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Abstract

Background and purpose

The study analyzed the association of functionally significant polymorphisms of matrix

metalloproteinases (MMPs) genes with the development of gastric ulcer (GU) in Caucasians

from Central Russia.

Methods

The 781 participants, including 434 patients with GU (196 Helicobacter pylori (H. pylori)-pos-

itive and 238 H. pylori-negative) and 347 controls (all H. pylori-negative) were recruited for

the study. Ten SNPs of the MMP1 (rs1799750), MMP2 (rs243865), MMP3 (rs679620),

MMP8 (rs1940475), and MMP9 (rs3918242, rs3918249, rs3787268, rs17576, rs17577, and

rs2250889) genes were considered for association with GU using multiple logistic regres-

sion. The SNPs associated with GU and loci linked (r2�0.8) to them were analyzed in silico

for their functional assignments.

Results

The SNPs of the MMP9 gene were associated with H. pylori-positive GU: alleles C of

rs3918249 (OR = 2.02, pperm = 0.008) and A of rs3787268 (OR = 1.60–1.82, pperm� 0.016),

and eight haplotypes of all studied MMP9 gene SNPs (OR = 1.85–2.04, pperm� 0.016)

increased risk for H. pylori-positive GU. None of the analyzed SNPs was independently

associated with GU and H. pylori-negative GU. Two haplotypes of the MMP9 gene (contrib-

uted by rs3918242, rs3918249, rs17576, and rs3787268) increased risk for GU (OR = 1.62–

1.65, pperm� 0.006). Six loci of the MMP9 gene, which are associated with H. pylori-positive

GU, and 65 SNPs linked to them manifest significant epigenetic effects, have pronounced

eQTL (17 genes) and sQTL (6 genes) values.
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Conclusion

SNPs of the MMP9 were associated with H. pylori-positive GU but not with H. pylori-nega-

tive GU in Caucasians of Central Russia.

Introduction

Gastric ulcer (GU), a disease occurring in the stomach mucosa, is the mucosal inflammation

and necrotic lesion that extend to the underlying smooth muscles and are caused by multiple

pathogenic factors [1]. GU is a common disease affecting about 10% of population [2]. Com-

mon causes of GU include Helicobacter pylori (H. pylori) infection (70–80% of GU patients),

intake of non-steroidal anti-inflammatory drugs (NSAIDs), and the digestion of the gastric

mucous by gastric acid/pepsin [3, 4].

The development of GU is a complex process that involves secretion of acids, generation of

the reactive oxygen species, inhibition of prostaglandins, and degradation of the extracellular

matrix (ECM) [5]. Damage of gastric mucosa is associated with ECM degradation in which

matrix metalloproteinases (MMPs) play a key role [6]. MMPs are calcium-dependent endo-

peptidases involved in various processes, including ECM remodeling, cell proliferation, and

inflammation. MMPs are synthesized and secreted by gastric epithelial cells, neutrophils, and

macrophages [7]. Remodeling of the ECM by MMPs is thought to be one of the important fac-

tors contributing to gastric ulceration [8, 9]. Several animal studies were focused on the role of

MMPs in GU [9–11]. There is evidence that MMP9 is important in the early stage of chronic

GU [12].

Genetic variation in the MMP genes may be an important element of a complex genetic

risk profile that determines the development of GU in chronic H. pylori infection [13]. H.

pylori infection can increase the MMP3, MMP7, and MMP9 levels in the gastric mucosa and

sera [14–16]. The significantly higher levels of the MMP9 protein were observed in H. pylori-
positive GU than in the H. pylori-negative one [17].

Despite the solid evidence for the important role of MMP in GU, an association of MMP

polymorphisms with GU has been studied poorly: there are only very few studies on this prob-

lem [13, 18]. The lack of experimental evidence about the possible association of the MMPs
with GU prompts for filling this gap.

This study analyzed polymorphisms of the MMP1, MMP2, MMP3, MMP8, and MMP9
genes for the association and possible role in the development of GU in a Caucasian sample

from Central Russia.

Materials and methods

Study subjects

Given the available data about the allele frequencies of the MMP gene polymorphisms in

patients with GU and controls [13], we calculated that sample size of 700 should be sufficient

to ensure the statistical power of 0.80 at α = 0.05 significance level. In total, 781 participants,

including 434 patients with GU and 347 controls, were recruited for the study. The partici-

pants were enrolled according to the inclusion criteria: birthplace in Central Russia and Rus-

sian ethnicity (self-reported) [19, 20].

All participants were examined by qualified gastroenterologists. GU and complications (if

any) were diagnosed by conventional clinical and endoscopic examinations. The control
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group consisted of healthy individuals without any symptoms of gastrointestinal disease [21].

