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OPERATORS AND EQUATIONS: DISCRETE AND CONTINUOUS
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Abstract. We consider discrete pseudo-differential equations with elliptic symbols and the correspond-

ing discrete boundary-value problems in special canonical domains of multidimensional spaces. The

solvability of such equations and boundary-value problems in discrete analogs of Sobolev–Slobodetsky

spaces is examined.
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1. Introduction. The theory of pseudo-differential operators and equations exists for more than
half a century. The theory of pseudo-differential operators and the theory of equations represent two

different views on seemingly very similar objects. The operator theory is focused on the description of
classes of symbols that provide the boundedness of a pseudo-differential operator in a suitable func-
tional space, while the theory of equations is mainly concerned with the solvability of such equations

and the qualitative description of the properties of their solutions and, and if possible, finding this
solution (at least by approximate methods).

As it turned out (see [2, 10]), certain topological characteristics of the symbol of a given operator,

which do not affect the boundedness of the operator, play a fundamental role since they completely
determine the solvability of the corresponding pseudo-differential equation. Moreover, these charac-
teristics provide an explicit description of the structure of general solutions or solvability conditions.

This allows the researcher to choose boundary conditions that guarantee the unique solvability of the
boundary-value problem for the pseudo-differential equation considered.

We will discuss some “discrete” aspects of the well-developed theory of elliptic pseudo-differential

operators and equations (see [2, 4, 8, 9]), namely, the solvability of their discrete analogs. For con-
structing discrete approximations of pseudo-differential equations, the study of these issues will be
one of important components. Some preliminary considerations of the foundations of this theory were

given in [10–15].
We also note that in the theory of boundary-value problems for differential equations, various

discretization schemes have long been developed (see, e.g., [6, 7]). Without disparaging all these

studies, we should note that the methods mentioned are very specific and are suitable only for these
situations.

2. Discrete spaces and operators. We will use the following notation. Let Tm be am-dimensional
cube [−π, π]m, h > 0, � = h−1. We consider functions defined on this cube as periodic functions on

R
m with the basic period cube T

m.
We will use the term “discrete function” for functions ud(x̃) of the discrete variable x̃ ∈ hZm. For

such functions, we introduce the discrete Fourier transform

(Fdud)(ξ) ≡ ũd(ξ) =
∑

x̃∈hZm

e−ix̃·ξud(x̃)hm, ξ ∈ �T
m;
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if the series converges, the function ũd(ξ) is periodic on R
m with the basic period cube �T

m. This

discrete Fourier transform possesses the fundamental properties of the integral Fourier transform; in
particular, the inverse discrete Fourier transform is given by the formula

(F−1
d ũd)(x̃) =

1

(2π)m

∫

�Tm

eix̃·ξũd(ξ)dξ, x̃ ∈ hZm.

The discrete Fourier transform establishes a bijective correspondence between the spaces L2(hZ
m)

and L2(�T
m) with the norms

‖ud‖2 =
(

∑

x̃∈hZm

|ud(x̃)|2hm
)1/2

, ‖ũd‖2 =

⎛

⎜⎝
∫

ξ∈�Tm

|ũd(ξ)|2dξ

⎞

⎟⎠

1/2

,

respectively.

Example 2.1. Since the definition of Sobolev–Slobodetsky spaces contains the notion of partial
derivatives, we will use their discrete analogs, i.e., the first-order divided differences

(Δ
(1)
k ud)(x̃) =

1

h

(
ud(x1, . . . , xk + h, . . . , xm)− ud(x1, . . . , xk, . . . , xm)

)
,

for which the discrete Fourier transform is as follows:

˜
(Δ

(1)
k ud)(ξ) = h−1(e−ih·ξk − 1)ũd(ξ).

Further, for the second-order divided difference, we have

(Δ
(2)
k ud)(x̃) =

=
1

h2

(
ud(x1, . . . , xk + 2h, . . . , xm)− 2ud(x1, . . . , xk + h, . . . , xm) + ud(x1, . . . , xk + h, . . . , xm)

)
,

and the discrete Fourier transform has the form

˜
(Δ

(2)
k ud)(ξ) =

1

h2
(
e−ih·ξk − 1

)2
ũd(ξ).

