1
T0, Mo, V0, Py 770 < 00.

In these works, Nguetseng’s two-scale convergence method [10, 11] was the main method of investigation
and has been applied recently to a wide range of homogenization problems (see, e.g., [12—14]).
The present publication is a detailed summary of author’s works [8,9]. We consider all possible
situations where
70, Mo < 00

and any of the following situations takes place:
(I) o =0, 0 < Ay < o0;
II

~—

( 0 < po, Ao = o0;
(III) 0 < po, 0 < A < o0;
(IV) 0 < po, Ao =0;
(V) po=0, \o=0.
If 79 = o© then, re-normalizing the displacement vector by setting w — a,w, we reduce the problem
to one of the cases (I)—(V). Note that this last case 79 = 0o appears if we model short-time processes like

seismic or acoustic wave propagation or hydraulic fracturing, when the duration of the process does not
exceed some seconds.

—



Let us briefly describe the content of the paper. Theorem 1 is devoted to the derivation of bounds
of the solutions of the problem (0.1)—(0.4), uniform with respect to the small parameter . Here a very
simple estimate of the solutions for the case 79 > 0 and where all other criteria are bounded becomes
nontrivial if 79 = 0, or if A\g = oo (the skeleton is an absolutely rigid body), or if p, = oo (incompressible
liquid), or, finally, if 79 = oo (the solid skeleton is an incompressible body). Further we show that for the
case (I) (Theorem 2) the homogenized equations are Biot’s system of poroelasticity for the two-velocity
continuum (0 < g3 < 00, 79 = 0), or the similar system consisting of nonisotropic Lamé’s equations for
the solid component coupled with acoustic equations for the liquid component (g3 = 0), or nonisotropic
Lamé’s equations for the one-velocity continuum (the case of disconnected porous space, or the case where
(1 = o0). For the case (IV) (Theorem 5) the homogenized equations are Stokes system of equations for
the liquid component coupled with acoustic equations for the solid component (\; < oo), or the similar
system consisting of nonisotropic Lamé’s equations for the solid component and acoustic equations for the
liquid component (g = 0), or nonisotropic Stokes equations for the one-velocity continuum (A; = o0).
For the case (V) (Theorem 6) the homogenized equations are different types of acoustic equations for
one- or two-velocity continuum. This is a very interesting fact—that the initially one-velocity continuum
becomes a two-velocity continuum after homogenization might be explained by the different smoothness
of the solution in the solid and in the liquid components:

/ IV de < Co, / (&)1 - ) Vw?) de < C,
9] 9]

where () is a constant independent of the small parameter . To preserve the best properties of the
solution we extend the solution from the chosen component onto the whole domain. At this stage, the
criteria g1 (if o = 0) and Ay (if Ao = 0) become crucial. Namely, if, for example,

/au(€)|Vw5|2d:E < Cp, l%au(e) =pp=0, lim— = =
)

and Ao > 0, then the sequence {w®} converges strongly in L? (Q X ((),T)) (more precisely, is strongly
compact in L?(Q x (0,7))) and the limiting system of differential equations describes a one-velocity
continuum. The same conclusion is valid for the case

/Oék(€)|vw5|2 de < Co, po>0, A=0, A =o0c.
Q

But if, for example, for the first case A\g = oo, then the sequence {w*} strongly converges in
L?*(Q x (0,T)) to zero and we lose all information about solution. To extract this hidden information we
have to re-normalize the solution. The exact form of the re-normalizing multiplier depends on different
factors. For example, one of the possible situations might be the re-normalization

w® — a—g'wg.
g

All these situations are collected in the case (IT) (Theorem 3). Here homogenized equations are Darcy’s
system of filtration (0 < 1 < o0, 79 = 0), or acoustic system for the liquid component (g1 = 0). For this
first approximation the solid component behaves as an absolutely rigid body. More precise asymptotics
(second approximation) show that the re-normalized displacements of the solid component is described
by a nonisotropic Lamé’s system of elasticity. If @1 = oo, then the limiting regimes are two-velocity
media for re-normalized displacements, which are described in Theorem 2. Finally, for the case (III) the
homogenized equations are nonlocal equations of viscoelastisity (connected porous space) or nonisotropic
Lamé’s system of elasticity (disconnected porous space) for one-velocity continuum (Theorem 4).



1. Formulation of the Main Results

As usual, Eq. (0.1) is understood in the sense of distributions. It involves the proper equations
(0.1), (0.2) in the usual sense in the domains Q% and Qf and the boundary conditions

[lw]=0, [P-n=0 xzyel® >0, (1.1)
on the boundary I'*, where n is a unit normal to the boundary and

[¢](x0) = sy (x0) — (1) (x0),
P9 (o) = lim (@), (o) = Jim o(z).

T— T

z€NS mEQ?

There are various equivalents in the sense of distribution forms of representation of Eq. (0.1) and
boundary conditions (1.1). In what follows, it is convenient to write them in the form of the integral
equalities.

Definition 1. We say that four functions (w*®, p®, ¢%, 7°) are called a generalized solution of the problem
(0.1)(0.4) if they satisty the regularity conditions

£

Ip
ot
in the domain Q7 = € x (0,7"), boundary conditions (0.4) in the trace sense, the equations

w®, D(x,w®), div, w®, ¢, p°, , T € L2(QT)

oy, Op*f
ap Ot

p°=—opXdivow®, 7" =—ay(l —x")divaw®, ¢ =p°+

(1.2)

a.e. in 7, and the integral identity

£ £ 82 £ £ a £
/(an'w ~a—;20—x aMD(x,w):D<x,a—S§>—p F.-p
Qr

+{(1 = xHarD(x,w®) — (¢° + 7)1} : D(x, go)) dedt =0 (1.3)

for all smooth vector-functions ¢ = @(,t) such that p|sq = @l = Op/0t|i—7 = 0.

In this definition, we have changed the form of representation of the stress tensor P in the integral
identity (1.3) by introducing two new functions ¢ and 7°. The main goal of such kind innovation is
just to make easy the derivation and analysis of homogenized equations. Functions ¢° and 7 behave as
a pressure. Therefore, for brevity, we will call them pressure, the first two equations in (1.2) we will call
continuity equations, and the last one in (1.2) we will call a state equation.

In (1.3) by A : B we denote the convolution (or, equivalently, the inner tensor product) of two
second-rank tensors along the both indexes, i.e.,

3
A:B= tr(B* o) A) = Z Aiijz'.
i1

Suppose additionally that there exist limits (finite or infinite)

. . ey et
lim o, (2) =1y, lim—= =p;, lim =,
e\0 eNO eNO
2
. ONE . .«
lim =X, lim—2 =mo, lim—2 =py.
eN0 a0 ) a0 )

We also assume that

Assumption 2.
(1) F,0F/ot € L*(Q7);



(2) the dimensionless parameters satisfy the restrictions
p*_lyy(h 770_1<007 O<TO+,U1-

In what follows, all parameters can take all permitted values. For example, if 75 = 0, or p;' = 0
(incompressible liquid), or iy 1'— 0 (incompressible solid skeleton), then all terms in the final equations
containing these parameters disappear.

Note that we do not consider the cases p, = 0 and 79 = 0 because they have no physical or mathe-
matical importance.

The following Theorems 1-6 are the main results of this paper.

Theorem 1. For all £ > 0 on the arbitrary time interval [0, T| there exists a unique generalized solution
of the problem (0.1)—(0.4).
(D) If Ao < o0, then

Juax || |w (1) + /@ [ Vew (O] + Var(l = x)|Vaw (1) [l < Ir, (1.4)

g ll.0r + 1P l0r + IT°ll200 < IF, (1.5)

where Ip = C|||F| + |0F /0t ||2,0r and C is a constant independent of .
(I1) If Ao = oo, then for displacements w® estimates (1.4) hold true, and under the condition

Py < 00, (1.6)

for pressures ¢ and p® in the liquid component estimates (1.5) hold true.
If instead of restriction (1.6) the conditions

o® |OF
P2, p2_17 2 < S oN F = vq)y E? E S L2(QT) (17)
hold true, then
max (|[(1 = x%) Ve (0w (1) ||, + X dive (anw? () ||, < 13, (1.8)

0<t<T

where I}D = C|| |F| + |0®/0t| + |OF/0t|||2,0, and C is a constant independent of . These last
estimates imply (1.5).
(IT1) If Ao = 00, 1 = 00, 0 < Ag < o0, then for re-normalized displacements

w® — apwt

with re-normalized parameters
apu o ay ap
oy ——, ax—1, o ——, a—— o —
Q) (%Y 05N 99
situation (1) of the present theorem holds true.
(IV) If Ao = 00, 1 = 00, A2 = 00, then for re-normalized displacements

w® — e 2wt
with re-normalized parameters
an r ay o'
ap, _>€27 Oé>\ _>€2_7 O _>€2_7 Ay _>€2_7 ap_>€2_p
ay, ay, ay, ay,

situation (I1) of the present theorem holds true.

Theorem 2. Let Ay < o0, pig = 0. Then functions w® admil an extension u® from QS = QF x (0,7)
into Qp such that the sequence {u®} converges strongly in L*(Qr) and weakly in L*((0,T); W3 (€2)) to the
function w. At the same time, sequences {w®}, {p°}, {¢°}, and {7°} converge weakly in L*(Qr) to w, p,
q, and 7w, respectively.



The following assertions for these limiting functions hold true:

(I) If pr = oo or the porous space is disconnected (the case of isolated pores), then w = u and the
functions w, p, q, and w satisfy in the domain Q7 the following initial-boundary-value problem:

J?u

Toﬁﬁ = divy{AAf : D(x,u) + Bidivyu + B{q— (¢ +7) -1} + pF, (1.9)
1
—7 4 C§ : D(x,u) + aidivy u + afq = 0, (1.10)
o
1 1 Op
4 — x4 di -0 -1 — 1.11
pp T hdivew =0, ptwop o =g, (L.11)

where

p=mpp+(1—m)ps, m = /x(y) dy.
Y
The symmetric strictly positively definite constant fourth-rank tensor Aj, matrices C§, B, and By,
and constants ai and a3 are defined below by formulas (4.23), (4.25), (4.26).
Differential equations (1.9) are endowed with the homogeneous initial and boundary conditions

5}
Tou(x,0) = Toa—’l:(:c,()) =0, x€Q, u(x,t)=0 xS, t>0. (1.12)

(I1) If py < oo, then the weak limits w, w’, p, q, and 7 of sequences {u®}, {x°w°}, {p*}, {¢°}, and
{m¢} satisfy the initial-boundary-value problem consisting of the balance of momentum equation

) e
Topfa—;’ Frops(l —m)Ss 4 V(g + 1) — pF = dive{AoAd : D(x,w) + BSdivew + Big} (1.13)

o2
and the continuity equations (1.10) for the solid component, the continuity equation and the state
equation
1 1 0
—p+ —7 +div,w’ = (m—1)div, u, p+yop*_1—p =q (1.14)
D« o ot
for the liguid component, and the relations
¢
ou
v:mEJr Bi(p1,t —71) - z(x,7) dr, (1.15)
0
1 Pu
t) = —— t F(x,t) — —(x,1
Z(Zl?, ) qu(il?, )+pf ($7 ) ToPf 12 (217, )
in the case 1o > 0 and py > 0, or Darcy’s law in the form
ou 1
=m—+B Y F 1.16
v—m 4 Baln) - (-~ Va1 P ) (1.16)

in the case 7o = 0 and p1 > 0, or, finally, the balance of momentum equation for the liquid
component in the form
2

ov 0“u 1
Tops o = ToPrBs - mm b (ml — Bs) - (—EVq + pfF> (1.17)

in the case 7o > 0 and p1 = 0. Here v = 0w’ /0t and AS, BS, and B are the same as in (1.9).
This problem is endowed with initial and boundary conditions (1.12) for the displacements of
the solid component and the homogeneous initial condition and boundary condilion

v(z,t) -n(x) =0, xS, t>0, (1.18)
for the velocily v of the fluid component.