Endoscopy was not performed in healthy individuals because of both ethical reasons and the

low probability of finding an active ulcer in patients without the symptoms [22]. Patients and

control group volunteers having used NSAIDs, corticosteroids, and aspirin for a long-term

treatment were excluded.

The H. pylori infection in patients was diagnosed by positive findings on histologic exami-

nation of biopsies obtained during endoscopy procedures by a certified pathologist and using

the Giemsa stain protocol [23]. Among 434 patients with GU, 196 were H. pylori-positive and

238 were H. pylori-negative. In controls, the presence of H. pylori was determined using a com-

mercial IgG ELISA kit (Plate Helicobacter IgG, Roche). Control group volunteers with the

presence of H. pylori infection were excluded.

The study protocol was approved by the Medical Institution Ethics Committee of Belgorod

State University. All study participants signed informed consent prior to enrolment in the

study. The clinical and endoscopic examination of the participants was conducted at the

Gastroenterology Division of Belgorod Regional Clinical Hospital.

DNA isolation and genotyping assay

Whole blood samples (5 mL) were collected from all study participants into EDTA-containing

tubes and maintained at − 20˚C until processed [24, 25]. Genomic DNA was extracted from

the buffy coat by the phenol/chloroform method as described earlier [26].

Ten SNPs of the MMP genes (rs1799750 MMP1, rs243865 MMP2, rs679620 MMP3,

rs1940475 MMP8, rs3918242, rs3918249, rs3787268, rs17576, rs17577, and rs2250889 MMP9)

were selected for this study according to the criteria [27, 28]: previously reported associations

with digestive diseases (gastric and duodenal ulcer, gastric cancer, etc.), regulatory potential,

and MAF > 0.05.

All selected SNPs had significant regulatory potential as evidenced by the HaploReg online

tools [29] (S1 Table); eight polymorphisms were associated with digestive diseases (gastric and

duodenal ulcer, gastric and esophageal cancer, digestive cancers, gastritis) (including two

SNPs associated with the peptic ulcer) in previously published candidate gene association stud-

ies (S2 Table). Two SNPs (rs3918249 and rs3787268 MMP9) did not demonstrate a significant

association with digestive diseases but had significant regulatory potential (according to

HaploReg).

The genotyping was performed using the MassARRAY1 4 System by Agena Bioscience1.

Blind replicates were genotyped to control the quality [30]. Laboratory personnel that con-

ducted genotyping was blinded to patients’ information. The repeatability test was performed

for 5% of randomly selected samples, yielded 100% reproducibility.

Statistical and functional analysis

The observed allele and genotype frequencies were checked for the correspondence to the

Hardy-Weinberg equilibrium using the chi-square test [31]. Associations of the SNPs with GU

were analyzed using the logistic regression and assuming dominant, log-additive, and recessive

genetic models [32]. The regression analysis was adjusted for covariates: BMI as a quantitative

variable, whereas a family history of peptic ulcer, alcohol and tobacco consumption, stress, the

presence of cardiovascular and endocrine pathology were applied as qualitative parameters

(Table 1). The given sample size (434 patients with GU and 347 controls) was sufficient to

detect differences in allelic frequencies between the affected subjects and controls at

OR = 1.33–1.82 for the additive model, OR = 1.58–1.86 for the dominant model and

OR = 1.61–27.0 for the recessive model (at 80% power, α = 0.05 for 2-sided test). Statistical
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power for each SNP was estimated using Quanto 1.2.4 [33]. The haplotype blocks were identi-

fied using the «Solid Spine» algorithm (D’ > 0.8) as implemented in HaploView v.4.2 [34].

The association analyses and adjustment for multiple comparisons by the adaptive permuta-

tion test [35] were conducted using the PLINK v. 2.0 software [36]. The significance value was

set at pperm<0.017 (after the Bonferroni correction based on the numbers of paired compari-

sons, n = 3: GU–control, H. pylori-positive GU—control, and H. pylori-negative GU—

control).

The functional importance (missense replacement, eQTLs and sQTLs, regulatory potential)

of the genetic variants associated with GU and those linked to them was studied in silico [37,

38]. The SIFT online tool [39] was used to identify missense replacements and predict their

functional effects. The SNP epigenetic effects were analyzed using RegulomeDB [40] and Hap-

loReg [29]. The data from the GTExportal browser [41] was used to estimate the influence of

Table 1. Phenotypic characteristics of the study participants.