Thus, for the discrete Laplacian, we get the following expression:

(Δdud)(x̃) =

m∑

k=1

(Δ
(2)
k ud)(x̃),

so that

˜(Δdud)(ξ) =
1

h2

m∑

k=1

(e−ih·ξk − 1)2ũd(ξ).

Using the discrete Fourier transform, we introduce discrete Sobolev–Slobodetsky spaces, which are
convenient for studying discrete pseudo-differential equations. We introduce the notation

ζ2 =
1

h2

m∑

k=1

(e−ih·ξk − 1)2.

Definition 2.1. The space Hs(hZm) consists of discrete functions ud(x̃) for which the following norm

is finite:

‖ud‖s =
( ∫

�Tm

(1 + |ζ2|)s|ũd(ξ)|2dξ
)1/2

Let D ⊂ R
m be a domain and Dd = D ∩ hZm be the corresponding discrete domain.
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Definition 2.2. The space Hs(Dd) consists of discrete functions of the space Hs(hZm) whose sup-

ports are contained inDd. The norm of the spaceHs(Dd) is induced by the norm of the spaceHs(hZm).
The space Hs

0(Dd) consists of discrete functions ud with supports in Dd that admit continuation to
the whole space Hs(hZm). The norm of the space Hs

0(Dd) is given by the formula

‖ud‖+s = inf ‖�ud‖s,
where inf is taken over all possible continuation of �.

The Fourier transform of the space Hs(Dd) is denoted by H̃s(Dd).

Remark 2.1. These spaces were studied in detail in [11]. Obviously, the norms introduced are equiva-
lent to the L2-norm, but the equivalence constants depend on h. Note that in our further considerations

all constants are independent of h.

Let Ãd(ξ) be a periodic function on R
m with the basic period cube �T

m. Such functions are called
symbols. As usually, we define a discrete pseudo-differential operator by its symbol.

Definition 2.3. A discrete pseudo-differential operator Ad in a discrete domain Dd is an operator of
the following form:

(Adud)(x̃) =
∑

ỹ∈hZm

∫

�Tm

Ãd(ξ)e
i(x̃−ỹ)·ξũd(ξ)dξ, x̃ ∈ Dd.

An operator Ad is said to be elliptic if

ess inf
ξ∈�Tm

|Ãd(ξ)| > 0.

Remark 2.2. One can introduce a symbol Ãd(x̃, ξ) depending on the spatial variable x̃ and define a
general discrete pseudo-differential operator by the formula

(Adud)(x̃) =
∑

ỹ∈hZm

∫

�Tm

Ãd(x̃, ξ)e
i(x̃−ỹ)·ξũd(ξ)dξ, x̃ ∈ Dd.

To study such operators and the corresponding equations, we need a rather complex and sophisti-
cated technique.

Definition 2.4. The class Eα consists of symbols satisfying the condition

c1(1 + |ζ2|)α/2 ≤ |Ad(ξ)| ≤ c2(1 + |ζ2|)α/2 (1)

with positive constants c1 and c2, independent of h. The number α ∈ R is called the order of the
discrete pseudo-differential operator Ad. Roughly speaking, the order of a discrete pseudo-differential

operator is the power of h taken with the opposite sign.

Due to the last definition, one can easily prove the following property.

Lemma 2.1. A discrete pseudo-differential operator Ad ∈ Eα is a linear bounded operator Hs(hZm) →
Hs−α(hZm) whose norm is independent of h.

3. Discrete pseudo-differential equations. With an operator Ad, we associate the equation

(Adud)(x̃) = vd(x̃), x̃ ∈ Dd. (2)

In this section, we consider this equation only in the half-space

D = R
m
+ ≡

{
x ∈ R

m : x = (x1, . . . , xm), xm > 0
}
.
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3.1. Periodic factorization. We introduce the notation

Π± =
{(

ξ′, ξm ± iτ
)
, τ > 0

}
, ξ = (ξ′, ξm) ∈ T

m.

