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Abstract: We consider some special examples of boundary value problems for
a model elliptic pseudo-differential equation in a special cone in 3-dimensional
space. Using a concept of wave factorization for an elliptic symbol and the
formula for a general solution for the equation we study limit behavior of the
solution when some parameters of the cone tend to their limit values.
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1. Introduction

The theory of boundary value problems for elliptic pseudo-differential equa-
tions for domains with a smooth boundary are completely presented in the
book [3]. Based on this book, a theory of pseudo-differential operators [5] and
multidimensional complex analysis [1], [2], the first author suggested analogous
approach for manifolds with conical singularities at a boundary [8]. There are
different approaches for studying pseudo-differential operators and equations
on non-smooth manifolds and a lot of applications [9], [10], [11], [12], [13], but
our approach is based on a concept of wave factorization for an elliptic symbol
[8].
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Here we will consider some consequences from the results in [14], [15],
[16], related to special boundary value problem for a model elliptic pseudo-
differential equation in a cone. These studies were inspired by more earlier
papers of the first author and lead to different boundary singularities of the
domain (manifold) and enlarge a class of manifolds under consideration. First,
in this section we introduce some necessary concepts and definitions which are
needed for further studying. We widely use the theory of one-dimensional sin-
gular integral operators [4], [6], [7], and our constructions are closely related to
such operators.

1.1. Canonical Domains and Model Equations

By canonical domain D ⊂ Rm we mean one of the following domains: Rm, a
half-space Rm

+ = {x ∈ Rm : x = (x′, xm), xm > 0} or a certain cone in Rm.of
a type Rk × Cm−k, where Cm−k is a convex cone in Rm−k non-including any
whole straight line, 0 ≤ k ≤ m. By definition, R0×Cm ≡ Cm,Rm×C0 ≡ Rm.

The first two cases were studied earlier [3], [6] and here we concentrated on
the left case with a cone. More exactly, in this paper we consider special cones.

A model pseudo-differential operator in a canonical domain D is defined in
the following way

(Au)(x) =

∫

D

∫

Rm

A(ξ)u(y)ei(y−x)·ξdξdy, x ∈ D,

where the function A(ξ) is called a symbol of the pseudo-differential operator
A. We use the term “model” because the considered symbol does not depend
on a spatial variable x. For more general situations they consider symbols
of the type A(x, ξ). Our restriction is explained by so called local principle;
it asserts roughly speaking that we need to obtain invertibility conditions for
a model operator for describing Fredholm properties for an operator with a
general symbol A(x, ξ).

We will consider the class of symbols satisfying the condition

c1 ≤ |A(ξ)(1 + |ξ|)−α| ≤ c2, ξ ∈ Rm. (1)

The number α ∈ R we call an order of a pseudo-differential operator A.

It is well known that such an operator is a linear bounded operator acting
from the space Hs(Rm) into the space Hs−α(Rm) and invertible [3]. Our mail
goal is describing invertibility conditions for such operator in different canonical
domains D.
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Let C be a convex cone in the space Rm, and this cone does not include
any whole straight line, it is important because we use the theory of analytic
functions of several complex variables [1], [2]. Moreover we suppose that a
surface of this cone is given by the equation xm = ϕ(x′), x′ = (x1, · · · , xm−1),
where ϕ : Rm−1 → R is a smooth function in Rm−1 \ {0}, and ϕ(0) = 0.

Thus, we study a solvability of the model pseudo-differential equation [8],
[14], [15]

(Au+)(x) = f(x), x ∈ C,

in the space Hs(C), where A is a pseudo-differential operator with the symbol
A(ξ) satisfying the condition (1). The sign “+” for the unknown function u+
shows that this function is defined in C+ only. We will remind some general
concepts.

By definition the spaceHs(Ca
+) consists of functions from the spaceHs(Rm)

with supports in Ca
+. A norm in the space Hs(Ca

+) is induced by a norm of the
space Hs(Rm).

Let us denote by S(Rm) the Schwartz class of infinitely differentiable rapidly
decreasing at infinity functions, S′(Rm) is a space of distributions over S(Rm),
and S′a

+ ) is a space of distributions from S′(Rm) with supports in Ca
+. f in

the right hand side in the equation (1) is taken from the space Hs−α
0 (Ca

+)
consisting of distributions from S′a

+ ) which admit a continuation into a whole
space Hs−α(Rm). A norm in the space Hs−α

0 (Ca
+) is defined by the formula

||f ||+s−α = inf ||lf ||s−α,

where infimum is taken over all continuations lf .