Parameters Control GU p

mean ± SD, % (n) mean ± SD, % (n)

N 347 434 -

Age, years (min–max) 48.47±13.69 (22–79) 49.08±11.18 (22–79) 0.36

Gender ratio, f/m 66.28/33.72 (230/117) 68.66/31.34 (298/136) 0.53

BMI, kg/m2 26.83±5.09 27.93±5.02 0.003

Age of developing peptic ulcer, years - 45.47±12.08 -

Family history of peptic ulcer 4.32 (15) 17.05 (74) 0.0005

Current smoking 14.99 (52) 25.35 (110) 0.001

Alcohol consumption 32.28 (112) 49.31 (214) 0.0005

Stress 37.17 (129) 79.26 (344) 0.0005

Positivity H. pylori test (endoscopic biopsy and histological identification) - 45.16 (196) -

Anatomical characteristics of the ulcer

Location

Stomach: Body - 5.07 (22) -

Pylorus - 5.53 (24) -

Antrum - 89.40 (388) -

Sizes ulcer (diameter) (cm) - 0.50±0.36 -

Sizes ulcer: Small (<0.5 cm) - 64.06 (278) -

Medium (0.5–1.0 cm) - 28.11 (124) -

Large (>1.0 cm) - 7.83 (32) -

Associated complications

Bleeding - 1.38 (6) -

Perforation - 5.99 (26) -

Stenosis - 2.30 (10) -

Malignancy - 3.23 (14) -

Somatic pathologies

Cardiovascular pathology 26.80 (93) 60.83 (264) 0.0005

Endocrine pathology 3.17 (11) 7.37 (32) 0.02

Kidney pathology 2.59 (9) 4.61 (20) 0.20

Respiratory system pathology 4.32 (15) 5.53 (24) 0.55

Nervous system pathology 7.78 (27) 9.68 (42) 0.42

Musculoskeletal system pathology 6.91 (24) 8.29 (36) 0.56

P values <0.05 are shown in bold.

https://doi.org/10.1371/journal.pone.0257060.t001
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the GU-candidate loci on mRNA levels and splicing QTLs. Likewise, regulatory potential,

eQTL and sQTL values of polymorphisms in strong linkage disequilibrium (LD, r2�0.8) with

the GU-associated loci were estimated [42, 43]. The linked SNPs were identified using Hap-

loReg [29].

Results

Baseline and clinical characteristics of the participants are presented in Table 1. The GU

patients had higher BMI (p = 0.003), higher percentage of positive family history of peptic

ulcer (p = 0.0005), alcohol (p = 0.0005) and tobacco (p = 0.001) consumption, stress

(p = 0.0005), the presence of cardiovascular (p = 0.0005) and endocrine (p = 0.02) pathology as

compared to the healthy participants (the data are shown in Table 1). Therefore, these parame-

ters were used as confounding factors in the logistic regression analyses.

The summary data about the studied SNPs is given in S3 Table. All SNPs corresponded to

the HWE (p>0.005, pbonf>0.05). None of the SNPs was independently associated with GU

according to any of the genetic models (Table 2). As to H. pylori-positive GU, only loci of the

MMP9 gene manifested association with the disease. Allele C at rs3918249 MMP9 locus was

associated with H. pylori-positive GU according to the dominant model (OR = 2.02, 95% CI

1.21–3.37, pperm = 0.008, power—94.68%), and allele A at rs3787268 MMP9 was associated

with H. pylori-positive GU according to the additive (OR = 1.60 95% CI 1.09–2.34, pperm =

0.016, power = 89.98%) and dominant (OR = 1.82 95% CI 1.14–2.89, pperm = 0.012,

power = 91.14%) genetic models (the data are provided in Table 3). Several haplotypes of the

studied SNPs MMP9 gene were associated with GU (four SNPs within two haplotypes,

OR = 1.62–1.65, pperm� 0.006) and H. pylori-positive GU (all six SNPs within eight haplo-

types, OR = 1.85–2.04, pperm� 0.016) (Table 4, Fig 1). None of the SNPs was associated with

H. pylori-negative GU either independently or within haplotypes (Table 3).

Functional SNP predictions

Non-synonymous SNPs. Among the six loci of the MMP9 gene associated with H. pylori-
positive GU, three SNPs were missense variant: rs17576 (amino acid change Gln279Arg, SIFT

score 0.29, SIFT prediction «tolerated»), rs2250889 (Arg574Pro, SIFT score 1.00, SIFT predic-

tion «tolerated») and rs17577 (Arg668Gln, SIFT score 0.02, SIFT prediction «deleterious»).

Table 2. Associations of the MMP gene polymorphisms with GU.

