Density of Quasilocalized States Along the Resonance Curves
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Densities of quasilocalized states are calculated and analyzed for a one-dimensional system with a point defect
and an FCC crystal with a planar defect. The density of states displays a pronounced peak that is positioned
near the energy (frequency) of resonant transmission of a particle (wave) through the defect but slightly shifted
from this energy. The peak nears the resonance frequency and sharpens, tending to a & function, as the contin-

uum edge is approached.

In recent years, considerable interest has been
expressed in the phenomena associated with the inter-
action of free propagating waves or particles with sin-
gle-type states localized near the defects. In this
respect, the specific features of a multichannel reso-
nance scattering prove to be the subject of discussion
[1-3]. These features are closely related to the proper-
ties of quasilocalized states in a continuum [4]. The
purpose of this work is to analyze the interconnection
between the scattering amplitudes and the spectral den-
sity of states in the system of interest. Two examples are
taken for the analysis: the interaction of two particles
with different dispersion laws in a one-dimensional
quantum system and the resonance phonon scattering
in an FCC crystal containing a planar defect.

In Section 1, the amplitudes for particle scattering
from a point defect are analyzed for a one-dimensional
system with two types of elementary excitations that
differ in the parameters of quadratic dispersion laws. At
certain values of these parameters, the so-called Fano
resonances appear in this system (an analogous situa-
tion was observed for the electron scattering from an
impurity in a 2D quantum channel [2]). The density of
quasilocalized states is calculated. It is shown that its
maximum is fixed to the resonant transmission energy
but slightly shifted from it.

In Section 2, the density of quasilocalized states is
analyzed using the model of a planar discrete defect in
an FCC crystal with the central nearest-neighbor inter-
actions. The spectra of resonance modes and the in-gap
localized states were calculated for this model in [5].

The density of quasilocalized states has a pronounced
peak that is slightly shifted from the frequency of reso-
nant transmission of elastic wave through the planar
defect. It is shown that, on approaching the continuum
edge, the peak comes closer to the resonant frequency
and sharpens, tending to a 0 function. Beyond the con-
tinuum, the resonance curve is continued as a disper-
sion curve for the in-gap state localized near the defect.

1. Density of states in a 1D system with two dis-
persion branches. A 1D quantum system with two
groups of quasiparticles having quadratic dispersion
laws are considered:
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where Planck’s constant 7 is taken to be unity. If a pas-
sive point defect is located at x = 0 in this system, the
interaction with this defect, according to [3], can be
written in the form of the following local potential:
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where y;(x) and y,(x) are the wave functions of the par-
ticles of the first and second type, respectively.

Let the particle of the first type with energy £ (£, <
LI < E,) be incident on the defect from the left. The sec-



ond particle with this energy can only be in the local-
ized state with wave function

v, = Be™, x = [2my(E,~ ), (3)

It was shown in [3] that the scattered particle can
resonantly transmit through the defect at a certain ratio
between its energy and interaction parameters. The
interaction of a freely propagating particle of the first
type with the localized state of the second type is the
physical reason for the appearance of a resonance in the
transmission through the passive defect. The total trans-
mission occurs at o,k = m, Uy(B? — oy, 01).

We now intend to show that the energy correspond-
ing to the total defect transparency correlates with the
density of stationary quasilocalized states. The point is
that in the system of interest quasilocalized states occur
in the energy interval £; < £ < E, for which the wave
function ; has the form of a standing wave
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while v, is localized near the defect, according to
Eq. 3).

The spectrum of quasilocalized states is continuous
and characterized by a single parameter—phase .
Making use of the boundary conditions following from
the presence of the potential H;,,;, one can easily obtain
the relation for the phase @

tang = A(E)/A(E), )
where

A(E) = mUy{mUy(B* - oya,) — o4k},

A(E) =k(x+o,mUy), k= .2m((E-E)).

The addition to the bulk density of states is given by
the formula
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Assume that the total transmission occurs in the sys-
tem [A(E)) = 0]. Assume also that the functions A, (F)
and A(F) vary smoothly near £,; i.¢., the point £ = F, is
positioned far from any spectral singularities (edges of
spectral branches, etc.). Then, expanding in powers of
OF = E - E, in Eq. (6), one obtains in the leading
approximation

dg(E) =
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where T' = AJA (AL + A7), A, = A, (E = E), and

A;, = A, .(E=E). This expansion is valid if A, does
not tend to zero; i.e., it is valid except for the cases

Fig. 1. The addition to the density of states as a function of
energy, Up=-07,m =1, my=2,0;=2,0,=2,B=1,
E1=0,and E, = 10. E; is the total transmission energy.
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One can see that the density of states near the point £ =
I, has the form of a Lorentzian peak with width I" and

center shifted from the E, point by AA/(A + A7)

(Fig. 1).