In (1.15)~(1.18) n(x) is the unit normal vector to S at a point x € S; matriz By(p1,t) and
symmetric strictly positively defined matrices Ba(p1) and (ml— Bs) are defined below by formulas
(4.34)—(4.38).

Theorem 3. Let A\g — o0

@

(1

(I111)

If 11 < oo and one of conditions (1.6) or (1.7) holds true, then the sequences {x°w®}, {p°},

and {q°} converge weakly in L?>(Qr) to w', p, and q, respectively. The functions w® admit an

extension u® from QF x (0,7T) into Qr such that the sequence {u®} converges strongly in L*(Qr)

and weakly in L*((0,T); W4 (Q)) to zero and

(1) if 70 > 0 and puy > 0, then functions v = dw'/Ot, p, and q solve in the domain Qr the
problem (F1), where

t
1
/B1 1, t—7) - zolx,7)dr, zo= _querfF’ (1.19)
0
_10p 1 Op
P vop = = q, gy Hdivev = 0; (1.20)

(2) if 70 =0 and py1 > 0, then functions v, p, and q solve in the domain Qr the problem (F5),
where v satisfies Darcy’s law in the form

v Bal) (~-5a  orF ). (1.21)

and pressures p and q satisfy Fqs. (1.20);
(3) if 70 > 0 and p1 = 0, then functions v, p, and q solve in the domain Qr the problem (Fs),
where v satisfies the balance of momentum equation for the liquid component in the form

ov 1
T0ps 5y = (Ml — Bs) - <—EV(J + PfF> ; (1.22)

and pressures p and q satisfy Eqgs. (1.20).
Problems F1—Fs are endowed with homogeneous initial conditions and boundary condition (1.18).
In (1.19), (1.21), and (1.22), matrices Bi(u1,t), Ba(p), and Bs are the same as in Theorem 2.
If u1 < oo and conditions (1.7) hold true, then the sequence {c\u®} converges strongly in L*(Q7)
and weakly in L?((0,T); W3 (Q)) to function u and the sequence {x} converges weakly in L*(Qr)
to the function w. The limiting funclions v and 7 salisfy the boundary value problem in the
domain 2

0 =div,{Aj : D(z,u) + Bidivpau+ Big— (¢ + ) - I} + pF, x €, (1.23)
1

n—7r +C§ : D(x,u) +agdiveu +afg=0, x €, (1.24)
2

where the function q is assumed given. It is defined from the corresponding Problems F1—Fs (the
choice of the problem depends on 19 and p1). The symmetric strictly positively definite constant
fourth-rank tensor Aj, matrices Cg, Bf, and B, and constants af and aj are defined below by
formulas (4.23), (4.25), (4.26), in which we have ny = 1y and \g = 1.

This problem is endowed with the homogeneous boundary conditions.
If 1 = oo, pfl,nfl < oo, and 0 < Ay < oo, then there exist weak limits w, p, and © of
the sequences {a,e=2x*we}, {p°}, and {7} and a strong limit @ of the sequence {c,e=u®} in
L2(Q7), which satisfy in Qr the following initial-boundary-value problem:



div,{\Aj : D(x,a) + Bidive,a + Bip— (p+7) -1} + pF = 0,

ow ou 1
v By _— F
ot (’915 +Bo(1) - ( mvP+pf )’

1 B B (1.25)
—p+ —7r +divyw = (m — 1) div, @,
D1 m

1

—7n+Cj : D(z,u) + ajdivy @ + ajp = 0.

m

Here the symmetric strictly positively definite constant fourth-rank tensor Ay, matrices Cy, B§,
and B3, and constants af and ai are defined below by formulas (4.23), (4.25), (4.26), in which
we have g = m and Ag = Ag.
This problem is endowed with the homogeneous initial and boundary condilions.
(IV) If 1 = o0 and Ay = oo, then the corresponding problem for displacements {a,e™2w®} is consid-
ered in parts (I) and (I1) of the present theorem.

Theorem 4. Let 0 < pg, Ao < oo. Then the weak and strong limits w, p, q, and 7 of sequences {w*},
{p°}, {7°}, and {¢°} satisfy in Qr the following initial-boundary-value problem:

L OPw . . (’9'w
TP~ +V(qg+7)—pF =divy| Agy : D B + As: D(x,w) + Bydiv, w
¢
+/ Ayt —7): D(x,w(z, 7)) + Bs(t — 7) div, w(z, 7)) dT), (1.26)
0
¢
L b mdivyw — — /(02@ )= Dz, wia, 7)) + as(t — 7) divg w(@, 7)) dr, (1.27)
D+ ]
| ¢
—7 4+ (1 —m)divy, w = — /(C’g(t —7): D(2,w(z, 7)) + as(t — 7) div, w(z, 7)) dr, (1.28)
o /
120} (’9p
it 1.29

Here Ao, Ao, and Ay are fourth-rank tensors, By, Bs, Cs, and Cs are matrices, and as and as are scalars.
The exact expressions for these objects are given below by formulas (6.15)—(6.20).

The problem is supplemented by the homogeneous initial and boundary condilions.

If the porous space is connected, then As is a strictly positively definite symmetric tensor.

If the porous space is disconnected, which is the case of isolated pores, then Ay = 0 and system (1.26)
degenerates into nonlocal anisotropic Lamé’s system with a strictly positively definite and symmetric len-
sor As.

Theorem 5. Let the porous space be a connected set and
Lo > 0, Ao = 0.

Then functions Ow* /0t admil an extension v from Q% p = Q% x (0,T) into Qr such that the sequence
{v°} converges strongly in L*(Qr) and weakly in L*((0,T); W3 () to the function v. At the same time,
sequences {w®}, {(1 — x5 w}, {p°}, {¢°}, and {7} converge weakly in L?(Qr) to w, w*, p, q, and T,
respectively.



(D) If \y = o0, then Ow®/ot = (1 — m)v = (1 — m)ow/dt and the weak and strong limits q, p, 7,
and v satisfy in Q7 the initial-boundary-value problem

20 divm{quf : D(x,v) + Bg divy v + Cgﬂ'

t pat
+ /(A{(t —7): D(x,v(x, 7)) + B{(t —7)dive v(z, 7) + C’{(t —1)n(x, 7)) dT}
0 —V(g+m7)+ pF, (1.30)
1 0
opr + Ef D(x,v) + c{;ps + (m+ bg) divw
pof ot

+/ Ef t—7):D(z,v(z, 7)) + c{(t —7)ps(x, 7) + b{(t —7)divo(z, 7)) dr =0, (1.31)
0

vy Op 1op 10n
_ S~ O v, v =0, 1.32
LT p*8t+noc’9t+ Nt (1.32)

where the mean density p and the porosity m have been defined above in Theorem 2, and the
symmetric strictly positively definite constant fourth-rank tensor Al, fourth-rank tensor A{ (t),
constant matrices CJ, BL, and Ef, matrices C{(t), BI(t), and E{(t), scalars b and ¢f, and

functions b{(t) and c{(t) are defined below by formulas (7.27)—7.29) and (7.31).
Differential equations (1.30) are endowed with homogeneous initial and boundary conditions

v(x,0)=0, €, wv(x,t)=0, ¢S85, t>0. (1.33)

(I1) If A\ < oo, then the weak and strong limits w*, q, p, 7, and v satisfy in Qr the initial-bound-
ary-value problem, which consists of the nonisotropic Stokes system

(’9’0 J2w*

Mo + ps—— BT +V(g+m)—pF = divm{quf : D(x,v) + Bg div, v + Cgﬂ'

+ /(A{(t —7): D(x,v(x, 7)) + B (t — 7)divyv(z,7) + Cf(t — )7 (2, 7)) dT}, (1.34)
0

1 Opy

¢ po,r Ot

+/ (B](t —7) : D(z, v(@, 7)) + e (t — Tpslm,7) 10 (t — 7)divole, 7)) dr =0,  (135)
0

+ Ef D(xz,v) + c{;ps + (m+ bg) divw

Yy (’9p
— — 1.
=Pt -5 (1.36)

for the liguid component coupled with the conlinuity equation

1 0p 1 orn ow*
o, 2o N v, v — 1.
o (’9t+770 51 + div T +mdivyv =0 (1.37)
and the relation
¢
Jw?* s N
= (=) 1 [ Bit- ) 2,7 dn (1.39)
0

- 1 ov
Z(il},t) - _1_—v$7r( ) +p$F($7t) - pSE(a}:t)



in the case Ay > 0, or the balance of momentum equation in the form
Ow* ov 1
psW — png : E + ((1 - m)I - BS) : <_mvmﬂ' + psF> (1'39)
in the case \y = 0 for the solid component. The problem is supplemented by boundary and
initial conditions (1.33) for the velocity v of the liquid component and by the homogeneous initial
conditions and the boundary condition
wi(x,t) -n(x) =0, (x,)esS, t>0, (1.40)

for the displacements w* of the solid component. In Fgs. (1.38)—(1.40) n(x) is the unit normal
vector to S al a point x € S, and matrices B;(t) and Bj are given below by Eqs. (7.38) and (7.40),
where the matriz ((1 —m)l — BQS) is symmetric and strictly positively definite.

Theorem 6. Let the porous space be a connected set and
o = Ao =0; p«, o < 00.
Then there exist functions w$, wg € L™ (0,T; W3 () such that
wi =w" in QF x (0,7), wi=w" in Qfx(0,7)
and sequences {p*}, {¢°}, {7}, {w}, {x*w}, {(1 —x")w}, {w3}, and {wi} converge as e\, 0 weakly
in L2(Qr) to functions p, q, ©, w, w!, w®, wy, and ws, respectively.

(I) If p1 = M = o0, then wy = wy = w and the functions w, p, q, and © satisfy in Qp the system
of acoustic equations

d?w 1
) = — v oF, 1.41
P T T (L41)
1 1 .
—p+ —7 +divy, w =0, (1.42)
o 7o
vy O 1 1
g=pt+ 2 = , (1.43)

ps Ot m 1—m
homogeneous initial condilions
ow

'w(w,()) = E(ZIT,O) = O, T Q, (144)

and homogeneous boundary condition
w(x,t) -n(x) =0, xS, t>0. (1.45)

(IT) If p1 = oo and Ay < oo, then the functions wy = w, w®, p, q, and © satisfy in Qr the system
of acoustic equations, which consists of the state equations (1.43) and the balance of momentum

equation
82'wf (9211)8 1
= —— o F 1.46
Prm—= + Ps 5 —Vaq+p (1.46)
for the liguid component, the continuity equation
1 1
—p + —n + mdiv, wy + div, w* =0, (1.47)
Px Mo
and the relation
¢
ow* 0
= a-mZel oy [ Bt -1) 2@ dr (1.48)
0
1 0w
2, ) = —y——Vam(x, 1) + psF(2,1) ~ PSWQJC(&’J)



in the case Ay > 0, or the balance of momentum equation in the form

J*w* (’92'wf

s

pp — PP g

in the case A\ = 0 for the solid component. The problem (1.43), (1.46)—(1.49) is supplemented
by homogeneous initial conditions (1.44) for the displacements in the liquid and solid components
and homogeneous boundary condition (1.45) for the displacements w = mwjy + w*.
In Eqs. (1.48), (1.49) matrices B{(t) and B3 are the same as in Theorem 5.
(IIT) If py < oo and A\; = oo, then the functions w’, w, = w, p, q, and 7 satisfy in Qr the system
of acoustic equations, which consists of the state equations (1.43) and the balance of momentum

+ ((t =m)I — Bj) - (—ﬁvzﬂ + psF> (1.49)

equation
Pw’ FPw,g
1— = — o F 1.50
Pr (’9152 +p$( m) (’9152 (1_m)Vz7T+p ( )
for the solid component, the continuity equation
1 1
—p+ —7x +divy w! + (I —m)divy, ws =0, (1.51)
Px To
and the relation
¢
ow’ 0
% —m g;s + /B{(t—r) 2 (2, 7 dr, (1.52)

0
2

1 0w
I _ s
z ($7t) = _Evmq($7t)+pfF($7t) —Pr 12 ($7t)
in the case 1 > 0, or the balance of momentum equation in the form

2w/ Fw, 1
PIo@ — prB]- o2 + (mI - B}) - <_Ev$q + PfF> (1.53)

in the case iy = 0 for the displacements in the liquid component. The problem (1.43), (1.50)—(1.53)
is supplemented by homogeneous initial conditions (1.44) for the displacements in the liquid
and solid components and homogeneous boundary condition (1.45) for the displacements w =
w’ + (1 — m)ws.
In Eqgs. (1.52), (1.53) matrices B{(t) and Bg are given below by formulas (8.32), (8.33),
where the matriz (ml — Bg) is symmetric and strictly positively definite.
(IV) If p1 < oo and A\ < oo, then the functions w, p, q, and © satisfy in Qr the system of acoustic
equations, which consists of the continuity and the state equations (1.42) and (1.43) and the

relation
t

_ /B”(t ) V(@) dr + f(x,1), (1.54)
0
where B™(t) and f(x,t) are given below by (8.40) and (8.41).