SNP Gene MAF n Additive model Dominant model Recessive model

OR 95%CI Р OR 95%CI Р OR 95%CI Р
L95 U95 L95 U95 L95 U95

rs1940475 MMP8 T 776 0.96 0.76 1.22 0.733 0.89 0.61 1.31 0.569 1.00 0.67 1.50 0.989

rs1799750 MMP1 2G 751 0.87 0.68 1.11 0.257 0.80 0.55 1.18 0.261 0.85 0.56 1.30 0.457

rs679620 MMP3 T 773 1.01 0.79 1.30 0.917 1.06 0.71 1.58 0.793 0.98 0.65 1.47 0.924

rs243865 MMP2 T 763 0.99 0.75 1.31 0.931 0.95 0.67 1.36 0.789 1.11 0.57 2.17 0.765

rs3918242 MMP9 T 767 0.76 0.54 1.08 0.131 0.76 0.51 1.12 0.165 0.56 0.17 1.82 0.336

rs3918249 MMP9 C 767 1.12 0.87 1.44 0.367 1.45 1.00 2.09 0.049 0.79 0.48 1.30 0.363

rs17576 MMP9 G 776 1.17 0.91 1.51 0.225 1.27 0.89 1.82 0.194 1.16 0.71 1.90 0.564

rs3787268 MMP9 A 775 1.23 0.90 1.67 0.188 1.37 0.96 1.96 0.081 0.76 0.29 1.95 0.564

rs2250889 MMP9 G 770 0.89 0.62 1.29 0.533 0.90 0.59 1.37 0.616 0.69 0.20 2.31 0.546

rs17577 MMP9 A 760 0.76 0.54 1.07 0.120 0.79 0.54 1.18 0.252 0.33 0.09 1.19 0.090

All results were obtained after adjustment for covariates. ОR, odds ratio; 95%CI, 95% confidence interval.

https://doi.org/10.1371/journal.pone.0257060.t002
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Regulatory effects predictions. According to RegulomeDB and HaploReg, all six SNPs of

the MMP9 gene (rs3918242, rs3918249, rs17576, rs3787268, rs2250889 and rs17577) associated

with H. pylori-positive GU possess significant regulatory effects. The RegulomeDB suggests

Table 3. Associations of the MMP gene polymorphisms with H. pylori-positive and H. pylori-negative GU.

SNP Gene MAF n Additive model Dominant model Recessive model

OR 95%CI Р OR 95%CI Р OR 95%CI Р
L95 U95 L95 U95 L95 U95

H. pylori-positive GU

rs1940475 MMP8 T 540 0.97 0.71 1.32 0.833 0.86 0.52 1.42 0.556 1.07 0.63 1.81 0.796

rs1799750 MMP1 2G 523 0.81 0.59 1.12 0.212 0.79 0.48 1.30 0.345 0.71 0.40 1.28 0.254

rs679620 MMP3 T 537 0.91 0.65 1.26 0.568 0.96 0.57 1.63 0.887 0.80 0.46 1.39 0.426

rs243865 MMP2 T 533 0.94 0.64 1.37 0.742 0.87 0.54 1.40 0.563 1.15 0.47 2.81 0.752

rs3918242 MMP9 T 533 0.87 0.56 1.36 0.539 0.94 0.57 1.56 0.811 0.28 0.03 2.23 0.228

rs3918249 MMP9 C 533 1.30 0.94 1.80 0.115 2.02 1.21 3.37 0.007 0.84 0.44 1.60 0.600

rs17576 MMP9 G 538 1.45 1.04 2.02 0.028 1.76 1.07 2.89 0.026 1.47 0.80 2.71 0.215

rs3787268 MMP9 A 539 1.60 1.09 2.34 0.016 1.82 1.14 2.89 0.012 1.52 0.55 4.17 0.419

rs2250889 MMP9 G 532 0.97 0.60 1.57 0.910 0.99 0.57 1.73 0.984 0.79 0.16 3.79 0.766

rs17577 MMP9 A 526 0.91 0.59 1.42 0.684 1.03 0.62 1.70 0.921 0.24 0.03 1.89 0.175

H. pylori-negative GU

rs1940475 MMP8 T 582 0.97 0.72 1.30 0.825 0.96 0.60 1.54 0.858 0.95 0.58 1.56 0.852

rs1799750 MMP1 2G 567 0.92 0.69 1.23 0.573 0.82 0.52 1.31 0.414 0.98 0.59 1.62 0.923

rs679620 MMP3 T 581 1.09 0.81 1.48 0.559 1.13 0.69 1.85 0.630 1.13 0.69 1.83 0.635

rs243865 MMP2 T 573 1.03 0.73 1.45 0.856 1.02 0.66 1.58 0.923 1.11 0.49 2.51 0.799

rs3918242 MMP9 T 577 0.68 0.44 1.06 0.089 0.62 0.37 1.03 0.064 0.80 0.21 2.99 0.740

rs3918249 MMP9 C 579 0.97 0.71 1.31 0.838 1.01 0.71 1.71 0.671 0.73 0.39 1.37 0.331

rs17576 MMP9 G 584 0.97 0.71 1.32 0.839 0.98 0.64 1.51 0.933 0.91 0.48 1.72 0.775

rs3787268 MMP9 A 581 0.93 0.63 1.37 0.708 1.05 0.68 1.63 0.816 0.18 0.02 1.43 0.106

rs2250889 MMP9 G 580 0.83 0.52 1.31 0.421 0.82 0.49 1.39 0.469 0.63 0.13 3.03 0.566

rs17577 MMP9 A 574 0.64 0.41 1.00 0.050 0.62 0.37 1.03 0.067 0.39 0.09 1.80 0.228