2. Density of states in an FCC crystal with planar
defect. Let us consider the dynamics of an FCC crystal
with a planar defect coinciding with the (001) plane.
The coordinate axes are directed along the cube edges,
and the z axis is perpendicular to the defect plane. Only
the interactions between the nearest neighbors are con-
sidered. Following [5], we assume that the defect is
characterized by a change in the force constant between
the atoms belonging to the layers z =0 and z = -1 (the
edge of the unit-cell cube is taken to be 2). The ratio of
force constant in the defect layer to the force constant
in the pure crystal is denoted by €.

It was shown in [5] that eigenmodes (including
quasilocalized) in this crystal may be of two types,
symmetric and antisymmetric. We are interested in the
symmetric modes, for which

u(n,~ 1) = —u(-n), u,(n,—1) = u,(-n,),

where #, is the displacement in the upper half-space

(n,20), u, is the displacement in the lower half-space
(n, < 0), and #n, numbers the atomic layers along the
Z axis.
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Fig. 2. Dispersion curves for the total transmission fre-
quency 7 and symmetric vibration S for € = 3. The vertical
dashes correspond to the pseudotransverse branch, and the
inclined dashes correspond to the pseudolongitudinal
branch. Curve 2: & = 2(1 — cosk), ¢ = 0; curve 3: A =2 —
cos2k—cosk, g = m, curve 4: A =2(1+ cosk), g = m, curve 5:
A=2—cos2k+cosk, g =0; curves I and 6 are the lower and
upper spectrum edges, respectively.
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Fig. 3. Density of states as a function of A — &, for different
kalong curve T A, corresponds to the total transmission fre-
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The resonant transmission and reflection take place
for the phonons whose frequencies lie within one of the
bulk crystal vibration branches but outside of the other
branch. In these spectral regions, the quasilocalized
cigenmodes may exist; i.e., two-partial modes, one

component of which is localized near the defect while
the other freely propagates in the crystal.

Let us consider a wave propagating in the [110]
direction. This wave has two independent components:
lower frequency (pseudotransverse) component, whose
spectrum is vertically dashed in Fig. 2, and higher fre-
quency (pseudolongitudinal) component, whose spec-
trum is shown by the inclined dashes in Fig. 2. In this
case, there are three spectral regions where the quasilo-
calized states may exist (Fig. 2): the first one is bounded
by curves 2, 5, and 4; the second one is bounded by the
solid section of curve 3 and dashed section of curve 4;
and the third region is bounded by curve 3, solid section
of curve 4, and dashed section of curve 3. Curve 7'in the
low-frequency region of quasilocalized states corre-
sponds to the total transmission conditions for the
pseudotransverse wave through the defect. In the right
part of Fig. 2, this curve meets the edge of the gap
between the pseudotransverse and pseudolongitudinal
frequency branches. Then, it is continued as curve S for
the in-gap wave localized near the defect.

Let us consider the low-frequency region of quasilo-
calized modes. The wave displacement vector has the
following form at z > 0:

u;(xaz) = (Mlcos(qz—i-(p)-i-ule*“)eik(ﬁy)’ "
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A = mw?/4y, and 7 is the force constant in the crystal
volume.

The addition to the unperturbed density of states in
this spectral region is
1@
dg = —==. 9
8= -5 ©)
We will calculate it for the symmetric quasilocalized
modes. The explicit formulas for @ and dg(®) are rather
cumbersome, so we only present the results of calcula-
tions.

The curve for the density of states at a fixed & shows
a peak that is slightly shifted from the resonant trans-
mission frequency to lower frequencies. If we are inter-
ested in a change in the density of states with changing
wave number k£ along the total transmission curve 7
(Fig. 2), then we can see that the peak in the density of
states near the point at the bulk spectrum edge, where 7'
matches the curve for the dispersion law .S of the in-gap
localized modes, approaches the total transmission fre-
quency, sharpens with increasing %, and tends to a
O-like shape at the continuum edge (Fig. 3). It is this
state that transforms outside the continuum into the



symmetric mode localized near the defect (Fig. 2,
curve S).

Thus, it is shown by the examples of a 1D quantum
system with two groups of excitations and an FCC crys-
tal with a planar defect that the resonant transmission
curves in a continuum show peaks of the density of
states. The presence of a sharp peak on the curve for the
density of vibrational states indicates that the respective
vibrations are sharply set off and have resonant charac-
ter in the continuum. For an FCC crystal, this means
that these vibrations may play the role of so-called
“leaky waves.”
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