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OPTIMAL CONTROL OVER SHORE SYSTEM: CLL'F-BEACH IN
CONDITIONS OF LOOSE-ROCKS

Moskovkin V. M.-Manuylov M. B.-Nazarenko V. V.

SUMMARY

We consider the problems of the optimal control over shore system: cliff-beach,
the operation which is described with the help of control dynamic system of the order
second Pontragin’s principle of maximum is used for the solution this problem. Some
examples of the analytical solutions of this task for the concrete dependences of the
rate and intensity of abrasion of the beach-forming in terms of material volume are
~onsidered.

In the paper problems of the optimal control over shore-system are
considered: cliff-beach in conditions of linear and nonlinear law of the
beach-forming material attrition.

"The dynamics of the shore-system: cliff-beach is essentially defined by
the rate of cliff retreat which undey the conditions o' loose-rocks may be
approximated by the function f(W) = % (b = const, 1713/yr) and the inensity of
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material attrition which in conditions of a linear law of attrition, has the
form («W) = KW (K = const, yr'l) (Esin, 1980). Here W is the beach-forming
material volume per unit length of the shore-line, m2. Then based on
equation of the beach-forming material balance under the conditions of
control the following system of equations can be written

dW aHb
d - W — KW + u(t)
%§‘=‘€V—, |u(t)|SB=const, 9]

where a is a portion of the beach-forming material in the shoreforming
bedrock; H is the cliff height, m; S is the distance of cliff retreat in the
abrasion process, m; u is the intensity of material delivery (u > 0) or removal
(u<0), mZ/yr; P is the restriction put on the control factor; ¢ is time, yr.

In some practical cases it is worthwhile to consider the task of the
transference of dynamic system (1) from some initial state (W,, 0) to the
dynamical equilibriumal (stable) state (Wg, S;) with a beforehand given
value of cliff retreat S = S at the least time (Moskovkin, 1985).

Here W, is obtained from the first equation of the system (1) at

u=0, dW = 0. Thus, we have
dt
Ws‘l= “a—"‘

K

This problem of the optimal fast-actioning according to Pontragin’s
maximum principle (Boltyanski, 1969) is investigated on the basis of solution
system of the equation (1) in the phasal plane (W, S) at u = § and u = -J.
Thus, synthesis of the optimal controls is obtained on the basis of solution of
the equations ‘

aw _ EW? W ,
i S 2)
dW _ KW* W

dS-aH— b b 3

Considering equation (2), we obtain the class of phasal trajectories
situated between the asymptotes

: VA
Wiz~ g% o
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intheform S+ Ci = —\/%b arth [ Ny

where C1 - constant of the integration; arth — inverse hyperbole tangent, the
sign plus above W corresponds to the positive sign of the control, index 1 at W

corresponds to sign plus in the form for Wy 2
A=p%+ 4 KabH

The class of phasal trajectories situated in the interval W > W,
corresponds to the second class of the solutions of the equation (2)

S+ Cy =-—%arcth (ﬁ%‘-’f—w] (5)

where C2 = const; arcth ~ inverse hyperbole cotangent.
If the trajectory at u = B < 0 is the switching line passing through the
final point (W, S1) then we obtain a concrete equation for it

S=81+ 3——2 [arcth (:g——K\v},Ai—’;Q] arcth[_ZK\vK;\-—_—Eﬂ ) (6)

The equation of the phasal trajectory starting from a given initial point
(W, 0) at W,,, < Wy, is obtained from the general solution (4)

__ 20 o (B 2EW _
S—_\fA [mcth( i arcth (B ﬂ(W«;)]. (7

An analogous trajectory can be obtained from the class of the solutions

(5) at Wo > Wi. One of the coordinates of the switching point (Wsw) is
obtained at the joint consideration of the equations (6) and (7)

Vsz = i ‘\[_;" (BZ + 2KabH + [3 VA th R)

S1VA +arcth VA (KW, = Ws) =

R= ‘ .
2b B2 + 2KabH + KP(Wst — Wo) - 2K* W W,

(8)

The second coordinate of the switching point (Sg,) is defined by
substituting the form (8) in the form (6).
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Figure 1.