All results were obtained after adjustment for covariates. ОR, odds ratio; 95%CI, 95% confidence interval.

https://doi.org/10.1371/journal.pone.0257060.t003

Table 4. Significant associations of the MMP9 gene haplotypes with GU and H. pylori-positive GU.

SNPs Haplotype Frequency OR Praw value Pperm

Cases Controls

GU

rs3918242-rs3918249-rs17576 CCG 0.2568 0.1846 1.65 0.002 0.004

rs3918242-rs3918249-rs17576-rs3787268 CCGA 0.2306 0.1679 1.62 0.004 0.006

H. pylori-positive GU

rs3918242-rs3918249-rs17576 CCG 0.2827 0.1841 1.92 0.001 0.005

rs3918242-rs3918249-rs17576-rs3787268 CCGA 0.2650 0.1639 2.04 0.0007 0.002

rs3918242-rs3918249-rs17576-rs3787268-rs2250889 CCGAC 0.2563 0.1581 2.04 0.001 0.004

rs3918242-rs3918249-rs17576-rs3787268-rs2250889-rs17577 CCGACG 0.2511 0.1652 1.90 0.002 0.016

rs3918249-rs17576-rs3787268 CGA 0.2654 0.1721 1.88 0.003 0.011

rs3918249-rs17576-rs3787268-rs2250889-rs17577 CGACG 0.2523 0.1634 1.96 0.002 0.011

rs17576-rs3787268 GA 0.2733 0.1802 1.85 0.003 0.010

rs17576-rs3787268-rs2250889-rs17577 GACG 0.2538 0.1607 2.00 0.001 0.010

Note: All results were obtained after adjustment for covariates; OR, odds ratio; P, significance level.

https://doi.org/10.1371/journal.pone.0257060.t004
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the most significant regulatory potential for rs17577 (rank - 2b, score—0.79). The other five H.

pylori-positive GU-associated SNPs (rs3918242, rs3918249, rs17576, rs3787268, rs2250889)

have RegulomeDB rank = 4–5 and RegulomeDB score = 0.59–0.61. According to the Hap-

loReg database, the above six polymorphisms were located in DNase I hypersensitive sites, five

SNPs–in the specific region of DNA binding with modified histone marking promoters

(rs3918249, rs17576, rs3787268, rs2250889 and rs17577) and enhancers (rs3918242,

rs3918249, rs17576, rs3787268 and rs17577) in various tissues, and in the sixteen motifs to the

transcription factors (TFs), three SNPs (rs17576, rs2250889 and rs17577)—in evolutionarily

conserved DNA segments, and two SNPs (rs2250889 and rs17577)—in the protein-bound site

(S1 Table). Herewith, alleles of the MMP9 gene loci associated with increased risk for H.

pylori-positive GU (Table 4) increases affinity to twelve TFs (Ahr:Arnt, HIF1, Myc, Hmx,

Hoxb8, HDAC2, Mef2, Pou1f1, Sox, Zfp105, p300, NRSF) and decreases affinity to the four

TFs (E2F, Arid3a, Pax-5, Pax-4) (S4 Table).

In addition to the six H. pylori-positive GU-related SNPs, regulatory significance was esti-

mated for 65 loci linked to them (the data are provided in S5 Table). Seventeen SNPs have

been positioned in evolutionarily conserved DNA regions. Nine SNPs (including four synony-

mous and five missense replacements) were located in protein-coding regions (exons) of the

MMP9 gene, 26 in introns, and 30 in intergenic areas. All 65 SNPs linked to the H. pylori-posi-

tive GU-associated SNPs had a significant regulatory potential; several polymorphisms mani-

fested epigenetic effects (S5 Table). For example, rs6073989 (linked to rs3787268, r2 = 0.95) is

positioned in the specific area of DNA binding with modified histone marking promoters

(H3K4me3, H3K9ac) and enhancers (H3K4me1, H3K27ac) in more than ten tissues/organs,

the DNAase I hypersensitive segments in sixteen tissues/organs, and a sites of five regulatory

DNA motifs (CAC-binding-protein, EWSR1-FLI1, PRDM1, SP1, TATA). The SNP

rs6073991, which also was in linkage disequilibrium with rs3787268 (r2 = 0.95), was located in

the hypersensitive region to DNAase-I in 49 (!) tissues/organs, in the protein-bound region

(with this DNA region interact three regulatory proteins—NRSF, ZNF143, BCL3), and a puta-

tive transcription factor binding sites (SZF1-1, T3R) (S5 Table). Importantly, the epigenetic

effects of the H. pylori-positive GU-associated SNPs and 65 polymorphisms linked to them of

the MMP9 gene were reported for the target organs of GU, adult stomach mucosa and smooth

muscle, fetal stomach.

