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ABSTRACT. We prove the unique solvability of a Cauchy-type problem for an abstract parabolic equa-
tion containing fractional derivatives and a nonlinear perturbation term. The result is applied to
establish the solvability of the inverse coefficient problem for a fractional-order equation.

Introduction. Setting the Problem
We consider the following Cauchy-type problem in a Banach space E:

D*u(t) = Au(t) + F(t, B(t)u(t)), t>0, (1)
P_I)I(l) D> tu(t) = ug, (2)

where 0 < o < 1,

t
1

m / (t — S)_aU(S) ds

0
is the left-side fractional Riemann-Liouville integral of order 1 — & (for @ = 1, we assume that '~

Dty = I'u(t) =

d
is the identity operator), D%u(t) = El 1=%(t) is the left-side fractional Riemann-Liouville derivative

of order «, I'(*) is the gamma-function, A is a linear closed densely defined operator, B(t) is a linear
closed densely defined operator depending on ¢ (no assumptions about the boundedness of B(t) are
imposed), and F'(t,w) is a nonlinear operator acting in E for any ¢ > 0; the latter operator is treated
as a perturbation of the operator A.

The results presented below are related to the perturbation theory of generators of semigroups
(see [8, Chap. 9]). We add to problem (1), (2) a term with a nonlinear operator subordinated in a way
to the operator A and investigate how this affects the solvability of the problem. Sufficient conditions
providing the solvability of the problem with the perturbed operator A are presented.

In [5], solvability results for equations with fractional Riemann-Liouville derivatives perturbed
by a linear closed operator B(t) are obtained. The study of problems of that kind is motivated by



numerous applications of fractional-order differential equations in physics and mathematical modelling
(see, e.g., [18, Chap. 8], [13, Chap. 5], and [9, Chap. 8]).
Apart from problem (1), (2), consider the following problem without perturbations (assuming that

f=a):

DPu(t) = Au(t), t>0, (3)
%i_r)ré DP=Yu(t) = uo. (4)

Definition 1. A function u(t) is called a solution of problem (3), (4) if it is continuous for ¢ > 0, takes
values in D(A) (here D(A) is the domain of the operator A), I'=Au(t) is continuously differentiable
for t > 0, and u(t) satisfies (3) and (4).

Definition 2. We say that problem (3), (4) is uniformly well posed if there exist an operator-valued
function 7Ts(t) defined on £ and commuting with A, a positive Mj, and a real w such that, for any
up € D(A), the function T(t)up is the unique solution of problem (3), (4) and

1Tl < Mt~ te. ()

According to Definition 2, problem (3), (4) is uniformly well posed if its solution exists, is unique,
and continuously depends on the initial data uniformly with respect to ¢ from any compact set of
(0,00). The latter property follows from (5). Apart from those standard requirements, Definition
2 includes additional information about the behavior of the solution as ¢t — 0 and ¢ — oo (see
inequality (5)).

Condition 1. There exists 5 € |«, 1] such that problem (3), (4) is uniformly well posed and ug belongs
to D(A).

In [4, 6, 10], the uniform well-posedness of problem (3), (4) is studied for 0 < g < 1. If 8 = 1, then
the uniform well-posedness of the Cauchy problem requires that the operator A be a generator of a
Cy-semigroup.

Condition 2. (i) The domain of the operator B(t), denoted as D, does not depend on t and
D(A) C D.

(ii) Let x € D. Then either the function w(t) = B(t)x belongs to C((0,0), E), is absolutely
integrable at the origin, and takes values in D(A) and the function Aw(t) belongs to C((0,00), F)
and is absolutely integrable at the origin or the function I'™®w(t) = I'"*B(t)x is continuous
fort >0, continuously differentiable fort > 0, and D*w(t) is absolutely integrable at the origin.

(ili) For any x € I, there exist My > 0, v € (0,1), and w € R such that Ts(T)x € D (the smoothing

effect) and
IB()Ts(r)x|| < Mar™7e* |2, ¢, 7 € (0, 00). (6)
Note that if the operator —A is strongly positive in the sense of [11], i.e., if
Ms3
M — A7 < ., ReA>0, Ms>0,
H( ) H RSP = 3

then we can assign # = 1 in Condition 1. In this case, w = 0 and inequality (6) means that the
operator B(t) is subordinated to the fractional power (—A)7 (see [11, p. 298)).

If the operator B(t) is bounded and the operator A satisfies Condition 1, then inequality (6) is valid
fory=1-7.

The operators A and B(t) are not assumed to commute.

Condition 3. (i) The function F' acts from (0,00) x E to E; if a function w(t) = B(t)x, x € D,

satisfies item (ii) of Condition 2, so does wi(t) = F(t,w(t)).
(i) The following inequality is valid for w = 0: |[F(¢,0)|| < Co(1 +t*~1), mu > 0, Cy > 0.



(iii) The operator F(t,w) satisfies the following Lipschitz condition uniformly with respect to t > 0:
| (t,w2) — F (t,wy) || < L|jwy — w| for all wy,wy € E.

Condition 4. The Banach space FE possesses the Radon—Nikodym property (see [1, p.15]), i.e., any
absolutely continuous function F : Ry — IV is differentiable almost everywhere.

For example, reflexive Banach spaces possess that property (see [1, Corollary 1.2.7]), while the
spaces L1(a,b), Cla,b], and the space ¢q of sequences converging to zero do not (see [1, Example 1.2.8
and Propositions 1.2.9 and 1.2.10]).