The problem (1.42), (1.43), (1.54) is supplemented by homogeneous initial and boundary con-
ditions (1.44) and (1.45).

ow
ot

2. Preliminaries

2.1. Two-Scale Convergence. Justification of Theorems 2-6 relies on systematic use of the method of
two-scale convergence proposed by Nguetseng [10].



Definition 2. A sequence {w®} C L?(Qr) is said to be two-scale convergent to a limit W € L?(Qp x Y)
if and only if for any 1-periodic in y function ¢ = o(x,t,y) the limiting relation

l%/wg(m,t)@ (:c,t, ;) dr dt = //W(:c,t,y)go(:c,t,y) dy dx dt (2.1)
Qp Qry

holds.

Existence and main properties of weakly convergent sequences are established by the following fun-
damental theorem [10, 11].

Theorem 7 (Nguetseng’s theorem).

(1) Any bounded in L*(Q) sequence contains a subsequence, two-scale convergent to some limit
W e L?(Qr xY).

(2) Let sequences {w®} and {eV,w®} be uniformly bounded in L*(Qr). Then there exist a 1-periodic
iny function W = W(z,t,y) and a subsequence {w®} such that W,V,W € L?*(Qr xY), and the
subsequences {w®} and {eV,w"} two-scale converge to W and VyW, respectively.

(3) Let sequences {w®} and {V,w®} be bounded in L*(Q). Then there exist functions w € L*(Q)
and W € L?(Qp x Y) and a subsequence from {V,w®} such that the function W is 1-periodic
iny, Vow € L*(Q7), V,W € L*(Qr x Y), and the subsequence {V,w®} two-scale converges to
the function Vyw(x,t) + V,W(x,1,y).

Corollary 2.1. Let 0 € L*(Y) and 0°(x) = o(x/z). Assume that a sequence {w®} C L*(Qr) two-scale
converges to W € L?(Qp x Y). Then the sequence {o°w®} two-scale converges to the function oW .

2.2. An Extension Lemma. The typical difficulty in homogenization problems, like problem (0.1)—(0.4),
while passing to a limit as £ Y\, 0 arises because of the fact that the bounds on the gradient of displacement
Vw* may be distinct in liquid and rigid components. The classical approach in overcoming this difficulty
consists of constructing extension to the whole Q of the displacement field defined merely on €2, or Q.
The following lemma is valid due to the well-known results from [15, 16]. We formulate it in appropriate
form for us.

Lemma 2.1. Suppose that Assumption 1 on the geometry of periodic structure holds, w® € W3(Q%) and
w® = 0 on S5 = 905N O in the trace sense. Then there exists a function u® € W4 (Q) such that its
restriction on the sub-domain 25 coincides with w®, i.e.,

(1 — X‘E(w)) (ug(w) — wE(w)) =0, xxe€Q (2.2)
and, moreover, the estimate
[ufll20 < Cllwtllz0s, 1D, u9)llz,0 < CIlD(2, w205 (2.3)
holds true, where the constant C' depends only on geometry Y and does not depend on .

2.3. Friedrichs—Poincaré’s Inequality in Periodic Structure. The following lemma was proved by
L. Tartar in [3, Appendix|. It specifies Friedrichs—Poincaré’s inequality for e-periodic structure.

Lemma 2.2. Suppose thal assumplions on the geomelry of Q% hold true. Then for any function w €
W%(Q*}) the inequality

/|w|2dw§062/|vxw|2dw (2.4)
2 2

holds true with some constant C' independent of =.



Further we denote

(1) @)y = / Ddy, (@), - / XOdy, (D), / (1 - )@ dy,

Y Y Y
(o = /cpdw, (0rar = /sodw dt;
0 Qr
(2) if a and b are two vectors, then the matrix a ® b is defined by the formula
(a@b)-c=a(b-c)

for any vector c;
(3) if B and C are two matrices, then B @ C' is a fourth-rank tensor such that its convolution with
any matrix A is defined by the formula

(B C): A= B(C: A);

(4) by I¥ we denote the (3 x 3)-matrix with just one nonvanishing entry, which is equal to 1 and
stands in the ith row and the jth column;
(5) we also introduce

3
U y 1 g g
JI= @11 = S(eive; tejoe), J=) JVoJY,
1,j=1

where (e1, ez, e3) are the standard Cartesian basis vectors.

3. Proof of Theorem 1
3.1. Let A\p < oo. If restriction 79 > 0 holds, then (1.4) follows from the inequality

Jw* Jw* 0Pw* ow*
d. b T o, T .0 1 T T o,
o@t@%(’/a" Ve — (t) o + Vo ||V B (t) o +Va 52 (t) 279+1/ap div o (t) 27%)
a2w5 20 04E CO
Vv Ve—m5- Voo || x©divy —— < . (3.1
+ /|| x 7 ||y + Vo ||x° div T ||y — (3.1)

where Cy is independent of . The last estimates are obtained if we differentiate equation for w*® with
respect to time, multiply by 9%w?/0t?, and integrate by parts. The same estimates guarantee the existence
and uniqueness of the generalized solution for the problem (0.1)—(0.4). To do that we consider Galerkin’s
method, taking as a basic space the Sobolev’s space WQl(Q)7 and as a basis any basis that is orthonormal
in the space L2(€).

Let py < oo and 1y < oo. Then pressures p° and 7° are bounded from continuity equations (1.2) with
the help of estimates (3.1). The pressure ¢° is bounded from the state equation (1.2) rewritten in the
form
ow*

ot

£

¢© = —apx© divy w* — a, X divy (3.2)

with the help of the same estimates (3.1).

If p, = oo, then estimate (1.5) for the sum of pressures ¢ + 7° follows from the basic integral
identity (1.3) and estimates (3.1) as an estimate for the corresponding functional, if we re-normalize the
pressures ¢© + 7w° such that

/(qg(fb’, t) +7°(x, 1)) dv = 0.

Q



Indeed, the basic integral identity (1.3) and estimates (3.1) imply

‘/(q5+7r5)divm1,bdx < Va0,

Choosing now ¥ such that ¢ + 7° = div, ¥, we get the desired estimate for the sum of pressures ¢ + 7.
Such a choice is always possible (see [17]) if we put

P =Vt dive, =0
Ap=q¢"+7° ¢laa =0, (Ve+1)laa =0.

Note that the re-normalization of the pressures (¢°+7®) transforms continuity equations (1.2) for pressures
into

I 1
- d R — AV 3.3
e + X div, w —°XC, (3.3)

L (1= ) dive w® — — (1 — ) 5 (3.4)

) v 1—m ’ '

where
G5 = ((1 — x°)div, w)q.
But for all that, estimates (3.1) have also been changed (all terms disappear with multipliers a,, o,
and ay), and to get these estimates we must to take into account the inequalities
B° B°
m v1I—m

The case g = oo is considered in the same way. Note that for all situations the basic integral
identity (1.3) permits one to bound only the sum ¢° + 7¢. But thanks to the property that the product of
these two functions is equal to zero, it is enough to get bounds for each of these functions. The pressure p*
is bounded from the state equation (1.2).

Estimating w® in the case 79 = 0 is not simple, and we outline it in greater detail.

Let 1 > 0 and 79 = 0. As usual, we obtain the basic estimates if we multiply the equations for w®
by dw* /0t and then integrate by parts all obtained terms. Only one term,

ow®

ot

needs additional consideration here. First of all, on the strength of Lemma 2.1, we construct an extension
u® of the function w® from Qf into Q% such that u® = w* in OQF, v € W) and

< Jdiv, w0 s, < Jldiv, ' oo

p°F -

C
[wllae < ClVautllag < \/_oz_,\H(l — X )V Vew' |20

In this inequality the first estimate is a some version of Friedrichs—Poincaré’s inequality. The constant
here does not depend on the small parameter £ due to the boundary condition for the function u*. This
function vanishes on some e-periodic set on the boundary with a positive measure.

After that we estimate ||w*||2,o with the help of Friedrichs—Poincaré’s inequality in periodic structure
(Lemma 2.2) for the difference (u® — w®):

w20 < [[ufll2,0 + [[u® — w20 < [luf]l2q + Cel[X*Va(u® — w20
1
< ||u5||2 o+ Ce[|[Vauf|20 + Clea, ?) IX° o Vaw® |20

1
\/_|| (1 = x*)Vo Vaw®|l20 + Clea ?) X7 /A Vaw® |20

Next we pass to the derivative with respect to time from dw?®/0t to p°F and bound all positive terms (in-
cluding the term oy, x* div, Jw®/dt) in the usual way with the help of Holder and Grownwall’s inequalities.



The rest of the proof is the same as for the case 7y > 0 if we use a consequence of (3.1):
9?we
t)

R =¢

2,0

max o,
o<t<T

3.2. Let A\p = oo and conditions (1.7) hold true. It is obvious that estimates (1.4) are still valid.
The desired estimates (1.8) follow from the basic integral identity (1.3) for ayw® in the same way as
in the case of estimates (1.4). The main difference here is in the term

ow*®
EF . oy ——
p Q) ot
which now transforms to
dw* ow*
T=pF- — 1—x5F- .
prF - an—= 1 (pr —p)) (1 =X)F - an—;
The integral of first term in T transforms as
ow
pf 5 —pf by dlvz d:v dr

ow R . Ow*
—pf// (X - Doy div, 5 + (1 = x%) - Py div, 57 )dde

= —py /(X5 - Pay div, w® + (1 — x°) - Paydiv, u®) do
Q

+ oy //(XE cPraydivy w® 4 (1 — x°) - Prapdivy u®) dedr

and is bounded with the help of positive terms

JOct@parendiv,w)? 1 (1= X)) do
Q
(The first term appears in the basic identity after using the continuity equation (1.2) in the liquid com-

ponent.)
The integral of the second term in T is bounded with the help of the term

/(1 — X9)|aaVau|? da
Q
in the same way as before.

Estimates (1.5) follow now from (1.8). The pressures p® and n° are bounded from the continuity
equations (1.2), and the pressure ¢° is bounded from the state equation (1.2) if we use the continuity
equation for the liquid component.

