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SOME PROBLEMS OF THE OPTIMAL FAST-ACTIONING OVER
SHORE SYSTEM: CLIFF-BEACH

Moskovkin V. M. -Manuylov M. B.-Nazarenko V. V.

SYMMARY

The problem of the fast-actioning for the shore system: cliff-beach, which is
described with the help of control dynamic system of the second order to is presented
in this paper. This task is relevant when artificial stable shore systems on seas and
water reservoirs are created and operated.
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Similar problems were discussed in the papers [1, 2, 3] about the
optimal control over shore systems of the type: cliff-beach on the basis of
artificial regulation of the beach volumes.

In this papers based on the beach-forming material of equations we
consider some tasks of the optimal fast-actioning on the transition dynamical
system

W _ g 4D, _do)

dt dW
daw _
o=V ltol<p (1

from some initial state (W, , Vo) to the stationary (Ws , 0) at the minimal
time, where Wsy is determined from solution of equation

aHftW) - (W) = 0.

Here the first equation of the system (1) is a differential equation of the
beach-forming material balance, where W is the beach-forming material
volume per unit length of the shore-line, mz; a = const is a portion of the
beach-forming material in the shore-forming bedrock (0 < a < 1); H — the cliff
height, m; AAW) is the rate of cliff retreat, m/yr; @(W) is the intensity of the
beach-forming material attrition due to the wave action, mz/yr;

_du(t)

; u(t) is the intensity of artificial delivery of material (1 > 0) or

material removal (1 < 0), mzlyr; t is time, yr.

In the above mentioned papers we considered system of equations (1)
with linecar functions AW), ¢(W). As according to the principle of Pontrjagin
[4] the synthesis of optimal controls is constructed based on solutions
systems of equations (1) at £(t) = £f, so according to the dependence &(t) to
u(t) the researching controls u(f) we are obtained in the class of a linear time
functions (in the class of the equal-acceleratial or equal-delay deliveries or
removals).

On the other hand a class optimal fast-actioning task directly for the
equation of the beach-forming material balance exists in the class of the
constants on an intensity control operations on transition shore system from
a given state (W, S) = (W,, 0) to the stationary with a given value the chff
retreat (W, S) = (W, Sy). A practical approach of the considering this task is
given. Let us take as the function AW) the most universal approximation
function

W + r)?
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where B, €, r = const > 0 [5] and as the function ¢(W) a linear law of attrition
@(W) = KW (most wide-spread), then system (1) can be written in the form

gi_V_V___aHBngs)KWJru(t), gi_§=BgW+szg, @)
dt W+r) a  (W+r)

lu@| < B=const.

This system of the equations, as shown above, is transferred from the
state (W,, 0) to the state (W, Sy) at the minimal time. The restrictions are
on the phasal variables: 0<S <S;, W2>0.

By using Pontrjagin’s maximum principle for system of equations (2)
(the Hamiltonian of the system) the presence of at most one switching point
and bit-constancy of the control: u = +p is shown.

Thus synthesis of the optimal controls for system of equations (2) is
constructed based on its solutions in the phasal plane (W, S) when u(t) = B
and u(t) = —B. Dividing the first equation by the second of the system (2)

a2 a2
gﬂzaH_KW(W+;) i[S(W+r) . 3)
dsS B(W +r) B(W +¢)
The integral of this equation has the form

BW 1 c) dW -s+C, @

KW + (2rK +B)W? + (Kr? - aHB +2rB)W — aHBe +pr’

where C - integration constant, sign plus corresponds of material removal
(u(t) = —P in the first equation of the system (2)).

The application of Pontrjagin’s maximum principle reduces to analogous
situation and in the case of nonlinear law of attrition

Cw
‘YI+W

o(W) = where C, v; =const > 0.
The solutions (4) essentially depends from the presence and lies on the
axis W of the roots of cubic equation (the denominator of the integrand). Let,

us consider the case of existence of local function maximum aHAW) when
aHb

4(r —¢€)

of the cubic equation correspond to the crossing curve Z(W) = aHAW) and the
right line Z(W) = KW — u(t). Consider the case when crossing this lines (at
material removal u(t) = —f§) in two points of positive domain:

W > 0, it is equal to and it is achieved when W = r — 2 ¢ > 0. The roots

m @ @
Wp > W >0, W <0. Numeration of the roots from the right to the left,
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index ,—P” corresponds to the control u(t) = —p. We shall have a unique

positive root of the cubic equation (the rest roots are negative) under positive
) (M
control, moreover Wp > W_p. It is obvious, that stationary point Wst, which

corresponds to the crossing curve Z = aHf{W) and the right line Z = KW, lies
(1 R} )
in the interval W_p < W5t = Wy=0 < Wp . For such disposition of the roots of the

cubic equation at u(t) = £f the qualitative picture of the behaviour solutions
(4) 1s given fig. 1. Here a part of the trajectories is shown in negative
domaines of the phasal coordinates. The points of the local minimum of
curves at « = f§ coincide with the points of the local maximum of curves at

u=-pf (W=-g.