1.2. Wave Factorization and Solution Constructions

Definition 1. A radial tube domain over the cone C is called a domain
in 3-dimensional complex space Cm of the following type

T (C) ≡ {z ∈ Cm : z = x+ iy, x ∈ Rm, y ∈ C}.

A conjugate cone
∗

C is called such a cone in which for all points the condition

x · y > 0, ∀y ∈ C,

holds; x · y means inner product for x and y.



342 V. Vasilyev, S. Kutaiba

Definition 2. The wave factorization of an elliptic symbol A(ξ) with
respect to the cone C is called its representation in the form

A(ξ) = A6=(ξ)A=(ξ),

where factors A6=(ξ), A=(ξ) must satisfy the following conditions:

1) A6=(ξ), A=(ξ) are defined for all ξ ∈ Rm may be except the points ξ ∈ ∂
∗

C;
2) A6=(ξ), A=(ξ) admit an analytic continuation into radial tube domains

T (
∗

C), T (−
∗

C) respectively with estimates

|A±1
6= (ξ + iτ)| ≤ c1(1 + |ξ|+ |τ |)±æ,

|A±1
= (ξ − iτ)| ≤ c2(1 + |ξ|+ |τ |)±(α−æ), ∀τ ∈

∗

C.

The number æ ∈ R is called an index of the wave factorization.

Remark 3. Let us note that below we will use some distinct definition for
the wave factorization assuming that A6=(ξ) admits an analytical continuation

into T (−
∗

C), and A=(ξ) admits an analytical continuation into T (
∗

C) because
we will study a problem outside a cone.

Everywhere below we consider the case æ− s = 1 + δ, |δ| < 1/2 only.

1.3. Elliptic Operators and Equations

To describe our advances for low dimensional cones we consider the following
equation

(Au)(x) = 0 x ∈ R3 \ Cab
+ (2)

in the Sobolev–Slobodetskii space Hs(Cab
+ ), where

Cab
+ = {x ∈ R3 : x = (x1, x2, x3).x3 < a|x1|+ b|x2|, a, b > 0}.

To present a general solution of the equation (2) for the case æ− s = 1+ δ,
|δ| < 1/2, we use some results from [15], [16]. Let us introduce the following
one-dimensional singular integral operators [4], [6]

(S1u)(ξ1, ξ2, ξ3) = v.p
i

2π

+∞
∫

−∞

u(τ, ξ2, ξ3)dτ

ξ1 − τ
,
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(S2u)(ξ1, ξ2, ξ3) = v.p
i

2π

+∞
∫

−∞

u(ξ1, η, ξ3)dη

ξ2 − η
.

and write

A6=(ξ)ũ(ξ) = C̃1(ξ1 − aξ3, ξ2 − bξ3) + C̃2(ξ1 − aξ3, ξ2 + bξ3)

+ C̃3(ξ1 + aξ3, ξ2 − bξ3) + C̃4(ξ1 + aξ3, ξ2 + bξ3), (3)

where

C̃1(ξ1 − aξ3, ξ2 − bξ3) =
1

4
c̃0(ξ1 − aξ3, ξ2 − bξ3)−

1

2
(S1c̃0)(ξ1 − aξ3, ξ2 − bξ3)

−
1

2
(S2c̃0)(ξ1 − aξ3, ξ2 − bξ3) + (S1S2c̃0)(ξ1 − aξ3, ξ2 − bξ3),

C̃2(ξ1 − aξ3, ξ2 + bξ3) =
1

4
c̃0(ξ1 − aξ3, ξ2 + bξ3)−

1

2
(S1c̃0)(ξ1 − aξ3, ξ2 + bξ3)

+
1

2
(S2c̃0)(ξ1 − aξ3, ξ2 + bξ3)− (S1S2c̃0)(ξ1 − aξ3, ξ2 + bξ3),

C̃3(ξ1 + aξ3, ξ2 − bξ3) =
1

4
c̃0(ξ1 + aξ3, ξ2 − bξ3) +

1

2
(S1c̃0)(ξ1 + aξ3, ξ2 − bξ3)

−
1

2
(S2c̃0)(ξ1 + aξ3, ξ2 − bξ3)− (S1S2c̃0)(ξ1 + aξ3, ξ2 − bξ3),

C̃4(ξ1 + aξ3, ξ2 + bξ3) =
1

4
c̃0(ξ1 + aξ3, ξ2 + bξ3) +

1

2
(S1c̃0)(ξ1 + aξ3, ξ2 + bξ3)

+
1

2
(S2c̃0)(ξ1 + aξ3, ξ2 + bξ3) + (S1S2c̃0)(ξ1 + aξ3, ξ2 + bξ3),

where c0(x1, x2) is an arbitrary function from the spaceHs−æ+1/2(R2). In other
words, a kernel of the operator A is a one-dimensional subspace.