Definition 3.1. A periodic factorization of an elliptic symbol Ad(ξ) ∈ Eα is the representation

Ad(ξ) = Ad,+(ξ)Ad,−(ξ),

where the factors Ad,±(ξ) admit analytic continuations to the half-bands �Π± with respect to the last
variable ξm for almost all fixed ξ′ ∈ �T

m−1 and satisfy the estimates

∣∣A±1
d,+(ξ)

∣∣ ≤ c1
(
1 + |ζ̂2|)±κ/2

,
∣∣A±1

d,−(ξ)
∣∣ ≤ c2

(
1 + |ζ̂2|)±(α−κ)/2

,

where the constants c1 and c2 are independent of h and

ζ̂2 ≡ �
2

(
m−1∑

k=1

(e−ihξk − 1)2 + (e−ih(ξm+iτ) − 1)2

)
, ξm + iτ ∈ �Π±.

The number κ ∈ R is called the index of the periodic factorization.

In some simple cases, we can use the topological formula

κ =
1

2π

�π∫

−�π

d argAd(·, ξm),

where Ad(·, ξm) means that ξ′ ∈ �T
m−1 is fixed, and the integral is understood in the sense of Stieltjes.

In other words, it is necessary to calculate the increment of the argument of the symbol Ad(ξ) when

ξm changes from −�π to �π for fixed ξ′ and divide it by 2π.

Theorem 3.1. If an elliptic symbol Ãd(ξ) ∈ Eα admits a periodic factorization with index κ, so
that |κ − s| < 1/2, then Eq. (2) has a unique solution in the space Hs(Dd) for any right-hand side
vd ∈ Hs−α

0 (Dd),

ũd(ξ) = Ã−1
d,+(ξ)P

per
ξ′ (Ã−1

d,−(ξ)�̃vd(ξ)),

(
P per
ξ′ ũd

)
(ξ) ≡ 1

2

⎛

⎝ũd(ξ) +
1

2πi
v.p.

�π∫

−�π

ũd(ξ
′, ηm) cot

h(ξm − ηm)

2
dηm

⎞

⎠ .

Remark 3.1. It is easy to see that a solution is independent of the choice of the continuation �vd.

Theorem 3.2. Let κ−s = n+δ, n ∈ N, |δ| < 1/2. Then the Fourier transform of the general solution

of Eq. (2) has the form

ũd(ξ) = Ã−1
d,+(ξ)Xn(ξ)P

per
ξ′

(
X−1

n (ξ)Ã−1
d,−(ξ)�̃vd(ξ)

)
+ Ã−1

d,+(ξ)

n−1∑

k=0

ck(ξ
′)ζ̂km,

where Xn(ξ) is an arbitrary polynomial of degree of n of the variables

ζ̂k = �(e−ihξk − 1), k = 1, . . . ,m,

satisfying the condition (1) and cj(ξ
′), j = 0, 1, . . . , n − 1, are arbitrary functions from Hsj(hT

m−1),

sj = s− κ + j − 1/2.
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3.2. Discrete boundary-value problems. Theorem 3.2 shows that a solution of Eq. (2) is not unique.

To get a unique solution, one should impose additional conditions that determine arbitrary functions
ck(ξ

′), k = 0, 1, . . . , n − 1. For simplicity, we consider the homogeneous equation (2), although all
results can be easily extended to the nonhomogeneous case.

Let us consider the following boundary conditions:

(Bjud)(x̃
′, 0) = bj(x̃

′), j = 0, 1, . . . , n− 1, (3)

where Bd,j is a discrete pseudo-differential operator of order αj ∈ R with the symbols B̃j(ξ) ∈ C(�Tm):

(Bd,jud)(x̃) =
1

(2π)m

∫

�Tm

∑

ỹ∈hZm

eiξ·(x̃−ỹ)B̃j(ξ)ũd(ξ)dξ.

Introduce the Fourier transforms of the boundary conditions (3):

h−1π∫

−h−1π

B̃j(ξ
′, ξm)ũd(ξ

′, ξm)dξm = b̃j(ξ
′), j = 0, 1, . . . , n− 1;

taking into account Lemma 2.1 and “trace” properties of discrete spaces Hs (see [3]), we must require

that bj(x̃
′) ∈ Hs−αj−1/2(hZm−1).