If instead of conditions (1.7) one has condition (1.6), then bounds (1.5) for pressures follow from
Egs. (1.2) and bounds (3.1). Note that for all these cases 3° = 0. O

4. Proof of Theorem 2

4.1. Weak and Two-Scale Limits of Sequences of Displacement and Pressures. On the strength
of Theorem 1, the sequences {p¢}, {¢°}, {7°}, and {w?®} are uniformly in £ bounded in L?(Qr). Hence
there exist a subsequence of small parameters {¢ > 0} and functions p, ¢, 7, and w such that

pF—yp, 7 =7 ¢ —q w —w weaklyin L%(Qp).



as £ \, 0. Moreover, the sequence {(1 —x?)Vw?} is uniformly in £ bounded in L?(€7). Due to Lemma 2.1
there is a function u® € L*(0,7; W, (Q)) such that u® = w® in Q, x (0,7), and the family {u®} is
uniformly in ¢ bounded in L> (0, T; W4 (€2)). Therefore, it is possible to extract a subsequence of {¢ > 0}
such that
u® — u weakly in L2 (0,T; W%(Q))

as € \, 0. Moreover,

X o D(x,w®) — 0 (4.1)
strongly in L2(Q7) as £ \, 0.

Relabeling if necessary, we assume that the sequences themselves converge.

On the strength of Nguetseng’s theorem, there exist 1-periodic in y functions P(x,t,y), (x,t,y),
Qz,t,y), W(x,t,y), and U(a,t,y) such that the sequences {p°}, {r*}, {¢°}, {w®}, and {V,u®}
two-scale converge to P(x,t,y), Iz, 1, y), Q(x,t,y), W(z,l,y) and V,u + V,U(x,t,y), respectively.

Note that the sequence {div, w®} weakly converges to div, w and uw € L? ((), T; W%(Q)) The last as-
sertion for a disconnected porous space follows from inclusion u® € L2 (0, T; W3 (€2)) and for the connected
porous space it follows from the Friedrichs—Poincaré’s inequality for «4° in the s-layer of the boundary S
and from convergence of sequence {uf} to w strongly in L3(Qy) and weakly in L?((0,7); W3(Q)).

4.2. Micro- and Macroscopic Equations 1.

Lemma 4.1. For all x € Q and y € Y, weak and two-scale limits of the sequences {p°}, {7°}, {¢°},
{w®}, and {u®} satisfy the relations

m m
11 . : B —x)

div, W = 0; (4.4)
W =x(y)W + (1 - X)U; (4.5)

= 4,
q=p+vopy’ at (4.6)
pﬁ Fdivew = (1 —m)diveu + (divy Uy, — 5; (4.7)
T4 (1= m)diveu + (div, Uy, = 3, (4.8)

o
where 3 = [(divy U)y, dx, if p« + 1m0 = 0o and =0 if ps + 1m0 < o0.
)

Proof. In order to prove Eq. (4.2), into Eq. (1.3) insert a test function ¢° = eyp(x,t, € /<), where ¢(x, t, y)
is an arbitrary 1-periodic and finite on Y} function in y. Passing to the limit as £ N\ 0, we get

VyQ(z,t,y) =0, yeYy. (4.9)
The weak and two-scale limiting passage in the state equation (1.2) yield that Eq. (4.6) and the equation
I/O or
P+ 4.10
@=Pt o (4.10)

hold. Taking into account Eqs. (4.9) and (4.10), we get V,P(z,t,y) = 0, y € Y. Next, fulfilling the
two-scale limiting passage in equalities (1 — x*)p® = 0 and (1 — x%)¢® = 0, we arrive at (1 — x)P = 0 and
(1 — x)Q = 0, which along with Eqs. (4.9) and (4.10) justifies (4 2).

Equations (4.3), (4.4), (4.7), and (4.8) appear as the results of two-scale limiting passages in Egs.
(3.3), (3.4) (where 3% = ((1 — x®) divy w®)q if p« + 1o = 00 and 3° = 0 if p.« + Mo < 00) with the proper



test functions being involved. Thus, for example, Eq. (4.7) arises if we represent Eq. (3.3) in the form
1 1
—p° +divy w® = (1 — x°) divy u® — —3°x°, (4.11)
oy m
multiply it by an arbitrary function independent of the “fast” variable &/, and then pass to the limit as
£\, 0. Equation (4.8) is derived quite similarly. In order to prove Eq. (4.4), it is sufficient to consider the
two-scale limiting relations in Eq. (4.11) as € N\, 0 with the test functions ey(x/c)h(x,t), where ¢ and h
are arbitrary smooth test functions.

In order to prove Eq. (4.5) it is sufficient to consider the two-scale limiting relations in (1 — x®) x
(w® —uf) = 0. O

Corollary 4.1. If p, + n9 = oo, then the weak limits p, 7, and q satisfy the relations
(p)a = (m)a = (g)a = 0. (4.12)
Lemma 4.2. For all (x,t) € Qr the relation

divy {)\0(1 —x)(D(y, U) + D(z,u)) — (H + %qx) ~]I} =0 (4.13)
holds true.

Proof. Substituting a test function of the form ¥® = ey (x,t,x /<), where ¥(x,t,y) is an arbitrary 1-pe-
riodic in y function vanishing on the boundary S, into Eq. (1.3) and passing to the limit as € \, 0, we
arrive at the desired microscopic relation on the cell Y. O

Lemma 4.3. Let p = mpy + (1 —m)ps, V = x0w/0t, and v = (V)y. Then for all 0 < 19 < oo the
quadruple of functions

v Pu .
rops e 1 Tops(l = m) S = dive (Ao((1 — m) D(a,w) + (Dl U))y,) — (g 4 7) T} 4 pF. (414)
Proof. Equations (4.14) arise as the limit of Eqgs. (1.3) with the test functions being finite in Qp and
independent of «. O

4.3. Micro- and Macroscopic Equations II.
Lemma 4.4. If u1 = oo, then the weak and two-scale limits of {u®} and {w*®} coincide.

Proof. In order to verify this, it suffices to consider the difference u®* —w® and apply Friedrichs—Poincaré’s
inequality, just like in the proof of Theorem 1. O

Lemma 4.5. Let 1y < oo. Then the weak and two-scale limits of {¢°} and {x*w*} satisfy the microscopic
relations

Topf% = A,V —-VyR — %qu +pF, yeyy, (4.15)
V= ({;—1;, Yy <, (4.16)
in the case p1 > 0, and relations
Topf% =-V,R— %qu +piF, yeyy, (4.17)
(V—%—’l:>~n(), Yy e, (4.18)

in the case 1y = 0. In Eq. (4.18) n is the unit normal to .



Proof. Differential equations (4.15) and (4.17) follow as £ N\, 0 from integral equality (1.3) with the test
function ¥ = p(xe™1) - bz, t), where ¢ is solenoidal and finite in Y.

1
Boundary conditions (4.16) are the consequences of the two-scale convergence of {a/ V,w"} to the

1
function u?V, W (z, t,y). On the strength of this convergence, the function V, W (x,t,y) is L?-integrable
in Y. The boundary conditions (4.18) follow from Eq. (4.4). O

Lemma 4.6. If the porous space is disconnected, which is the case of isolated pores, then the weak and
two-scale limits of sequences {u®} and {w®} coincide.

Proof. Indeed, in the case 0 < p1 < oo the systems of equations (4.4), (4.15), (4.16) or (4.4), (4.17), (4.18)
have the unique solution V' = du/ot. a

4.4. Homogenized Equations I.

Lemma 4.7. If 1 = oo or the porous space is disconnected, then w = w and the weak limits u, p, q,
and w satisfy in Q7 the initial-boundary-value problem

Pu : .

TPy = div{ oA : D(x,u) + Bidivyu + Biq— (¢ +m) -1} + pF, (4.19)

1
—7 4 C§ - D(x,u) + ajdivy u + afq = 0, (4.20)

o

dp 1 1
-1 .

- DL —pt —r+diveu =0, 121
a=ptwpsgn et oem ddiveu (4.21)

where the symmetric strictly positively definite constant fourth-rank tensor Ay, matrices C§, B5, and By,
and constants aj and a3 are defined below by formulas (4.23), (4.25), (4.26).
Differential equations (4.19) are endowed with homogeneous initial and boundary conditions

o
rou(a, 0) = Toa—’:(m, 0)=0, zeQ,  ulxi)=0 xS, t>0 (4.22)

Proof. In the first place, let us note that v = w due to Lemmas 4.4 and 4.6.
The homogenized equations (4.19) follow from the macroscopic equations (4.14), after we insert in
them the expression

Mo(D(y, U))y, = MA] : D(z,u) + Bidiv, u + Big.

In turn, this expression follows by virtue of solutions of Egs. (4.3) and (4.13) on the pattern cell Y.
Indeed, setting

3
g ) 1
U= Z U (y)Ds; + Up(y) dive u + EUl(y)qy

2,7=1
3
. ij : 1
=20 > 11¥(y) D + Mo(y) dive v+ —Ii(y)g,
i1

where

1/ oug ou;

we arrive at the following periodic-boundary value problems in Y:
divy {(1 = x)(D(y, UY) + J7) =117 - T} = 0,
Ao

T 4 (1 — ) div, U7 = 0;
o



divy {Ao(1 = x)D(y,Uo) — 1o - I} = 0,
%Ho + (1 —x)(divy Ug +1) =0;
divy{Ao(1 = x)D(y,U1) — (Il +x) - I} = 0,
%Hl (1= ) div, Uy = 0.

Note that § = 0 even if p. + 9 = oo due to homogeneous boundary condition for u(x,t) and
relations (4.12).

On the strength of the assumptions on the geometry of the pattern “solid” cell Yg, the above-mentioned
problems have unique solution up to an arbitrary constant vector. In order to discard the arbitrary
constant vectors we demand

(UY)y, = (Uo)y, = (Ur)y, =0.

Thus,

Aj=(1—m) > JYaJ 1A%, A=) (Dy,U%))y, ©J7. (4.23)

i,5=1 i,j=1
Symmetry of the tensor A follows from symmetry of the tensor Af{, and symmetry of the latter follows
from the equality
g g Ao
(D@y, U7))y, : I = —(D(y, UY) : D(y, U"))y, — n—oﬂ”ﬂkly (4.24)
0

which appears by means of multiplication of the equation for U% by U* and by integration by parts.

This equality also implies positive definiteness of the tensor A§. Indeed, let ¢ be an arbitrary sym-
metric constant matrix. Setting

3 3
Z=Y Ui, =73 19¢
bj=1 i,j=1
and taking into account Eq. (4.24), we have
Ao~
(D(y, Z))y, : ¢ = —(D(y, Z) - D(y, 7))y, — %Hz

This equality and the definition of the tensor A give

%RC%C«DwZ)HD%D@ﬂ)Hmn+%??

Now the strict positive definiteness of the tensor Af follows immediately from the equality above and
from the geometry of the elementary cell Y. Namely, suppose that (A§ : ¢) : ¢ = 0 for some constant
matrix ¢ such that ¢ : ¢ = 1. Then D(y,Z) + ¢ = 0, which is possible if and only if Z is a linear function
in y. On the other hand, all linear periodic functions on Y; are constant. Finally, the normalization
condition (U%)y, = 0 yields that Z = 0. However, this is impossible, because ¢ : ¢ = 1.

Finally, Eqs. (4.20) and (4.21) for the pressures follow from Eqgs. (4.6)—(4.8) and

A Lo
By = Mo(D(y, Uo)y,,  BY = —(D(y, Uy, ai = —(divy Up)y,, (4.25)
3
Cy = > Adivy, Uy, J9,  a§=1—m+ (divy, Uo)y,. (4.26)

i,j=1
d



4.5. Homogenized Equations II. Let u; < oo. In the same manner as above, we verify that the
limit w of the sequence {u®} satisfies the initial-boundary-value problem like (4.19)—(4.22). The main
difference here is that, in general, the weak limit w of the sequence {w*} differs from w. More precisely,
the following statement is true.