To determine uniquely the arbitrary function c0(ξ1, ξ2) we require certain
additional condition, for example, we assume that the restriction ũ(ξ1, ξ2, 0) is
given, i.e. the following integral

+∞
∫

−∞

u(x1, x2, x3)dx3 ≡ g(x1, x2), (4)

it gives the equality

ũ(ξ1, ξ2, 0) = g̃(ξ1, ξ2). (5)
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Taking into account ξ3 = 0 in the formula (3) we find

4
∑

k=1

C̃k(ξ1, ξ2)

=
1

4
c̃0(ξ1, ξ2)−

1

2
(S1c̃0)(ξ1, ξ2)−

1

2
(S2c̃0)(ξ1, ξ2) + (S1S2c̃0)(ξ1, ξ2)

+
1

4
c̃0(ξ1, ξ2)−

1

2
(S1c̃0)(ξ1, ξ2) +

1

2
(S2c̃0)(ξ1, ξ2)− (S1S2c̃0)(ξ1, ξ2)

+
1

4
c̃0(ξ1, ξ2) +

1

2
(S1c̃0)(ξ1, ξ2)−

1

2
(S2c̃0)(ξ1, ξ2)− (S1S2c̃0)(ξ1, ξ2)

+
1

4
c̃0(ξ1, ξ2) +

1

2
(S1c̃0)(ξ1, ξ2) +

1

2
(S2c̃0)(ξ1, ξ2) + (S1S2c̃0)(ξ1, ξ2)

= c̃0(ξ1, ξ2).

In view of the condition (5), we obtain

c̃0(ξ
′) = Ã6=(ξ

′, 0)g̃(ξ′). (6)

Theorem 4. Let æ − s = 1 + δ, |δ| < 1/2, g ∈ Hs+1/2(R2). Then the
unique solution of the problem (2),(4) is given by the formula (3), and c0(x1, x2)
is determined by the formula (6).

The proof of Theorem 4 is given in details in [15], [16].

Further, our main goal is describing behavior of the unique solution of the
problem (2),(4) when the parameters a, b tend to their endpoint values, 0 and
∞. Of course, we will assume that the needed wave factorization exists for
enough small (large) values. Let us note that the cases for some small values
a, b were studied in [16].

In the next section we will consider some domains in Euclidean space R3

that we can obtain under endpoint values of the parameters. Such domains we
call domains with cuts. In the plane case one can obtain only one type of such
a domain, but in 3-dimensional space there are a few types.

We will show below certain simple examples. Based on the formula (3) we
find certain condition for the boundary function g.
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2. Limit Boundary Value Problems

2.1. A half-plane in a space

In the previous section we have two parameters of the cone a and b. Degenerated
case corresponds to that case when one of the parameters (or both) tends
to 0 or +∞. Let us note that case a, b → 0 was studied in [3], the cases
a → 0, b = const and a = const, b → 0 were studied in [16]. Here we consider
limit case a → +∞, b = const, the case a = const, b → +∞ looks almost the
same. Let us remind that this case corresponds to a half-plane cut in R3.

Starting point for this consideration will be the equality (3). We use the
change of variables ξ1 − aξ3 = t1, ξ1 + aξ3 = t3 from which we have ξ1 =
t3+t1

2 , ξ3 = t3−t1
2a . So, we have new variables t1, ξ2, t3. If we use the condition

(5) we can find the unknown function c̃0 by the formula (6). Now let us write
the formula (3) for the new variables t1, ξ2, t3. Then we obtain

A6=

(

t3 + t1
2

, ξ2,
t3 − t1
2a

)

ũ

(

t3 + t1
2

, ξ2,
t3 − t1
2a

)

= C̃1

(

t1, ξ2 − b
t3 − t1
2a

)

+ C̃2

(

t1, ξ2 + b
t3 − t1
2a

)

+C̃3

(

t3, ξ2 − b
t3 − t1
2a

)

+ C̃4

(

t3, ξ2 + b
t3 − t1
2a

)

. (7)

Tending a to +∞ we obtain the following relation

A6=

(

t3 + t1
2

, ξ2, 0

)

ũ

(

t3 + t1
2

, ξ2, 0

)

= C̃1 (t1, ξ2) + +̃C2 (t1, ξ2) + C̃3 (t3, ξ2) + C̃4 (t3, ξ2) .