Figure 1.
The qualitative picture of the behavior solutions (4) in the phasal plane (W, S)

In the case W(_lﬁ) = W(jf picture of the character of the curves at u =

does not change, two different branches of the curves at u = - in the interval
W(_?;) <W« Wi‘f transform into one branch in this interval with the vertical

asymptlotes W = Wi}f and W= WX, while this branch is monotone increasing

function S(W) in this interval with the point of inflection. If now
W(23)<e, W§1)>W(_lﬂ)>0, so this branch transforms - over the interval
)

W(—4 <W < WD _into a curve with the local minimum W = —¢ and with the
B

vertical asymptotes, which are the borders of this interval.
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Let us consider in detail the case corresponding fig. 1. and construct
synthesis of the optimal controls in the positive domain W, S 2> 0. The curve
at u = P is taken as the switching line (it is passing through a given final
point (W, S1)). The equation of this curve follows from the integral (4).

S=-—%|:A’ln|W—W§31)| +BUn | W-w |+ Cnlw-wP ]+ C,

(5)

C1=81+ 2 [atn |1 Wy - WP | + BUn Wy - WP | + Cln | W - WP,

where A’, B’ and C’ are constants.
The coordinate of the crossing point of the switching line with the axis
ordinates (at W = 0) has a form

1) ) o
SO)=S1+2| Atln | m‘—'l‘;vb— | +Bln IWLVTV[‘z— | +Cln IM_ '
wh Wi W

(6)

W

Figure 2.
The qualitative synthesis of the optimal controls for the dynamic system (2)
for one of out of the cases

Here the most interesting case is S > 0 fig. 2, when it_is possible a
movement along the border of the right line at W =0, 0 < S < S. It will take
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place at W(0) = W, < W, where W corresponds to the phasal trajectory hitting
in the point (W=0,S =S). The phasal trajectory issuing from the point
(W,, 0) (cur. I) is described by equation

B m @ &)
s(w)=—I—<[A1ln|W—W_p| +B1]n|W—W_{;| +C1ln|W—W_{3|]+C(Wn) (T

where C(Wy) is given by condition S(W,) = 0.

QOur searching region of the synthesis of the optimal controls is
restricted by the following curves (fig. 2):

1.0< S < S, W=0is the right line of segment;

2. the curve II - the switching line (the form (5));

3. the curve Il is described by equation (7), in which C(W,) is given by
condition S(Wy) = Sy; the value W* (fig. 2) is given by condition S(W) = 0;

4.8 =0, 0< W< W*is the right line of segment.

We czn hit in a given point (W, S;) from any point of the last segment.
The curve I of crossing with the axis ordinates (S*) can be determined from
expression (7): S(W=0)=S* where C(W,) is obtained from condition
S(W,) = 0. The phasal trajectories issuing from the points lied on the segment
S =0, W< W< W* are obtained by analogy to the equation of curve I
(expression (7). The coordinates of the switching points can be determined
with the help of solution transcendent equation, as the curve of crossing
phasal with the switching line. We can write a general time solution to obtain
the optimal times of the movement by considering curves:

W+ 1) 2dW
KW + (2rK +B)W? + (Kr? — aHB +2rp)W — aHBe +pr?’

C2+t=J- (8)

where sign plus, an before, corresponds to material removal (u = -§}), C2is a
constant of integration. ]
The case (W(_}f > W(_%) >0, W(_};) < 0) is obtained following time solution

l * (1 « (2} " (1)
t:-E[A Infw-wagl+BIn|w-gl +C]n|W—W4;|J+C2, (9)

where A¥*, B* and C* are constants.
The time of the transition from the initial point (W,,, 0) to the switching

point (W,,,, Sew) can be determined from solution (8). Here C, is obtained
from condition t = 0 at W = W, then searching time ty W, 18 obtained from

the form (9) when W = W,,.
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The time of the transition from the switching point to the final point is
found by analogy (Cy can be determined from condition t = 0 at W = W,
then tw ,w, is obtained by substituting W = W in the form (9)).

The general time of the transition from the point (W,, 0) has the form
T = tWO’WWs + tw.tw’wsl :

Thus the value W, can be determined from the solution corresponding
transcendent equation, as the phasal trajectory of the crossing at u = —p with
the switching line.

The solution (9) has the qzualitative form shown at the fig. 3. We see
that level W(_}_( is stable, level W4 is unstable.

Figure 3.
The qualitative picture of the behavior times solutions (9)

The movement along the border W=0,0 < S < S is described by
equation a5 _Be it follows
a dt = 2
Sit)=S"+ 5—25 t.
r

In this case we obtain a concrete value of the control factor from the
balance equation for beach-forming material at W = 0.
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dW _aHBe . _ aHBe
dt = 2 +u=0, itsfollows u=- >

(removal of material), then the time of the movement along the border is

equal to

conS=8
ts,s— Be r

The second task of optimal control with the phasal restrictions occurs
with linear function AW) =W, - W) and as the function ¢(W) a nonlinear

wherey, W, C, y1 = const > 0,0 < W< Wh.

law of attrition (W) =

i+ W
The initial system of equations has a form
dW cw
at —aHY(Wm—W)—YHWw(t) (10)

It is necessary to determine the transition of this system from the state
(W,, 0) to the state (W, S1) at minimal time.
At once the stationary volume of material is obtained from the first

equation of the system at u(?) = 0, id[w =0.
V4
1 € ), 14 C_
Wel«-z[Wm—Yl'—alij+2 [Wm—‘Yl—aI{_Y] +4 W Y1, (11

while the inequality 0 € Wst < Wi always holds.

In the paper it is shown, that the alternatival synthesis exists for both
considered tasks, when the trajectory at u = -} is taken as the switching line.
The most optimal synthesis have been chosen taking into account the general
time and the delivery and the removal of the volume of the material. For
instance, this synthesis would less expedient for the second problem, since
there would have been there much more of delivery of material volume.