Fig 1. Linkage disequilibrium (LD) between SNPs rs3918242, rs3918249, rs17576, rs3787268, rs2250889 and

rs17577 of the MMP9 gene in GU patients. A, summary; B, H. pylori-positive GU patients; C, H. pylori-negative GU

patients; D, control group. LD values are given as Lewontin’s standardized coefficient D0 (Figure sections 1) and the

square of the Pearson’s correlation coefficient (r2) (Figure sections 2) between SNPs.

https://doi.org/10.1371/journal.pone.0257060.g001
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Expression quantitative trait loci (eQTLs). Referring to the data of the GTExportal

resource, six H. pylori-positive GU-associated polymorphisms MMP9 gene and 61 SNPs linked

to them had the eQTL significance (cis-eQTL and trans-eQTL) and correlated with mRNA lev-

els of 17 genes in more than 25 various tissues and organs (NEURL2, SLC12A5, CD40, MMP9,

RP3-337O18.9, NTTIP1, PCIF1, SPATA25, RP11-465L10.10, ZSWIM1, RPL13P2, SNX21,

WFDC10B, PLTP, SYS1, WFDC3, ZNF335) (S6 and S7 Tables). For example, rs3787268 and

rs3918249 (individually associated with H. pylori-positive GU) may affect the expression genes

(RP3-337O18.9, PLTP, NEURL2) in the organs of the digestive system (esophagus, various sec-

tions of the colon) as well as other tissues/organs related to the development of GU: brain

(frontal cortex and pituitary (PLTP)), adipose tissue (visceral and subcutaneous) (NEURL2,

SPATA25, PLTP, SLC12A5, CD40, ZSWIM1, RP3-337O18.9), whole blood (ZNF335), thyroid

(PLTP, NEURL2), adrenal gland (PLTP, PCIF1, SLC12A5, RP11-465L10.10), etc. Importantly,

the risk alleles of the analyzed loci (e.g., A rs3787268 and C rs3918249 C) are usually associated

with the lower expression of the genes (S6 Table).

Splicing quantitative trait loci (sQTLs). Analysis of the GTExportal data suggested that

the six GU-associated loci of MMP9 had significant sQTL values and might influence alterna-

tive splicing of five genes (SLC12A5, ACOT8, CD40, SNX21, PLTP) in various tissues and

organs (the results are shown in S8 Table). These polymorphisms manifested strong linkage to

61 SNPs, which affect splicing QTL of six genes (CD40, SLC12A5, ACOT8, SNX21, PLTP,

SLC35C2) in more than 15 organs and tissues (S9 Table). Importantly, the independently asso-

ciated with H. pylori-positive GU loci rs3787268 and rs3918249 correlate with splicing QTLs

of the PLTP gene in subcutaneous adipose tissue and SLC12A5 gene in the various parts of the

brain (e.g., cortex and substantia nigra, pituitary), which are known to play a role in the patho-

genesis of GU. Interestingly, the GU risk allele, C rs3918249, correlates with the elevated level

of in the sQTL of the SLC12A5 gene (β>0) in the substantia nigra and pituitary and with the

lower level of the sQTL of the SLC12A5 gene (β<0) in the brain cortex. The GU risk allele A

rs3787268 is associated with the higher level of the sQTL of the PLTP gene in the subcutaneous

adipose tissue (S8 Table). Besides, rs3787268 and rs3918249 each are in strong LD with eleven

sQTL SNPs (S9 Table).

Discussion

In the present study, we report for the first time the association of the SNPs rs3918249 and

rs3787268 of MMP9 with H. pylori-positive GU but not with H. pylori-negative GU in the Cau-

casian population of Central Russia. Alleles C of rs3918249 MMP9 (OR = 2.02) and A of

rs3787268 MMP9 (OR = 1.60–1.82), and eight haplotypes of the six studied SNPs of the

MMP9 gene (OR = 1.85–2.04) increased risk for H. pylori-positive GU. None of the MMP gene

SNPs was independently associated with GU. Also, two haplotypes of the MMP9 gene (con-

tributed by four SNPs, rs3918242, rs3918249, rs17576, and rs3787268) increased risk for GU

(OR = 1.62–1.65). Six loci of the MMP9 gene, which are associated with H. pylori-positive GU,

and 65 SNPs linked to them manifest significant epigenetic effects, have pronounced eQTL (17

genes) and sQTL (six genes) values in the organs of the digestive system and the other tissues/

organs, which have been suggested to contribute to GU.