We introduce the notation

sjk(ξ
′) =

�π∫

−�π

Ã−1
d,+(ξ)B̃j(ξ

′, ξm)ζ̂kmdξm.

Theorem 3.3. If κ − s = n+ δ, n ∈ N, |δ| < 1/2, then the discrete boundary-value problem (2), (3)

has a unique solution in the space Hs(Dd) for arbitrary boundary functions bj ∈ Hs−αj−1/2(hZm−1),
j = 0, . . . , n− 1, if and only if

det(skj(ξ
′))κk,j=0 
= 0 ∀ξ′ ∈ T

m−1.

Moreover, the following a priori estimate holds:

‖ud‖s ≤ c

n−1∑

j=0

[bj]s−αj−1/2,

where the constant c is independent of h and [·]s denotes the Hs-norm in the discrete space Hs(hZm−1).

3.3. Representation of solution. Now we consider the remaining case κ−s = −n+δ, n ∈ N, |δ| < 1/2.

Lemma 3.1. There is a unique set of functions cj(ξ
′) ∈ Hsj(�Tm−1), sj = s− κ + j + 1/2, j =

0, 1, . . . , n, for which the following representation holds:

�π∫

−�π

cot
h(ηm − ξm)

2
g(ξ′, ηm)dηm =

n∑

j=0

cj(ξ
′)(eihξm − 1)−j

+ (eihξm − 1)−n

�π∫

−�π

cot
h(ηm − ξm)

2
g(ξ′, ηm)(eihηm − 1)ndηm,

where

cj(ξ
′) = ih

�π∫

−�π

(eihξm − 1)jg(ξ′, ξm)dξm, j = 0, 1, . . . , n,
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for all g(ξ′, ξm) ∈ H−n−δ(�Tm), n ∈ N, and |δ| < 1/2.

Theorem 3.4. Let κ − s = −n+ δ and |δ| < 1/2. Equation (2) has a solution in the discrete space

Hs(Dd) if and only if

cj(ξ
′) = 0 for almost all ξ′ ∈ �T

m−1, j = 0, 1, . . . , n. (4)

Remark 3.2. The conditions (4) can be written in terms of the original space Hs(hZm). It is conve-

nient to use the operator of divided difference Δ
(1)
j : Hs(hZm) → Hs−1(hZm) introduced above and

its Fourier transform

Δ̃
(1)
j : ũd(ξ) �−→ e−ihξj − 1

h
ũd(ξ), ξ ∈ �T

m.

There is a simple connection between the discrete Fourier transform and the operator of restriction
to a discrete hyperplane. If we consider the operator of restriction to the discrete hyperplane x̃m = 0,

i.e., to Z
m−1, then, in accordance with the properties of the inverse Fourier transform, we obtain

ud(x̃
′, x̃m) =

1

(2π)m

∫

Tm

eix̃
′·ξ′eix̃m·ξm ũd(ξ′, ξm)dξ′dξm;

therefore,

ud(x̃
′, 0) =

1

(2π)m

∫

�Tm

eix̃
′·ξ′ ũd(ξ′, ξm)dξ′dξm =

1

(2π)m−1

∫

�Tm−1

eix̃
′·ξ′

⎛

⎝ 1

2π

�π∫

−�π

ũd(ξ
′, ξm)dξm

⎞

⎠ dξ′.

This implies that the restriction to the hyperplane corresponds to the integration of the Fourier
transform with respect to the last variable. Taking into account the definition of a discrete pseudo-

differential operator in Hs(hZm), we can write the conditions (4) as follows:

(Δ(j)
m A−1

d,−(�vd)(x̃
′, 0) = 0 ∀x̃′ ∈ hZm−1, j = 0, 1, . . . , n, (5)

where A−1
d,− is a discrete pseudo-differential operator with the symbol A−1

d,−(ξ).

3.4. Discrete problems with coboundary operators. Taking into account Lemma 3.1 and Theorem 3.4,

we can consider equations of a more general form than (2), for example, the equation

(Adud)(x̃) +
n∑

j=0

Kj

(
b̃j(x̃

′)⊗ δ(x̃m)
)
= vd(x̃), x̃ ∈ Dd, (6)

with unknown functions ud and b̃j , j = 0, 1, . . . , n, where Kj are given pseudo-differential operators

with the symbols Kj(ξ) ∈ Eαj .