Lemma 4.8. If ju1 < oo, then the weak limits w, w', p, q, and 7 of the sequences {u}, {x\°w®}, {p°},
{¢°}, and {r®} satisfy the initial-boundary-value problem in Qr, consisting of the balance of momentum
equation

v 02
To< i + ps(1 —m) (’9151;) + V(g + 7)) — pF =divy{ A : D(x,u) + B;div, u + Biq} (4.27)

and the continuity equation (4.20) for the solid component, where v = dw! /Ot and AS, B, and B are
the same as in (4.19), the state and continuity equations

o 1 1
p+vopy = b —q, —p+—r+div,w’ =(m—1div,u (4.28)
ot Px Mo
for the liguid component, and the relation
¢
ou
v =M + | Bi(p,t —71) - z(x, 7)dr, (4.29)

0
2

1 0u
Z(il},t) - —qu(aﬂt) + pfF($7t) - TOhW(mﬂf)

in the case 19 > 0 and py > 0, or Darcy’s law in the form

ou 1
—mZE B ——Vq+psF 4.
v = m(’it o(p) - ( — q+ps ) (4.30)

in the case 1o = 0 and p1 > 0, or, finally, the balance of momentum equation for the liguid component in
the form

ov Ju 1
Topr = TopyBs - 7 + (ml — Bs) - <_qu + pfF> (4.31)

in the case 1o > 0 and gy = 0. The problem is supplemented by boundary and initial conditions (4.22) for
the displacement w of the rigid component and by the boundary condition

v(x,t) n(x)=0, xS, t>0, (4.32)

for the velocity v of the liquid component. In Eqs. (4.29)~(4.32) n(x) is the unit normal vector to S at
a point x € S, and matrices B1(u1,t), Ba(u1), and Bs are given below by Fqs. (4.34)—(4.38).

Proof. The homogenized equations of balance of momentum and balance of mass derive exactly as
(4.19), (4.20). For example, to get Eq. (4.28) we just express div, w as a sum of Eqgs. (4.7) and (4.8)
using Eq. (4.5) after homogenization: w = w/ 4 (1 — m)u. Therefore, we omit the relevant proofs now
and focus only on derivation of homogenized equations for the velocity v. The derivation of boundary
condition (4.32) is standard [3].

(a) If 43 > 0 and 79 > 0, then the solution of the system of microscopic equations (4.4), (4.15),
and (4.16), provided with the homogeneous initial data, is given by the formula

t
ou

¢
V=— ¥ +/B{(y,t—7)~z(w T R= /Rf y,t —7) - z(x,7)dr,
0 0

in which

3
Bf y7 sz y7 © €4, Rf(yyt) - ZRz(yyt)eiy



and the functions V¢(y,t) and R*(y, t) are defined by virtue of the periodic initial-boundary-value problem
d

%

1% . . .
TP —mAV*'+VR' =0, divy,V'=0, yeY; t>0,

(4.33)
Vi=0, yev, >0, mpViy,0)=e, yeYr
In Eq. (4.33) e; is the standard Cartesian basis vector.
Therefore,
B, 1) = (B )y (1). (4.34)

(b) If 9 = 0 and w3 > 0, then the solution of the stationary microscopic equations (4.4), (4.15),
and (4.16) is given by the formula

ou
V== +Bly) (~Va 1 psF),
in which
3
Bl(y) =Y Uiy oe;,

i=1

and the functions U%(y) are defined from the periodic boundary-value problem

— AU+ VR = e;, div,U'=0, yeYy,
& | v yel (4.35)
U'=0, yen.
Thus,
By (1) = (BY(())v;- (4.36)

The matrix Ba(p1) is symmetric and strictly positively definite [3, Chap. §|.
(¢) If 9 > 0 and py = 0, then in the process of solving the system (4.4), (4.17), and (4.18) we firstly
find the pressure R(x,t,y) by solving the Neumann problem for Laplace’s equation in Y. If

3

R(z,l,y) = Z Ri(y)e; - z(x, 1),
i—1

where R'(y) is the solution of the problem
AR; =0, ye€Yy; VR, -n=n-e, yecv, (4.37)
then formula (4.31) appears as the result of homogenization of (4.17) and

3
Bz =Y (VRi(v))y, @ e, (4.38)
=1

where the matrix B = (ml — Bs) is symmetric and positively definite. In fact, let

3
é = Z szi
=1

for any unit vector £. Then (B-£)-& = ((£ — Vé)2>yf > 0 due to the same reasons as in Lemma 4.7. [



5. Proof of Theorem 3

5.1. Weak and Two-Scale Limits of Sequences of Displacement and Pressures.

(I) Let one of the conditions (1.6) or (1.7) hold true. Then on the strength of Theorems 1 and 7
we conclude that sequences {x*w®}, {p°}, and {¢°} two-scale converge to Wix,t,y), P(x,t,y), and
Q(=x,t,y) and weakly converge in L?(Q7) to w/, p, and g, respectively, and a sequence {u®(x,t)}, where
u®(z,1) is an extension of w®(x, 1) from the domain Q£ into domain €, strongly converges in L?(Q7) and
weakly in L2 ((0,T); W5 (€2)) to zero.

(IT) If g1 < oo and conditions (1.7) hold true, then due to estimates (1.5) and (1.8) the sequence
{a\u®} converges strongly in L?(Q7) and weakly in L?((0,7); W5 (Q)) to a function u, and the sequence
{7} converges weakly in L?(Qr) to a function 7.

(I11) If pq = oo, pl_l, 7]1_1 < 00, and 0 < A; < oo, then on the strength of part (IIT) of Theorem 1 the
sequences {a,c2x*w}, {pf}, {r°}, and {¢°} two-scale converge to functions x(y)W(x,t,y), P(x,t,y),
I(x,t,y), and Q(z,t,y) and weakly in L?(Q7) to functions 1, p, 7, and g, respectively, and the sequence
{oue2u} strongly converges in L?(Qr) and weakly in L2((0,7); W5 (€)) to the function .

As before in Sec. 4, we conclude that @ € L*(0,T; W%(Q))

5.2. Homogenized Equations.

(I) If p11 < oo and one of the conditions (1.6) or (1.7) holds true, then, as in the proof of Theorem 2,
we construct a closed system of equations for the velocity v = dw/ /9t in the liquid component and for
the pressures p and ¢, consisting of the modifications of the momentum conservation law (4.29)—(4.31)
and boundary condition (4.32), in which we have u(x,t) = 0, and of the equations
p+1/op*_1%:q, pi*% +divyv=0, xx€Q, t>0. (5.1)
We name the above-described systems Problem Fy, Fb, or Fs depending on the form of the matrices By,
Bs, or Bs, that occur in Egs. (4.29)—(4.31).

(IT) Let gy < oo and condition (1.7) hold true. We observe that the limiting displacements in the
rigid skeleton are equal to zero. In order to find a more accurate asymptotic of the solution of the original
model, we use again re-normalization. Namely, let w® — a)w?®. Then the new displacements satisfy the
same problem as displacements before re-normalization, but with the new parameters

Oty — anagl, ay—1, ar— ozTozgl.
Thus, we arrive at the assumptions of Theorem 2. Namely, the limiting functions w(x,t), w(x,t),
[I(x,t,y), and U(x,t,y) satisfy the same system of micro- and macroscopic equations defining the be-
havior of the solid component, in which the pressure ¢ is given by virtue of one of Problems Fy—F5. The
only difference from the already considered case is in the micro- and macroscopic continuity equations, be-
cause this equation depends on the value 72. These micro- and macroscopic continuity equations coincide
with (4.3) and (4.8) if we put there ny = 5.
Hence for u(x,t) and 7(x,t) there hold true the homogenized momentum equation in the form

0 =divy{A] : D(z,u) + Bidivou + Big— (¢ +m) - I} + pF, x €, (5.2)

the macroscopic continuity equation (4.20), in which we have 1y = 12, and the boundary condition (1.12).
The tensor A§, the matrices C, B§, and Bf, and the constants aj and af are defined from Eqs. (4.23),
(4.25), (4.26), in which we have g = 172 and Ao = 1.
(ITT) Tf g1 = oo, p7', My < 00, and 0 < A1 < oo then re-normalizing by w® — a,s~2w?® we arrive
at the assumptions of Theorem 2, when pu; = 1, 79 = 0, and Ay = A1. Namely, functions w, p, 7, and @
satisfy the following initial-boundary-value problem in Qp:



dive{MA{ : D(z,u) + Bidivaw+ Bip— (p+m) -1} + pF = 0,
Jw ou 1
=+ By(1) [——= F
o — o T B ( —Vp -+ py )

11 - o (5.3)
—p+ —7n +divyw = (m — 1)divy ,
D1 m

1

—7n 4+ Cj : D(z,u) + ajdive @ + ajp = 0.

m

As before, the tensor A§, the matrices C, Bjj, and Bj, and the constants aj and af are defined by formulas
(4.23), (4.25), (4.26), in which we have 1o = m and Ao = As.

Note that here vy = 0. Therefore, the state equation p + vop; 19p/Ot = g becomes p = q.

The problem is endowed by the corresponding homogeneous initial and boundary conditions. O

6. Proof of Theorem 4

6.1. Weak and Two-Scale Limits of Sequences of Displacement and Pressures. On the strength
of Theorem 1, the sequences {p?}, {¢°}, {n°}, and {w?} are uniformly in ¢ bounded in L?(Qr). Then
there exist a subsequence from {¢ > 0} and functions p, 7, ¢, and w such that as £ \ 0

pF—=p, ¢ —q 7°—7w, w —w weaklyin L*Qr).
Moreover, since Ay, tto > 0, the bound (1.4) implies

V,w® @ V.w weakly in L*(Qr).

Due to Ngutseng’s theorem, there exist one more subsequence from {¢ > 0} and l-periodic in y
functions P(x,t,y), l(x,t,y), Q(x,t,y), and W{(x,t,y) such that the sequences {p°}, {7°}, {¢°}, and
{Vw*} two-scale converge as ¢ N\, 0 respectively to P, 11, @, and V,w 4+ V,W.

6.2. Micro- and Macroscopic Equations. In the present section we do not consider functions of
time ¢, which re-normalize pressures. As we have shown before, finally all these functions are equal to
ZEro.

Lemma 6.1. The two-scale limits of the sequences {p°}, {r®}, {¢°}, and {Vw*®} satisfy in Yr =Y x(0,T)
the following relalions:

1
U_H + (1 — x)(divy w + divy, W) = 0; (6.1)
0

1 . . 148} oP

div, (xuo(0(2.52) + (5 ) + 0= 0N (DGw) 1 D W) = T,Q 4 <0 (63

Lemma 6.2. The weak limits p, 7, q, and w salisfy in Q7 the following system of macroscopic equations:

1
n—7r + (1 —m)div, w + (divy W)y, = 0; (6.4)
0
1 . . vy Op
p—*p +mdivy w + (divy, W)y, =0, q¢=p+ o i (6.5)
9w ow oW
) —— = divy D\ 2, — Dly, ——
i g v (om0 (57 ) 4 (00 >>yf>
+ 20 ((1 = m)D(2, w) +(D(y, W))y, — (¢ + ™)) + pF. (6.6)

Proofs of these statements are the same as in Lemmas 4.1-4.3.



6.3. Homogenized Equations.

Lemma 6.3. The weak limits p, 7, q, and w satisfy in Q7 the following system of homogenized equations:

0? 0
Toﬁa—;: + V(g +7)— pF = div, (Ag : < 'w> +Az: D(x,w) + Bydiv, w

ot
+ [ (Aq(t —7) : D(z,w(®, 7)) + Bs(t — 7) divy w(z, 7)) d7 |, (6.7)
fou )
1 . / .
p—*p +mdiv, w = — /(C’g(t —7): D(2,w(z, 7)) + ax(t — 7) divy, w(z, 7)) dr, (6.8)
0
1 . / .
L —m)divaw — — /(cg(t ) Dy wle, 7)) +aslt — ) divew(z 7)) dr,  (6.9)
o J
Yy (’9p
p+ p—* E (6.10)

Here Ao, As, and Ay are fourth-rank tensors, By, Bs, Cs, and Cs are matrices, and as and as are scalars.
The exact expressions for these objects are given below by formulas (6.15)—(6.20).