Only two genome-wide association studies (GWAS) of the peptic ulcer disease (PUD) have

been conducted so far [44, 45]. One of them reported only two SNPs (rs2294008 PSCA and

rs505922 ABO) associated with duodenal ulcer in Japanese [44]; another determined eight

PUD-associated loci in the MUC1, MUC6, FUT2, PSCA, ABO, CDX2, GAST and CCKBR
genes, including the two reported for the Japanese cohort [45]. While the estimated heritability

for PUD is about 28% [45], only 6% of the estimated variance in the trait is attributed to
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genome-wide common SNPs (i.e., SNP-based heritability) [45] that raises a problem of so-

called “missing heritability”. This problem may be addressed by studying associations of candi-

date genes for peptic ulcer. In these terms, the MMPs genes are very good candidates, as they

are related to both the pathogenesis of H. pylori-associated gastric ulcer and the inflammatory

response of the mucosa [13].

So far, only one study [13] reported a significant association of an MMP9 gene variant with

H. pylori-positive GU. The authors analyzed 20 SNPs of the MMP1, 3, 7, and 9 genes in the

sample of 599 H. pylori-infected German patients and determined that two SNPs were associ-

ated with the disease: the rs17576 polymorphism of the MMP9 gene and another variant in the

promoter region of the MMP7 gene. Interestingly, Hellmig S. et al. determined allele A of

rs17576 as a risk factor for the disease [13], while our results suggested allele variant G of the

same locus (within the significantly associated haplotypes of the MMP9 gene) as the risk factor

for the Caucasian population of Central Russia. Yeh et al. [18] did not find any significant asso-

ciation of the above SNP with the disease in a Taiwanese population. Thus, our study is the

first that reports the association of rs3918242, rs3918249, rs3787268, rs2250889, rs17577 of the

MMP9 gene with H. pylori-positive GU.

There are quite a few studies, which analyzed the association of MMP gene polymorphisms

with gastric cancer (S2 Table) and reported such an association for the MMP9 gene SNPs

included in our study (rs3918242, rs17576, rs17577). Notably, allele C of rs3918242, a risk fac-

tor for H. pylori-positive GU in Caucasians from Central Russia in the present study, also

increased the risk for gastric cancer [46, 47] and esophageal cancer [48]. It is thought that H.

pylori-associated GU is positively linked to stomach cancer due to the damage of gastric

mucosa [49] and the MMP9 gene may be one of the candidate genes involved in both H.

pylori-associated GU and gastric cancer [50].

The MMP9 gene is located on chromosome 20q11.1–13.1. The encoded protein (type IV

collagenase, also known as gelatinase B) can degrade various collagen (collagen types IV, V,

VII, X, XIV, gelatin) and non-collagen substrates (elastin, aggrecan, fibronectin, nidogen, lam-

inin, etc.) of the extracellular matrix (ECM) [51]. ECM of the gastric mucosa contains a signifi-

cant proportion of collagen, elastin, fibronectin, laminin, hyaluronic acid, and proteoglycan,

and their degradation by MMPs is important for the stability of the cellular microenvironment

[13]. MMP9 is a key enzyme implicated in gastric ulcer [52, 53]. ECM degradation by MMPs

is apparently a key factor contributing to gastric mucosal damage [6]. The significant elevation

of the MMP9 level in gastric ulcer tissues suggested that the enzyme may regulate mucosa

lesions in GU by degrading collagens and creating lesions [50]. Also, this enzyme is important

in the early phase of chronic GU [12].

The present study reports association of the MMP9 gene polymorphisms with H. pylori-
positive GU but not with H. pylori-negative GU. The available literature also suggests that

MMP9 gene polymorphisms apparently contribute to a genetic risk profile to develop GU in

chronic H. pylori infection [13]. There is evidence that MMPs can be induced by both H. pylori
bacterial products and proinflammatory cytokines [54]. MMPs have elevated expression in

gastric epithelial cells infected with H. pylori that might contribute to the GU pathogenesis. Li

et al. [17] analyzed samples of gastric mucosa from the antrum and ulcer site and found that

the higher MMP9 expression was associated with the H. pylori infection and correlated with

the level of inflammation determined histologically at the border of the ulcer. Several studies

demonstrated a correlation between the elevated serum levels of MMP9 and higher MMP9

activity in antral mucosa of H. pylori-infected patients with gastritis [55, 56]. Antral mucosa of