After accurate calculations we find

C̃1 (t1, ξ2) + C̃2 (t1, ξ2) + C̃3 (t3, ξ2) + C̃4 (t3, ξ2)

=
c̃0(t1, ξ2) + c̃0(t3, ξ2)

2
− (S1c̃0)(t1, ξ2) + (S1c̃0)(t3, ξ2).

Taking into account the condition (6), the formula (7) and new notation

Ã6=(ξ1, ξ2, 0)g̃(ξ1, ξ2) ≡ h(ξ1, ξ2),
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we obtain the following equation with parameter ξ2

h

(

t3 + t1
2

, ξ2

)

=
h(t1, ξ2) + h(t3, ξ2)

2

−(S1h)(t1, ξ2) + (S1h)(t3, ξ2) (8)

Thus, we have the following property.

Theorem 5. If the symbol A(ξ) admits the wave factorization with respect
to Cab

+ with the index æ such that æ − s = 1 + δ, |δ| < 1/2 for enough large
a then the unique solution of the boundary value problem (2),(4) has a limit
under a → +∞ if and only if the boundary function g ∈ Hs+1/2(R2) satisfies
the equation (8).

Remark 6. The same results are valid if b = 0, a → ∞ and if a, b → ∞

but lim
b

a
= 0.

Let us introduce four operators defined by formulas

(W1h)(ξ1, ξ2) =
1
4h(ξ1, ξ2)−

1
2(S1h)(ξ1, ξ2)

−1
2(S2h)(ξ1, ξ2) + (S1S2h)(ξ1, ξ2),

(W2h)(ξ1, ξ2) =
1
4h(ξ1, ξ2)−

1
2(S1h)(ξ1, ξ2)

+1
2(S2h)(ξ1, ξ2)− (S1S2h)(ξ1, ξ2),

(W3h)(ξ1, ξ2) =
1
4h(ξ1, ξ2) +

1
2(S1h)(ξ1, ξ2)

−1
2(S2h)(ξ1, ξ2)− (S1S2h)(ξ1, ξ2),

(W4h)(ξ1, ξ2) =
1
4h(ξ1, ξ2) +

1
2(S1h)(ξ1, ξ2)

+1
2(S2h)(ξ1, ξ2) + (S1S2h)(ξ1, ξ2).

Corollary 7. If a = b → ∞, then we obtain the following relation for the
function g̃(ξ1, ξ2)

h

(

t3 + t1
2

, ξ2

)

= (W1h)

(

t1, ξ2 −
t3 − t1

2

)

+ (W2h)

(

t1, ξ2 +
t3 − t1

2

)

+(W3h)

(

t3, ξ2 −
t3 − t1

2

)

+ (W4h)

(

t3, ξ2 +
t3 − t1

2

)

. (9)
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Proof. We put a = b in the formula (7) and consider a → ∞. Then we have
from (7)

A6=

(

t3 + t1
2

, ξ2, 0

)

ũ

(

t3 + t1
2

, ξ2, 0

)

= C̃1

(

t1, ξ2 −
t3 − t1

2

)

+ C̃2

(

t1, ξ2 +
t3 − t1

2

)

+C̃3

(

t3, ξ2 −
t3 − t1

2

)

+ C̃4

(

t3, ξ2 +
t3 − t1

2

)

. (10)

Then we have the following equation for the function g(ξ1, ξ2), and we re-
mind here that h(ξ1, ξ2) = A6=(ξ1, ξ2, 0)g(ξ1, ξ2)):

h

(

t3 + t1
2

, ξ2

)

= (W1h)

(

t1, ξ2 −
t3 − t1

2

)

+ (W2h)

(

t1, ξ2 +
t3 − t1

2

)

+(W3h)

(

t3, ξ2 −
t3 − t1

2

)

+ (W4h)

(

t3, ξ2 +
t3 − t1

2

)

.

We observe the same situation when a = const, b → ∞. Analogously we
change variables t2 = ξ2 − bξ3, t3 = ξ2 + bξ3. Therefore, ξ2 = t3+t2

2 , ξ3 = t3−t2
2b .