Proof. Let
Z(x,t) = M0D< %t ) — XoD(x,w), Ziy=e;-(Z-ej), z(x,t)=divyw

As usual we look for the solution of the system of microscopic equations (6.1)—(6.3) in the form

¢
W = /{WO y,t —7)z(x,7) + Z WY (y t — 1) 7=, T)}dT
0 Hj=1

t 3
P [P nsen s X P nzgen)| o
0 ny=1
3

t
Q= (QO (1) + ZQ - Zij (@, t) JF/{QO (y,t —7)z(w,7) + ZQU (y,t —7)Zij (=, T)}d7>
7] 1 0 ,] 1

¢

= (1— X)(/{HO(y,t— (e, T) + Z 11 (y,t — T)Zij(w,r)} dr>,

0 ij=1

where the 1-periodic in y functions W9, W% PO P Q, Q° QY. éj, 11°, and I1¥ satisfy the following
periodic initial-boundary-value problems in the elementary cell Y:

Problem (I)

AW L y y
div, (x (MOD(y, i ) (1 0o Dly, W) — (I + Q”)H>> 0 (6.11)
1 .. .. VO aPz]
—pY iv, W4 = - P” : 12
" + X dlvy 0, @ . Ol ; (6 )
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1
o
divy (x(po Dy, W) + 79 = QYD) =0, x(Q¥ + v divy, W) =0, (6.14)
Problem (II)

div, (x> (v %) =X 00D. W) - (1 + Q) )~ 0,

9 + (1 = x)divy, W9 =0, W¥(y,0) = W{(y); (6.13)

o 8PO

1
—P% 4 x(divy, WY +1) =0, Q=P+ :
P xdivy ) @ pe Ot

1
n—HO + (1= x)(divy WY +1) =0, W%y,0) = W{(y);
0

divy (x (o D(y, W) — Qo)) =0,  x(Qo + ro(divy W+ 1)) = 0.

Then
3
Ap = pomd + pohl, AL =D (1o Dy, W§))y, © JY; (6.15)
i,j=1

Az = 2o((1 =m)J — AL) + oA (0),  As(t) = o (% - )\0> Al (1); (6.16)

; )

Fopy = ow™ i if.

Al(l) = i;1<<MoD<y, T t)>>yf + (MD(y, W (y,t))>n> @ J; (6.17)

0
a(t) = (0 (3 G5 (00) )+ (1= 020D W (0.0) ) (6.18)

3
Calt) = =Ca(t) = Y (xdivy W (y, )y JY; (6.19)
ij=1

az(t) = —aa(t) = (xdivy WOy, )y,  Ba = (xpoD(y, Wo'(1)))y- (6.20)
The lemma is proved. O

Lemma 6.4. The tensors As—Ay, the matrices By, Bs, Cs, and Cs, and the scalars as and as are well
defined and infinitely smooth in lime.

If a porous space is connecled, then the symmetric tensor As is strictly positively definite. For the case
of disconnected porous space (isolated pores) Ay = 0 and the tensor As becomes strictly positively definite.

All these objects are well defined if Problem (I) and Problem (IT) are well-posed. The solvability of the
above-mentioned problems and smoothness with respect to time follow, due to linearity, from the standard
a priori estimates (multiplication of the equation for the solution by the proper solution and integration
by parts). Note that all these problems have a unique solution up to an arbitrary constant vector. In
order to discard the arbitrary constant vectors, we demand that the average value of the solution over
the domain ¥ be equal to zero. The smoothness with respect to time follows from the estimates of the
solution at the initial time moment. Thus, for example, in the Problem (I) first of all we estimate YWy as
a solution to the problem (6.14). Further solving (6.11) together with continuity equation (6.13) at ¢t =0
and using the continuity of the displacements on the boundary ~, we define and estimate (1 — x)W,’.
After that, from (6.11) at ¢ = 0 we define and estimate x(OW¥ /9t)(y,0). In the same way we estimate
the second derivatives with respect to time after differentiation of all equations with respect to time.

The symmetry of A, is proved in the same way as the symmetry of Ag. If the porous space is
disconnected, then the problem (6.14) has a unique solution linear in y, such that

x(D(y, Wy + J¥) = 0. (6.21)



The last equality implies Ay, = 0. In this case the tensor As becomes strictly positively definite. Indeed
5. 50 . 8 oW Ao s y

=20 32 116 ol ©) <o 3 77071 Y (e (1 Z 0, 0)) 4 30 @

i,j=1 ij=1 ij—1 Ho Y
On the other hand, coming back to (6.11) at the initial time moment, we see that
oW i [y

(D (3 25 0:0)) - D WED ) = —daleD( W) DG wgh) = (117 1)

ot v Mo Y

Moreover, due to (6.21)

<xuoD<y, aaﬂtij(y,og :D(y,Wé“)>Y = —<XD (yy agij (y,0)> : J'“Z>Y,

which proves our statement.

t=0

7. Proof of Theorem 5

7.1. Weak and Two-Scale Limits of Sequences of Displacement and Pressures. On the strength
of Theorem 1, the sequences {p®}, {¢°}, {7°}, and {w?®} are uniformly in £ bounded in L?(Qr). Hence
there exist a subsequence of small parameters {¢ > 0} and functions p, ¢, 7, and w such that

oo g mom wow (7.1)
weakly in L2(Qr) as £ \ 0.
Moreover, due to Lemma 2.1 (an extension lemma) there is a function v* € L*(0,T; W3 (€2)), such
that v® = Jw®/0t in Qp x (0,7), and the family {v°} is uniformly in £ bounded in L?(0,7; W} ().
Therefore, there exist a subsequence of {¢ > 0} and a function v € L(0, T; W5 (€2)) such that

v — v weakly in L*(0,T;W;(Q)) (7.2)

as €\, 0.
Note also that
(1 = x5arD(x,w) =0 (7.3)
strongly in L2(Q7) as £ \, 0.

Relabeling if necessary, we assume that the sequences themselves converge.

On the strength of Nguetseng’s theorem, there exist 1-periodic in y functions P(x,t,y), (x,t,y),
Qz,t,y), W(x,t,y), and V(x,t,y) such that the sequences {p°}, {7°}, {¢*}, {w®}, and {V,v"}
two-scale converge to P(x,t,y), Iz, t,y), Q(x,t,y), W(z,t,y), and Vv + V,V(x,t,y), respectively.

Note that the sequence {div, w®} weakly converges to div, w and v € L? ((),T; W%(Q)) The last
assertion follows from the Friedrichs—Poincaré’s inequality for v® in the e-layer of the boundary S and
from convergence of sequence {v°} to v strongly in L?(Qr) and weakly in L2((0,T); W4 (<2)).

7.2. Micro- and Macroscopic Equations I. We start this section with the macro- and microscopic
equations connected with the continuity equations.

Lemma 7.1. For all x € Q and y € Y, the weak and two-scale limits of the sequences {p°}, {n°}, {¢"},
{w?®}, and {v®} satisfy the relations

7(1—x)
: . 4
il 1—m ’ (7.4)
_10p _,0P
_ 1~F _ 1 .
q*p‘I“VOp* at: Q P+V0p* atv (75)
_19p : : op
1 .
Py E + mdlvx v+ <d1Vy V>Yf = _E’ (76)
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_, 0P . . X 9B

17 _ AP,
Dy 5 + x(divy v + divy, V) melr7s (7.7)
Py Ty divew = 0; (7.8)

P« To
w(x,t) -n(x) =0, x5 (7.9)
divy W =0; (7.10)
15114 15114

where 03/0t = —{(divy V)y,)a if px + mo = 00 and 3 = 0 if p. + no < 0o and n(x) is the unit normal
vector to S at a point x € S.

Proof. In order to prove (7.4), into Eq. (1.3) insert a test function ¥° = c¥p(x,t, /<), where ¢¥(x,t,y) is
an arbitrary 1-periodic and finite on Y; function in y. Passing to the limit as £ \ 0, we get

Vi il(x,t,y) =0, yeYs (7.12)
Next, fulfilling the two-scale limiting passage in the equality
XET(_E — O
we arrive at
xII =0,
which along with Eqgs. (7.12) justifies Eq. (7.4).
Equations (7.5)—(7.9) appear as the result of two-scale limiting passages in Eqs. (1.2), (3.3), (3.4)

with the proper test functions being involved. Thus, for example, Eqs. (7.8) and (7.9) arise if we consider
the sum of Eqs. (3.3) and (3.4)

1,1 1
- _ d fe B (x°—m), 7.13

Oépp +anﬂ- + IV W 7,”(1_7,”/)/6 (X m) ( )
multiply it by an arbitrary function independent of the “fast” variable &/, and then pass to the limit as
£\, 0. In order to prove Eq. (7.10), it is sufficient to consider the two-scale limiting relations in Eq. (7.13)
as £ \, 0 with the test functions sy(x/2)h(x,t), where ¥ and h are arbitrary smooth functions. In order

to prove Eq. (7.11) it is sufficient to consider the two-scale limiting relations in

£ Ow® ey
X((% —v)(). a

Corollary 7.1. If p. + no = oo, then the weak limits p, w, and q satisfy relations (4.12).

Lemma 7.2. For all (x,t) € Qr the relation

1 —
divy {uox(D(y, V) + D(z,v)) — (Q + %ﬂ') : I} =0 (7.14)
holds true.
Proof. Substituting a test function of the form ¥® = ey (x,t,x /<), where ¥(x,t,y) is an arbitrary 1-pe-
riodic in y function vanishing on the boundary S, into integral identity (1.3) and, passing to the limit as
£\, 0, we arrive at Eq. (7.14) on the elementary cell Y. |

Lemma 7.3. Let p = mps + (1 — m)ps. Then the functions w® = (W)y,, v, q, and 7 satisfy in Qr the
system of macroscopic equalions
ov O?w*

Proof. Equations (7.15) arise as the limit of Eqgs. (1.3) with the test functions being finite in Q7 and
independent of . U

— pF = dive{ o (mD(z, ) + (D(y, V))y,) — (¢ +7) - I}. (7.15)



7.3. Micro- and Macroscopic Equations 11.
Lemma 7.4. If \; = oo, then the weak limits of {v°} and {Ow®/0t} coincide.
Proof. Let ¥(x,t,y) be an arbitrary function periodic in y. The sequence {o®}, where

o = /\/a,\V'wE(m,t)\Il (:c,t, ;) dx,
Q

is uniformly bounded in ¢. Therefore,

/&:V'wE\II (:c, t, ;) dr = \/L_(TE —0

Q
as € \, 0, which is equivalent to

// W(z,t,y)Vy‘Il(m,t,y) dmdy - 07

or W(z,t,y) = w(x,t). Thus, the sequence {dw?/dt} converges strongly in L?(Qr) and, due to the

equality
cf o OwT\ 0
X at - 9

its limit dw/0t coincides with the limit v of the sequence {v®}. O

Lemma 7.5. Let Ay < oco. Then the weak and two-scale limits m and W satisfy the microscopic relations

PwW 1
Ps 8t2_ — AlAyW — VyR — mvxﬂ' + psF, Y < Yg, (716)
15)%%4

= 7.17

Bl v, Yy, ( )
in the case A\y > 0, and relations
PW 1

s - = -3 VvV 3F7 YS; 1

P 5 VyR 1_mV7r+p Yy (7.18)
oW

(7—1))%0, yey, (7.19)

in the case A\y = 0.
In Eq. (7.19) n is the unit normal to .

Proof. Differential equations (7.16) and (7.18) follow as £ N\, 0 from integral equality (1.3) with the test
function ¥ = @(xs~!) - h(x,t), where ¢ is solenoidal and finite in Y.