H. pylori-infected subjects demonstrates a 19-fold higher MMP9 protein activity than that of

uninfected individuals [55] as H. pylori induces NF-kappaB activation through the intracellular

signaling pathway resulting in transcription of the MMP9 gene [15]. Notably, the H. pylori-
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induced MMP9 up-regulation can be reversed after successful pathogen eradication. If the

eradication failed, no difference in the MMP9 protein expression was detected in epithe-

lial cells and fibroblasts before and after the treatment [57]. H. pylori plays an important

role not only in gastroduodenal diseases (chronic gastritis, peptic ulcer, gastric cancer,

etc.) but also in various extragastric pathologies (cardiovascular, endocrine (insulin resis-

tance, diabetes mellitus), etc.) [58]. Indeed, higher BMI, the higher prevalence of cardio-

vascular and endocrine pathologies, among GU patients (including 45.16% of H. pylori-
positive) as compared to the controls (H. pylori-negative) was documented in the present

study (Table 1). Importantly, polymorphisms of the MMP genes (including MMP9) were

suggested to determine the susceptibility to cardiovascular diseases and their complica-

tions in various populations [59–61], including Caucasians of Central Russia [42, 62, 63].

Wu et al. [45] documented significant positive SNP-based genetic correlation (rg) between

PUD and BMI, body fat-related traits, and coronary artery disease. The in silico analysis in

our study also identified significant expression and splicing QTLs among the H. pylori-
positive GU-associated SNPs of the MMP9 gene and their proxies affecting several genes

(e.g., PLTP, CD40, SLC12A5, NEURL2, SPATA25, ZSWIM1, RP3-337O18.9) in the adipose

tissue (visceral and subcutaneous).

The available literature data suggests that the above genes are involved in biological

pathways contributing to pathophysiology of GU. For example, the PLTP gene encodes

one of two phospholipid transfer proteins found in human blood plasma. This protein

transfers phospholipids and cholesterol between different classes of lipoproteins and was

implicated in many disorders, including hyperlipidemia, obesity, metabolic syndrome,

type II diabetes, and others [64]. There is evidence that PLTP may play important roles in

the nervous system through participation in signal transduction pathways [65], control of

vitamin E content [66], and maintenance of blood-brain barrier integrity [67]. Another

example is the CD40 gene. It is a member of the tumor necrosis factor receptor superfam-

ily and encodes a protein playing a key role in a broad range of immune and inflammatory

responses including T cell activation, immunoglobulin isotype switching and cytokine

production [68]. CD40 has been implicated in various disorders, such as atherosclerosis,

cardiovascular, metabolic (arterial hypertension, diabetes mellitus, etc.), and the others

[68, 69]. Importantly, the CD40 DNA methylation levels [70] and CD40 expression (pro-

tein and mRNA) [71] were associated with gastric cancer. The ACOT8 gene encodes a per-

oxisomal thioesterase (acyl-CoA thioesterase 8) involved in the oxidation of fatty acids

[72]. This enzyme is localized ubiquitously throughout all cellular compartments and is

among the key enzymes of lipid metabolism [72].

Due to their pleiotropism, polymorphisms of the MMP9 genes play a key role in multiple

biological pathways and therefore have been implicated not only in peptic ulcer [13, 73, pres-

ent study], but also in cardiovascular diseases [60, 61] as well as a broad range of other disor-

ders involving processes of synthesis and degradation of extracellular matrix: various cancers,

including digestive [46–48, 74–76], glaucoma [27, 77, 78], and others [79–82].

One limitation of this study should be acknowledged though. Like other association studies,

our study did not utilize any experimental procedures to test the predictions about the possible

functional significance of the H. pylori-positive GU-associated SNPs of the MMP9 gene,

because “wet” experiments were beyond the study scope. The predictions were made based

solely on the in silico analysis of the available functional genomics databases (HaploReg [29],

GTExportal browser [41], SIFT online tool [39], RegulomeDB [40]), which include data of

large-scale studies in this area (Genotype-Tissue Expression (GTEx) project, Roadmap Epige-

nomics and ENCODE projects, etc.).
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Conclusions

The MMP9 gene polymorphisms were associated with H. pylori-positive GU but not with H.

pylori-negative GU in the Caucasian population of Central Russia. Alleles C rs3918249 MMP9
(OR = 2.02) and A rs3787268 MMP9 (OR = 1.60–1.82), and eight haplotypes of the all studied

six SNPs MMP9 gene (OR = 1.85–2.04) increased risk for H. pylori-positive GU. None of the

MMPs genes SNPs was independently associated with GU. Also, two haplotypes MMP9 gene

(including the following SNPs, rs3918242, rs3918249, rs17576, and rs3787268) increased risk

for GU (OR = 1.62–1.65). Six loci of the MMP9 gene associated with H. pylori-positive GU and

65 SNPs linked to them manifest significant epigenetic effects, have noticeable eQTL (17

genes) and sQTL (6 genes) values.
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