Then we have

A6=

(

ξ1,
t3 + t2

2
,
t3 − t2
2b

)

ũ

(

ξ1,
t3 + t2

2
,
t3 − t2
2b

)

= C̃1

(

ξ1 − a
t3 − t2
2b

, t2

)

+ C̃2

(

ξ1 − a
t3 − t2
2b

, t3

)

+C̃3

(

ξ1 + a
t3 − t2
2b

, t2

)

+ C̃4

(

ξ1 + a
t3 − t2
2b

, t3

)

. (11)

If b tends to +∞, we get

A6=

(

ξ1,
t3 + t2

2
, 0

)

ũ

(

ξ1,
t3 + t2

2
, 0

)

= C̃1 (ξ1, t2) + +̃C2 (ξ1, t2) + C̃3 (ξ1, t2) + C̃4 (ξ1, t2) .

Simple calculations lead to the following relation:

C̃1 (ξ1, t2) + +̃C2 (ξ1, t2) + C̃3 (ξ1, t2) + C̃4 (ξ1, t2)
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=
c̃0(ξ1, t2) + c̃0(ξ1, t3)

2
− (S2c̃0)(ξ1, t2) + (S2c̃0)(ξ1, t3).

In view of the condition (6), the formula (9) and the notation

Ã6=(ξ1, ξ2, 0)g̃(ξ1, ξ2) ≡ h(ξ1, ξ2),

we obtain the following equation with parameter ξ1

h

(

ξ1,
t3 + t2

2

)

=
h(ξ1, t2) + h(ξ1, t3)

2

−(S2h)(ξ1, t2) + (S2h)(ξ1, t3) (12)

Hence, we obtain the following result.

Theorem 8. If the symbol A(ξ) admits the wave factorization with respect
to Cab

+ with the index æ such that æ − s = 1 + δ, |δ| < 1/2 for enough large
b, then the unique solution of the boundary value problem (2),(4) has a limit
under b → +∞ if and only if the boundary function g ∈ Hs+1/2(R2) satisfies
the equation (12).

Remark 9. The same results are valid if a = 0, b → ∞ and if a, b → ∞

but lim
a

b
= 0.

Corollary 10. If a = b → ∞, then we obtain the following relation for
the function g̃(ξ1, ξ2)

h

(

ξ1,
t3 + t2

2

)

= (W1h)

(

ξ1 −
t3 − t2

2
, t2

)

+ (W2h)

(

ξ1 −
t3 − t2

2
, t3

)

+(W3h)

(

ξ1 +
t3 − t2

2
, t2

)

+ (W4h)

(

ξ1 +
t3 − t2

2
, t3

)

. (13)

Proof. If b → ∞, then we have from (11)

A6=

(

ξ1,
t3 + t2

2
, 0

)

ũ

(

ξ1,
t3 + t2

2
, 0

)

= C̃1

(

ξ1 −
t3 − t2

2
, t2

)

+ C̃2

(

ξ1 −
t3 − t2

2
, t3

)

+C̃3

(

ξ1 +
t3 − t2

2
, t2

)

+ C̃4

(

ξ1 +
t3 − t2

2
, t3

)

. (14)
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Using the above notations, we get from (14) the following relation:

h

(

ξ1,
t3 + t2

2

)

= (W1h)

(

ξ1 −
t3 − t2

2
, t2

)

+ (W2h)

(

ξ1 −
t3 − t2

2
, t3

)

+(W3h)

(

ξ1 +
t3 − t2

2
, t2

)

+ (W4h)

(

ξ1 +
t3 − t2

2
, t3

)

.

It is final construction.

Remark 11. It seems very strange but the equations (9) and (13) are
distinct. One of these equations has a parameter ξ1 and the other one has a
parameter ξ2.

2.2. A ray in a plane

This case was first considered in authors’ paper (Sh.H. Kutaiba, V.B. Vasilyev,
Asymptotic behavior of a solution of a certain boundary value problem, Ital.
J. Pure Appl. Math., in press).

Conclusion

We have considered here some possible cuts in a space. There are lot of other
possible cuts which can be constructed from different complicated cones. We
will describe these singularities in forthcoming papers.

These studies will help us to describe sufficient conditions under which
a general elliptic pseudo-differential equation has Fredholm property and will
help us to enlarge the class of manifolds with a singular boundary including
considered singular points.
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