The qualitative synthesis of the optimal controls for the dynamic systen. (1)

The general picture of the synthesis occurring here is shown in the
figure 1. The time of the movement from the initial point (W, 0) at
W, < Wy to the switching point B with the coordinates (W, Sg,) we find by

integrating the first equation of the system of equations (1) at u(t) = f§

1. -KW? + W, + aHb
b, w_, =K In | 2 B
o Waw ~ 2 ~KW5, + PW,, + aHb

sw

‘/X (Wo b Wsw)

B_
~ KA VM ST B (Wa + Wew — 2K Wo Wew | )

The time of the movement from the switching point to the final point
has the form:
_ Ly TEWaw = BWa + aHO
2K KW - BW,, + alb

(10)

—2KWaw W + B (Waw + W) —-2(7-1)1{)
\[;\ (WQ{ - ch) ’

= arcth [
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The general optimal time is
T = th’VVSW’Wsl + thW,Wst '

By analogy of the equations (6-10) the synthesis in the case can be
calculated if the trajectory at u=f>0 passing through a final point
(W, S1) may be to taken as the switching line (an alternative synthesis).

The results of the calculations on the first synthesis (egus. [6-10]) were
written in the table 1, on the alternative synthesis — in the table 2. For each
of the four versions there are two phasal trajectories issuing from one point
(W, S) = (10, 0), moreover the trajectory with the negative control
corresponds to the alternative synthesis. The initial constant parameters:
a=0,02b6=40 ma/yr (Esin, 1980, Loose loamy rocks in the region of the cape
Burnas, Black Sea). The rest of variative parameters are shown in the tables.
The calculated phasal portrait of the both syntheses for the second version of
the tables 1 and 2 is shown at the figure 2.
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Figure 2.
Calcilating synthesis of the optimal controls according to the second versions
of the tables 1 and 2.

For a given realistic range of change of parametres of the model:

5<p=<10 mz/yr; 005<K<0,1 yr"l; 10 < H < 50 m the general optimal
time for the first synthesis variants in the interval from three to five years,
for the second synthesis — in the interval from one to three years. Thus, the
second synthesis (at the beginning is the removal, then the delivery) is more
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optimal by the time, consequently and by the spends in the works bounding
with delivery and removal of the material. This strategy of the control keeps
and for the other values W,, S; is optimal for a given class of the tasks
independently of the initial parameters.

In case of nonlinear law of the beach-forming material attrition

cW
(p(W)—'Y'.' W

we obtain the following equations for the calculation of synthesis of the
optimal controls:

which is more suitable in case of large beachs material attrition

AW _ o CW' W
dS_aH—b(y+W)+ P (11)
dw _ CW? __BW
dS_aH_b(y+W)_ b (12)
The unique stable point is defined by the form

7
W20, \/(a;g) ety 13

By analogy we calculate the alternative synthesis, when the trajectory
at u = > O passing through the point (W, S;) is taken as the swithcling
line. The calculations obtained in case of the both syntheses are shown in
figure 3 and in table 3. The parameters a, b, S; were chosen as in the
previous problem. The rest of the parameters are shown in the table 3, while
W,y Is calculated with the help of the formula (13).
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Figure 3.
Calculating synthesis of the optimal controls according to the table 3.
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In the first version the trajectory is starting from the point
(W,, 0) = (4,0) with the negative sign of the control (1 = -1 m?/yr.; the
removal of the material), in the second version the trajectory is issuing from
the point (5,0) with reverse sign of the control (v = 1 mz/yr.; the delivery of
the material).

By quality the phasal portraites of the syntheses for considering our
different functions ¢(W) almost does not differ. The coincidence occurres in
the domain where the nonlinear function can be substituted by the linear
function. So, for instance, the stable state W = 4,9 m? (the table 3) for the
linear law of the attrition occurrs at K = 0,34 yr.'l; and hence in this case the
calculative syntheses are almost the same for both laws g(W).

The analogous tasks of the optimal control are possible for more
complicated functions [IW) (the abrasion rate), taking into account the
optimization of different economics and recreative factors as well.
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