Boundary condition (7.17) is a consequence of the two-scale convergence of {,/a\V,w*} to the func-
tion VA1 V,W(x,1,y). On the strength of this convergence, the function V,W (z,t,y) is L3-integrable
in Y. The boundary condition (7.19) follows from Egs. (7.10), (7.11). O

7.4. Homogenized Equations I. Here we derive homogenized equations for the liquid component.

Lemma 7.6. If \y = oo, then dw/dt = v and the weak limits v, p, q, and 7 satisfy in Qr the ini-
tial-boundary-value problem

ﬁ% = divm{quf s D(x,v) + Bg divy, v + Cgﬂ'
t
1 / (At —7) : D(x,v(x, 7)) + Bl (t — 1) dive v(z,7) + C{(t — 7)n(2, 7)) dT} — V(g + )+ pF,
0 (7.20)



1 (’9pf

Po; Ot +Ef ]D)(x,v)Jrcgszr(erbg)divv
0

+/ (BL(t — ) : D(w, v(z, 7)) + el (t = P)pala,7) 16 (t — 7)divole, 7)) dr —0,  (7.21)
0

Vo Op 1 (’9p 1 on
Lo L0 =0, 22
+ U ot + -~ +divy,v =10 (7.22)

where the symmetric strictly positively definite constant fourth-rank tensor A, fourth-rank tensor A{ (t),
constant matrices CJ, BY, and El, matrices C{ (1), B{(t), and E{(t), scalars b} and ¢}, and functions

b{(t) and c{(t) are defined below by formulas (7.27)—7.29) and (7.31).
Differential equations (7.20) are endowed with homogeneous initial and boundary conditions

v(x,0)=0, €, v(x,t)=0, €S8, t>0. (7.23)
Proof. In the first place let us note that v = dw/dt due to Lemma 7.4. Let us consider for simplicity the
case
Px+ 10 < 00.

The homogenized equations (7.20) follow from the macroscopic equations (7.15) after we insert in
them the expression

po{D(y, V))y, = ,qug s D(x,v) + Bg divy v + Cgﬂ'
¢
+ /(A{(t —7): D(2,v(z, 7)) + B{(t — 7)div, v(z,7) + C{(t — T)n(z, 7)) dr.
0
In turn, this expression follows by virtue of solutions of Eq. (7.5) in the form

op

Q:P—Vox(diVmU+diVyV)+VO(X) BT

and Eqgs. (7.7) and (7.14) on the pattern cell Y. Indeed, setting

V= Z VI () Dy, t) + VO (w)ps(z, t) + VIV () div v(a, 1)
4,7=1

t
+ /( Dy, t — 1) Dy, 7) + VOly,t — 1)ps(,7) + VI (y,t — 1) divo(z, 1) dr) ,
0

Q= ZQ Dyj(x, 1) + Q3 (W)ps(. 1) + QL (y) divv(x, 1)

3,j=1

L3
v ( S QU (y,t — ) Dyl 7) + QOy, t — Ppul@,7) + QD (y,t - 7) divv(a, 7) dr),
0

t 3
Py = /( Z Py ¢ — 7)Djs(x, 7) + POy, t — T)pg(, 7) + PO (y, t — 7) div v(e, 7) ClT) ,
0

4,j=1

1/ 0y ov;




we arrive at the following periodic boundary-value problems in Y:
divy (x (oD (y, VD) - Q1) ) =0,
1 Pl
p()’ f ot

+ div, V) — 0,

QU — plid) 4 ﬂap(m (7.24)
po,y O
divy<x<uom><y, 8 1 19 - Q{7 = o,

g g g 14 ij
P|t]0+d1 yV< & =0, QE)” - _OP|§:J(>)3

Do, f Po,r
divy (x(poD(y, V) — Q1)) =0,
0
1 orPY VO g,
Do, f ot
0
© _ po) | Y 9P
? Ty ot (7.25)
. (1—-x)
div, (X(MOD(% ) Qo I) — mﬂ =0,
1 . Vi
_P|£O:)0 + divy VE)()) =0, QE)O) = _OP|£0:)03
Do, Po,r
divy (x(uoD(y, V) — QWD) = 0,
1 apW
- v, VU —
" + divy, 0,
1
ol — p | o 9P >7 (7.26)
Do, f ot
divy, (x(uoD(y, V) — V1) = o,
1
_P|go + divy VE) Jr1= 0, Qo = ﬂpﬁ?o-
Do, f Do,r

On the strength of the assumptions on the geometry of the pattern “liquid” cell Yy, problems (7.24)—(7.26)
have unique solution up to an arbitrary constant vector. In order to discard the arbitrary constant vectors
we demand

<V(ij)>yf _ <V(0)>Yf _ <V(1)>Yf — <V(2)>Yf —0.
Thus,

3 3
Al =m > e 9+ Al A= (DY, V), @ JY, (7.27)
3,7=1 2,7=1

= Ho Z Ny ©J7, (7.28)

3,j=1

Cf = o, V§)y,, () = po(Dly, V<0>>>Yf7} (7.29)

B — 10Dy, Vi))y,,  BL(1) = to(D(y, VD)),
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Symmetry of the tensor A/ follows from symmetry of the tensor Ag, and symmetry of the latter follows
from the equality

47 iF ki 14 i ki
10Dy, VI )y, T = oy, VD) Dy, VID))y, — pQ—O<P|§;3 Py, (7.30)
O7f

which appears by multiplication of Eq. (7.24) for V() by VD and by integration by parts using the
corresponding continuity equation.

This equality also implies positive definiteness of the tensor A7. Indeed, let Z = (Z;;) be an arbitrary
symmetric constant matrix. Setting

3 3
Z=% Vi'7Zy, P=3% Pz,
1,j=1 1,j=1
and taking into account Eq. (7.30), we get
vy | =~
oDy, Z))v; : Z= —po(D(y, Z) : D(y, Z))v; = —5—(P)y;.
O7f

This equality and the definition of the tensor A/ give
(AT :2):Z = ((D(y, Z) + Z) : (D(y, Z) + L))y, + p2 ——(P)y,.
0.f

Now the strict positive definiteness of the tensor A/ follows immediately from the equality above and the
geometry of the elementary cell Y;. Namely, suppose that (A®: Z) : Z = 0 for some matrix Z such that
Z:Z = 1. Then (D(y, Z)+Z) = 0, which is possible if and only if Z is a linear function in y. On the other
hand, all linear periodic functions on Y} are constant. Finally, the normalization condition (VW >>yf =0

yields that Z = 0. However, this is impossible because the functions V) are linearly independent.
Finally, Egs. (7.21) and (7.22) for the pressures follow from Eqgs. (7.5), (7.6), (7.8) and equality
(divy V)y, = E} : D(x,v) + cjps + b divo
¢
+ /(E{(t — 1) :D(x,v(x, 7)) + ] (t — T)ps(@, 7) + 0] (t — 7) divo(z,T)) dr
0

with
0 = Lo Z (div, V @ JY,
3,j=1
= Lo Z (div, V)y, @ IV, (7.31)
3,j=1
e} = motdivy Vi7hy,, ef (1) = poldiv, V©)y,,
b = potdivy Vv, b{(6) = po(div, VIV)y,.
The lemma is proved. |

7.5. Homogenized Equations II. We complete the proof of Theorem 5 with homogenized equations
for the solid component.

Let A1 < oo. In the same manner as above, we verify that the limit v of the sequence {v®} satisfies
the initial-boundary-value problem like (7.20)—(7.23). The main difference here is that, in general, the
weak limit dw/dt of the sequence {Ow®/0t} differs from v. More precisely, the following statement is
true.



Lemma 7.7. Let \y < oo. Then the weak limits v, w*, p, q, and © of the sequences {v¢}, {(1 — x*)w*},
{p°}, {¢°}, and {x°} satisfy the initial-boundary-value problem in Qr, consisting of the balance of mo-
mentum equation

2,ws

BT +V(qg+7)—pF

(’9'0Jr
ot o

¢
= divm{qug s D(x,v) + Bgﬂ' + B{ div, v} + /Bg(t —7)div, v(x, 7) dT}, (7.32)
0

the continuity equation (7.21) and first state equation in (7.22) for the liquid component, where Ag, Bg fBg
are the same as in (7.20), the continuity equation

1 0p 1 orn w?® . B
p_*EJF%EJFdW BN + mdivy v =0, (7.33)
the relation
¢
Jw?* -
(= mpo(, 1) +/B (t—7) - 2(x,7) dr, (7.34)
0
1 0
2w, 1) = —1——=Vur(@,0) + pF (@, 1) = pu oo, )
in the case Ay > 0, or the balance of momentum equation in the form
OPw? ov 1
ST o0 sBS e - - 5) T O s .
Ps o0 psBs 8t+((1 m)I — B3) ( 1_mV T+p F) (7.35)

in the case \y = 0 for the solid component. The problem is supplemented by boundary and initial condi-
tions (7.23) for the velocity v of the liquid component and by the homogeneous initial conditions and the
boundary condilion

wi(x,t) -n(x) =0, (x,t)e S, t>0, (7.36)

for the displacement w* of the solid component. In Eqs. (7.34)—7.36) n(x) is the unit normal vector to S
at a point x € S, and matrices Bi(t) and B3 are given below by Fgs. (7.38) and (7.40).

Proof. The boundary condition (7.36) follows from Eq. (7.9), the equality
ow  Jw®
ot ot
and the homogeneous boundary condition for v.
The same equality and Eq. (7.8) imply (7.33). The homogenized equations of balance of momen-
tum (7.32) are derived exactly as before. Therefore, we omit the relevant proofs now and focus only on
the derivation of the homogenized equation of the balance of momentum for the solid displacements w?®

(a) If \y > 0, then the solution of the system of microscopic equations (7.10), (7.16), and (7.17),
provided with the homogeneous initial data, is given by formula

t t
W = / X, T +B1(y7 ) E(ZIZ,T)) dTy R/Rf(y,t—T)é(il?,T) dTy
0 0

in which
3
BS y7 ZWZ Yy, )®ezy Rf y7 ZRZ y7
=1



and the functions W(y, t) and R¥(y,t) are defined by virtue of the periodic initial-boundary-value prob-
lem

W' AW i . i
psW—)\l W'+ VR =0, leyW =0, yeyY, t>0,
W'=0, yenr, t>0; (7.37)
i oW’
w (y7 O) =0, pSW(y7O) =e; YeYs
In Eq. (7.37) e; is the standard Cartesian basis vector.
Therefore,
OB}
Bi(t) = < 1> (t). (7.38)
ot /v,

Note that due to restrictions on the geometry of the elementary cell Y, the problem (7.37) has a unique
weak solution, which cannot be a classical one in view of unmatched boundary and initial conditions. That
is why the function Bj(t) has no time derivative at ¢ = 0.

(b) If Ay = 0, then in the process of solving the system (7.10), (7.18), and (7.19) we firstly find the
pressure R(x,t,y) by virtue of solving the Neumann problem for Laplace’s equation in Y in the form

3
R($7t7 y) - Z Rz(y)ez : 2(217715)7
i=1

where R%(y) is the solution of the problem
Asz' =0, yeYy vsz m=n-e, Yycy. (739)
Formula (7.35) appears as the result of homogenization of Eq. (7.18) and

3

By =Y (VRi(y))y, @ e, (7.40)
=1

where the matrix (1 —m)I — Bj is symmetric and positively definite. In fact, let

3
R=) R
=1
for any unit vector £&. Then

(B-& &=, =VR))y, >0
due to the same reasons as in Lemma 7.6. O

8. Proof of Theorem 6

8.1. Weak and Two-Scale Limits of Sequences of Displacement and Pressures. Let pug = 0.
We use again Lemma 2.1 and conclude that there are functions w$, ws € L™ (O, T; W%(Q)) such that

wr; =w" in Qp x(0,7), wi=w" in Qs x(0,7T).
On the strength of Theorem 1, the sequences {p°}, {¢°}, {7°}, {w®}, {w?}, {\/@Vw5}, {w}, and

{/axVwe} are uniformly in £ bounded in L?(€27). Hence there exist a subsequence of small parameters
{e > 0} and functions p, ¢, 7, w, wy, and w, such that

ps - D qE —q, ﬂ-g - T, ws — w, w? - wf7 wi — Ws (81)
weakly in L2(Qr) as £ \ 0.