Remark 3.3. The operators Kj are called coboundary operatorms since they act as follows. Denoting

by K̂j(x̃) the “kernel” of the pseudo-differential operator Kj, we get

Kj

(
b̃j(x̃

′)⊗ δ(x̃m)
)
=

∑

ỹ∈hZm−1

K̂j(x̃
′ − ỹ′, x̃m)bj(ỹ

′)hm−1.

The term “potential-type operator” is also acceptable.

Continuing the right-hand side of the equation to the whole space Hs−α(hZm) (we denote this

continuation by �vd) and applying the discrete Fourier transform, we obtain the system of linear
algebraic equations

n∑

j=0

tkj(ξ
′)b̃j(ξ′) = fk(ξ

′), k = 0, 1, . . . , n,
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where

tkj(ξ
′) =

1

2π

�π∫

−�π

(
eihξm − 1

h

)k
Kj(ξ

′, ξm)

Ad,−(ξ′, ξm)
dξm,

fk(ξ
′) =

1

2π

�π∫

−�π

(
eihξm − 1

h

)k

A−1
d,−(ξ

′, ξm)(̃�vd)(ξ
′, ξm)dξm.

Theorem 3.5. Let κ − s = −n + δ, n ∈ N, and |δ| < 1/2. Equation (6) has a unique solution
ud ∈ Hs(Dd), cj ∈ Hsj (hZm−1), sj = s− α+ αj + 1/2, j = 0, 1, . . . , n, if and only if

ess inf
ξ′∈hTm−1

|det(tkj(ξ′))nk,j=0 > 0.

The following a priori estimate holds:

‖ud‖s ≤ a‖vd‖+s−α, ‖bj‖sj ≤ aj‖vd‖+s−α, j = 0, 1, . . . , n,

where the constants a, a1, . . . , an, are independent of h.

4. Discrete cones and complex variables. In this section, as a domain D we take a sharp convex
cone in R

m that does not contain a whole straight line.
We denote by PDd

the operator of restriction to Dd, PDd
: L2(hZ

m) → L2(Dd), so that for an

arbitrary function ud ∈ L2(hZ
m) we have

(PDd
ud)(x̃) =

{
ud(x̃) if x̃ ∈ Dd,

0 otherwise.

4.1. Half-space and periodic Cauchy kernel. If we choose a half-space as D, the Fourier transform of
the operator PDd

can be calculated (see [12, 13]). Consider the following example.

Example 4.1. If D = R
m
+ , then

(FdPDd
ud)(ξ

′, ξm) =
1

4πi
lim

τ→0+

�π∫

−�π

ud(ξ
′, ηm) cot

h(ξm − ηm + iτ)

2
dηm.

In fact, this property was used in the previous sections. Namely, we used the theory of the one-
dimensional periodic Riemann boundary-value problem with the parameter ξ′ ∈ �T

m−1, which is
formulated as follows: Find a pair of functions Φ±(ξ′, ξm), which are the boundary values of analytic

functions in the half-bands �Π±, Π± = {z ∈ C : z = ξm ± iτ, τ > 0}, satisfying the linear relation

Φ+(ξ)(ξ′, ξm) = G(ξ′, ξm)Φ−(ξ)(ξ′, ξm) + g(ξ), ξ ∈ �T
m,

for almost all ξ′ ∈ �T
m−1, where G(ξ) and g(ξ) are defined periodic functions. The problem is similar

to the classical paroblem.

4.2. Cone and periodic Bochner kernel. Let D be a sharp convex cone that does not contain a whole

straight line and let D∗ be a conjugate cone, that is,

D∗ = {x ∈ R
m : x · y > 0, y ∈ D}.

We denote by T (D∗) ⊂ C
m the set �Tm + iD∗. In the case where �Tm ≡ R

m (this corresponds to the
case of h → 0), this set is called the multidimensional tubular domain over the cone D∗ (see [1, 10,
16]). We introduce the function

Bd(z) =
∑

x̃∈Dd

eix̃·z, z = ξ + iτ, ξ ∈ �T
m, τ ∈ D∗,
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and define the operator

(Bdu)(ξ) = lim
τ→0

∫

�Tm

Bd(z − η)ud(η)dη.