Note also that
(1 =x%)anD(x,w3) — 0, xauD(x,w}) —0 (8.2)

strongly in L2(Qr) as £ \, 0.



Relabeling if necessary, we assume that the sequences converge themselves.

Now, taking into account Nguetseng’s theorem, we conclude that there exist 1-periodic in y functions
Pz, t,y), Wz, t,y), Qz,t,y), Wz, t,y), Wiz, t,y), and W(z,{,y) such that the sequences {p°},
{r}, {&*}, {w®}, {w5}, and {w} two-scale converge to P(x,t,y), U(x,t,y), Qx,t,y), W(x,l,y),
W i(x,t,y), and W(x,t,y), respectively.

Finally note that if g1 = 0o (A1 = 00), then due to Lemma 7.4 the sequence {w?3} ({w{}) converges

strongly to wy (w) and wf = Wy, = mwy (w* = (W)y, = (1 —m)ws).

8.2. Micro- and Macroscopic Equations. As before we begin the proof of the theorem with the
macro- and microscopic equations connected with the continuity equations.

Lemma 8.1. For all x € Q and y € Y, weak and two-scale limits of the sequences {p°}, {7°}, {¢°},
{we}, {w5}, and {wS} satisfy the relations

X X I—x

Q=q_, P L (8.3)

q i —10p
- — ) 8.4
m 1—m’ q P+ vop, ot’ ( )
LTy divyw = 0; (8.5)

P« o

w(x,t) -n(x) =0, xS, t>0 (8.6)
divy W = 0; (8.7)
W =xW;+(1-x)W.. (8.8)

Proof. The derivation of Egs. (8.3)—(8.8) is the same as the derivation of Eqs. (7.4), (7.5), (7.8) and (7.10),
(7.11) in Lemma 7.1. Thus, for example, the first relation in Eq. (8.4) follows from Eq. (8.3) and from
the strong convergence of the sequence {¢¢ + 7°} to ¢ + 7, which implies the equality Q@ + I = ¢+ . O

~—

Lemma 8.2. For all (x,t) € Qr the relation

2w’ P’ 1
Prge TP e T T m

Ve + pF (8.9)
holds true.

Proof. Substituting a test function of the form ¥ = ¥ (x,t) into integral identity (1.3) and passing to the
limit as £ \, 0, we arrive at Eq. (8.9). O

Lemma 8.3. Let 1 = oo and Ay < oo. Then functions {W, wy, 7w} satisfy in Yy the system of micro-
scopic equations

PW 1
Psm — MAW -V, R® — mvmﬂ' +pF, yevys, (8.10)
W =ws, yev, (8.11)
in the case Ay > 0, and relations
0*W 1
s = —VyR = ——V.r 4 p.F, Y., 8.12
Ps 5 VR 1_mV7r+p Yy < (8.12)
(W_wf)’n:(x ye, (813)

in the case A\y = 0.
In Eq. (8.13) m is the unit normal to .

The proof of this lemma repeats the proof of Lemma 7.5.
In the same way one can prove the following lemma.



Lemma 8.4. Let p; < oo and Ay = oo. Then functions {W, ws, q} satisfy in Yy the system of micro-
scopic equations

PW 151%% 1
— mAy— — V,R  — =V, F, Yy, 8.14
Pr—gm = MBy— = Vy —Vaq tpr B,y €Yy (8.14)
W =w, yen, (8.15)
in the case py > 0, and relations

PW 1
Prm = Vol = —Vuq+ psF, yeYy, (8.16)
(W—w) n—0, yer, (8.17)

in the case py = 0.

Lemma 8.5. Let 11 < 0o and M < oo and p = prx + ps{1 — x). Then functions {W, n} salisfy in' Y
the system of microscopic equalions

_O*W 1

~ . ow
P+ =g iy Lt (5. 50 ) e - 0D W - REY. (sas)

In the proof of the last lemma we additionally use Nguetseng’s theorem, which states that the sequence
{eD(x, 0w /ot)} ({eD(x,w*®)}) two-scale converges to D(y, OW /ot) (D(y, W)).

8.3. Homogenized Equations. Lemmas 8.1 and 8.2 imply the following statement.

Lemma 8.6. Let p1y = A; = oo; then wy = wy = w and funclions w, p, q, and 7 satisfy in Qr the
system of acoustic equations

d*w 1
. Vo7 + pF, 8.19
P = Ty TP (8.19)
1 1 .
—p+ —7 + divy w =0, (8.20)
P« o
vy O 1 1
g=pt2L g T, (8.21)

py O m 1—m

the homogeneous initial condilions

w(x,0) = %—1;(:::,0) —0, zeQ, (8.22)
and the homogeneous boundary condilion
w(x,t) -n(x) =0, xS, t>0. (8.23)

Now we pass to more complicated cases.

Lemma 8.7. Let p1 = oo and A\; < oo. Then functions wy, w®, p, q, and 7 satisfy in Qr the system
of acoustic equations, which consists of the state equations (8.21), balance of momentum equation for the
liquid component

(’92'wf J2w* 1 .
Prm=—pm— T Ps—m = ——Vaq + pF, (8.24)
the continuity equation
1 1
—p + —7 + mdiv, wy + div, w® =0, (8.25)
Px o



and the relation

i
ow?® Ow s s
I 1 +/B1(t—7')~z (a,7) dr, (8.26)
0
s 1 (’92'wf
22, ) = =g Vam(@, 1) + psF (@, 1) — pe—a=(, 1),

in the case Ay > 0, or the balance of momentum equation for the solid component in the form

P*w* . OPw . 1

in the case \y = 0. The problem (8.21), (8.24)—(8.27) is supplemented by homogeneous initial condi-
tions (8.22) for the displacements in the liquid and solid components and homogeneous boundary condi-
tion (8.23) for the displacements w = mw; + w®.

In Eqgs. (8.26), (8.27) matrices Bi(t) and B3 are the same as in Theorem 5.

Proof. Equation (8.24) follows directly from Eq. (8.9). The continuity equation (8.25) follows from
Eq. (8.5) if we take into account the equality

w=mw;y + w".
The derivation of Eqs. (8.26), (8.27) is exactly the same as in Lemma 7.7. O

Lemma 8.8. Let p; < 0o and A\ = oo. Then functions w!, w,, p, q, and 7 satisfy in Qp the system
of acoustic equations, which consists of the state equations (8.21), the balance of momentum equation for
the solid component

2w/ Jw, 1
1— = — o F 8.28
the continuity equation
1 1
—p+ —7x +divew + (1 —m)div, w, =0, (8.29)
Px Mo
and the relation
ow' 0 /
R ey /B{(t _ )2 (@, ) dr, (8.30)

0
2

1 o“w
I _ s
2zl (x, 1) = ——Vq(x,t F(x,t) — pr—>(x,1),
(@,0) = = Vaq(z, 1) + prF(2,1) = pr—po(@,1)
in the case py > 0, or the balance of momentum equation for the liquid component in the form

Pw! Pw, 1
Pr =gz — pr£~ 5 + (ml — Bg) : <_Evrq +pfF> (8.31)

in the case pu1 = 0. The problem (8.21), (8.28)—(8.31) is supplemented by homogeneous initial con-
ditions (8.22) for displacements in the liquid and solid components and homogeneous boundary condi-
tion (8.23) for the displacements w = w’ + (1 — m)ws.

In FEqgs. (8.30), (8.31) matrices B{(t) and Bg are given below by formulas (8.32), (8.33) and the
symmetric matric mi — Bg is strictly positively definite.



Proof. The proof of this lemma repeats the proofs of the previous lemmas and

3
= <Z V"(yyt)> ® e, (8.32)
i=1 Yy
3
Bl = (VR (), © e, (8.33)
=1

where functions V*(y, t) solve the periodic initial-boundary-value problem

ov? , ; ,
= iv, V' = Y,
Por BN +VR =0, divy 0, yeYy t>0, (8.34)
Vz:()y ye, t>07 pfvz(y70):ei7 yeyfy
and functions R{ (y) solve the periodic boundary-value problem
AyR{ =0, yeYy VyR{ ‘nm=mn-e, YEc. (8.35)

In fact, by definition
wf($7t) - <W($7t7y)>Yf7
where functions W (z,t,y) and R/(x,t,y) for 1 > 0 are the solution to the system of microscopic
equations (8.7), (8.14), (8.15). We look for the solution of this system in the form
¢
+/B (y,t —7) 2 (2, 7)dr,
0

t
R (. t,y) — /Rf(y,t _ 1) 2 () dr
0

ow (’9'ws
—(x, 1
at ('T"? 7y)

In turn,

Bf y7 sz y7 ®ely Rf y7 ZRZ y7
=1

If 1 = 0, then functions W (z, t,y) and R/(x,t,1y) solve the system (8.7), (8.16), (8.17), where
(x,t,y) ZRf Ye; - 27 (x,1).

Note that, as before, for the case of the matrix (1 —m)/ — Bj in Lemma 8.7, the matrix m/ — Bg is
symmetric and strictly positively definite. O

The proof of Theorem 6 is completed by

Lemma 8.9. Lel 1 < o0 and A\ < oo. Then functions w, p, q, and 7 salisfy in Qp the system of
acoustic equations, which consists of the continuity and the state equations (8.20) and (8.21) and the

relation
t

%—1: _ /Bﬁ(t _ 1) V@, 7) dr + flx, 1), (8.36)

0
where B™(t) and f(x,t) are given below by Fqs. (8.40) and (8.41).

The problem (8.20), (8.21), and (8.36) is supplemented by homogeneous initial and boundary condi-
tions (8.22) and (8.23).



Proof. Let

i 3 P

W [ Wit - 05 @) 1 Wt - e ) b
/&

i=1

=1

t o3
R = /z:{R7T y,t—17) g;:(:c 7) +RF(y,t—T)Fi(ZIZ,T)}dT,
0

3

where F' = 3" Fie; and functions {W7(y,t), RF(y,t)} and {WI(y,t), RF (y,t)} are periodic in y solu-
=1

tions of the system

oW : : a2WJ
divy ¢ ixD |y, — | + (1 =x)D(y, W)) = RIT p =)

Y { ot ) ot (8.37)

leyW =0, ye¥Y, t>0, j=m,F

which satisfy the following initial conditions:
OW?T
WT(y,0) =0, jorti(y,0)=— Y, .
F,0) =0, p—=(4,0)=—7——e, x€ (8.38)
oW’

Wi(y,0) =0, L(y,0)=e, xeY. (8.39)

ot

Then the functions W and R solve the system of microscopic equations (8.7) and (8.18) and by definition
w = (W)y. Therefore,

BT(t) = §;<8Zf (y,t)>y ® e;, (8.40)
_ j§;<aWF> (t — 1) Fil, 7) dr. (8.41)

The solvability and uniqueness of problems (8.37), (8.38) or (8.37), (8.39) follow directly from the energy
identity

%<ﬁ<8gi>2>y(t) + %(AlD(y, W) D(y, W)y, (1)
oo 2 (e -
J g

1 .

ﬁ”<:> B =)y
Ply

As before, Eqs. (8.37) are understood in the sense of distributions and the function B”(¢) has no time

derivative at ¢ = 0. That is why we cannot represent relation (8.36) in the form of the balance of

momentum equation, like (8.19) or (8.27). O

fori=1,2,3 and j =7, F. Here
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