Lemma 4.1. For an arbitrary function ud ∈ L2(hZ
m), the following equality holds:

FdPDd
ud = BdFdud.

Next, we define the subspace A(�Tm) ⊂ L2(�T
m) consisting of functions that admit an analytic

continuation to T (D∗) satisfying the condition

sup
τ∈D∗

∫

Tm

∣∣ũd(ξ + iτ)
∣∣2dξ < +∞.

In other words, the space A(�Tm) ⊂ L2(�T
m) is the subspace of boundary values of analytic functions

in T (D∗).
We introduce the notation

B(�Tm) = L2(�T
m)�A(�Tm),

so that B(�Tm) is the direct (and orthogonal) complement of the subspace A(�Tm) in L2(�T
m).

The jump problem is stated as follows: Find a pair of functions Φ±, Φ+ ∈ A(�Tm) and Φ− ∈ B(�Tm),

such that

Φ+(ξ)− Φ−(ξ) = g(ξ), ξ ∈ �T
m, (7)

where g(ξ) ∈ L2(�T
m) is a given function.

Lemma 4.2. The operator Bd : L2(�T
m) → A(�Tm) is a projector. Moreover, ud ∈ L2(Dd) if and

only if ũd ∈ A(�Tm).

Theorem 4.1. The jump problem (7) is uniquely solvable for any right-hand side from L2(�T
m).

Example 4.2. If m = 2 and D is the first quadrant on the plane, then the solution of the jump
problem is given by the formulas

Φ+(ξ) =
1

(4πi)2
lim
τ→0

�π∫

−�π

�π∫

−�π

cot
h(ξ1 + iτ1 − t1)

2
cot

h(ξ2 + iτ2 − t2)

2
g(t1, t2)dt1dt2,

Φ−(ξ) = Φ+(ξ)− g(ξ), τ = (τ1, τ2) ∈ D.

We consider the multidimensional periodic Riemann problem in the following formulation: Find a

pair of functions Φ±, Φ+ ∈ A(�Tm) and Φ− ∈ B(�Tm), such that

Φ+(ξ) = G(ξ)Φ−(ξ) + g(ξ), ξ ∈ �T
m, (8)

where G(ξ) and g(ξ) are given periodic functions. If G(ξ) ≡ 1, we return to the jump problem (7).
As in the classical case, we need a special representation for periodic elliptic symbols in order to

obtain a solution to the problem (8).

We denote by Hs(Dd) the subspace of the space Hs(Zm) consisting of functions of the discrete

argument x̃ whose supports are contained in Dd. We also denote by H̃s(Dd) and H̃s(Zm) the Fourier

transforms of the corresponding spaces.

Lemma 4.3. For |s| < 1/2, the operator Bd : H̃s(Zm) → H̃s(Dd) is a projector, and the jump problem

has a unique solution Φ+ ∈ H̃s(Dd), Φ
− ∈ H̃s(Zm \Dd) for arbitrary g ∈ H̃s(Zm).
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Definition 4.1. A periodic wave factorization of an elliptic symbol Ad(ξ) is a representation of the

form

Ad(ξ) = Ã�=(ξ)Ã=(ξ),

where the factors A±1
�= (ξ) and A±1

= (ξ) admit bounded analytic continuations in the domain T (±D∗).

Theorem 4.2. If |s| < 1/2 and an elliptic symbol Ad(ξ) ∈ Eα admits a periodic wave factorization,

then the operator Ad is invertible in the space Hs(Dd).

Remark 4.1. The definition 4.1 of the periodic wave factorization corresponds to the zero index of

the periodic wave factorization. Surely, this concept requires expansion in the context of [10] taking
into account the results of the previous section.

Recent considerations may be useful in formulating boundary value problems for discrete elliptic

pseudo-differential equations in canonical nonsmooth domains. Such boundary problems arise in cases
where, roughly speaking, the periodic wave factorization index is nonzero. We also hope to establish a
certain correspondence between the discrete and continuous cases (see [10]) and describe the transition

from the discrete case to continuous.
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