We will show below that Conditions 1-4 guarantee the unique solvability of problem (1), (2).

The following function (see [7, p. 357]) is needed for the proof:

o+ico

! / exp(tz —72") dz, t>0
— X —_
Froy =4 2mi ) CPVETTEIAS B0 (7)

0, t<0,

where ¢ > 0, 7 > 0, 0 < v < 1, and the branch of the function z” is chosen to satisfy the inequality
Rez” > 0 for Rez > 0. This branch is a one-valued function on the complex z-plane cut along the
negative part of the real axis. The convergence of the integral in (7) is guaranteed by the factor
exp (—71z").

Below, we present certain properties of the function fr,(t) (see also |7, p. 358-361, Propositions 1-
3]).

Consider the integral defining the function f;,(¢) and replace the line of integration Rez = o > 0
by the contour consisting of the rays z = rexp(—if) and z = rexp (if), where 0 < r < oo and
/2 < 0 < 7. This yields the following representation of the function f-,(¢) for ¢ > 0:

1 [e @]
Jro(t) = - /exp (trcos® — 17" cosvl) sin (trsinf — 7r" sinvl + 0) dr. (8)
0

The function fr,(t) is nonnegative, and the following relations are valid:

[ rotna=1 (9)
0
exp (—TAY) — /exp(—)\t) Fo)dl, 70, A>0,0<v<l. (10)
0

We also note that the function f;,(t) can be expressed via the Wright function (see [9, p. 54]) for
t>0:

0 k

z
() =17 (=1, 0, —7t7Y), b=y —
[rll) =470 (=0, 0 =7t7) (e b:2) £ K1 T(ak 1 0)
Another representation via the more general Wright-type function (see [16, Ch. 1]) is valid as well:
Sk

(11)

NE

=110 —v 0 _
frp) =t7tey, (=777),  ehiy(z) = ok T 1) T(6 = B’

T

0

where <1, 0 + 5 >0, max{0; 8} < a <2, a+ <2, and y,z € C.



1. Cauchy-Type Problems for Fractional-Order Equations: Inhomogeneous Equations

The following theorem establishes conditions under which the uniform well-posedness of problem
(3), (4) implies the uniform well-posedness of the corresponding Cauchy-type problem for the equation
of order ¢, where 0 < a < 5 < 1.

Theorem 1.1. Let a < 3 < 1, Conditions 1 and 4 be satisfied, and w = 0 in inequality (5). Then
the problem
D%(t) = Au(t), t>0,

lim D tu(t) = ug (1.2)
t—0

is uniformly well posed and its resolving operator is of the form
To(t)uo — / Fro(OT5(r)u0 dr, (1.3)

where v = a/5 and the function fr, (1) is defined by relation (7).

Proof. The following is proved in [4]. If problem (3), (4) is uniformly well posed and w = 0 in
inequality (5), then )\5 belongs to the resolvent set p(A) of the operator A for Re A > 0, the resolvent
R(MN) = (\’T — A)~! is representable in the form

+oo
ROz — / exp(—\)Ts(t)a di (1.4)
0
for any x € I/, and the following inequalities are valid for any nonnegative integer n:
d"R (\%) _MT(n+p)
< , Re A>0. 1.5
dx" (Re AP (15)

If the Banach space F possesses the Radon—Nikodym property, then the validity of inequalities (1.5)
(even for real positive A) is a sufficient condition for the uniform well-posedness of problem (3), (4).
The resolving operator for this problem is of the form (see [4, formula (13)])

wg+ico
1
Ts(t)ug = D1_52—m, / N LexpO\ RN ugd),  wo > 0. (1.6)
wp—100

Taking into account (1.4), (10), and (5), for v = «/3, we have

/ exp (— i t) Ts(t)a dt — / Ty(t) dt / exp (—710) i (7) dr.
0 0 0

In (8), we take 6 € [7/2, 7] such that cos € < 0 and cosvf > 0. To achieve that, we actually take it
from the interval (7/2, min{n/(2v);n}).

Hence, by virtue of (8), (9), and the theorem on the differentiability of integrals with respect to a
parameter, the following inequalities are valid:

‘d]il;—/i)x < M, ||:E||/t/8_1dt/7'”exp(—TRe () dT/exp (tscos —ts” cosvl) ds
0 0 0

9}

= My ||$||/T"exp(—TRe 1) dr/s‘o‘ exp (s cos 0) ds
0 0



MeT' (n + «a) ||z]]
(Re py"t

~ M 2] /T“—Ha exp (—7Re 1) dr —

This proves the uniform well-posedness of problem (1.1), (1.2).
Due to (1.6), (1.4), (7), and (11), the resolving operator for this problem is of the form

o+ico
Ty () ug — D=L / 291 exp () R (A%) g dA
o) 1 o+ioo
= Dl_a/Tﬁ(T)UO drﬁ / A Lexp(At — A7) dA
0 T—100

= Do [ e T dr. (1)
0
The following relation (implied by [16, formula (1.1.13)]) for the Laplace transformation was used:

L {t‘o‘e%i “(=7t™") ;)\} = X lexp (—7)\Y).

Now we use the following relation for the fractional derivatives of Wright-type functions (see [16,
formula (1.2.12)]):

DI (170 ™ (=rt ™)) = 17l D=7t = frulD).
Combining it with the limit relation

1,0 o O,v o
mgrfoomel V( $) - zgrfoo 61 V( $) =0

(see [16, formulas (1.2.3) and (1.2.6)] and note that this relation and the estimate in (5) guarantee the
convergence of the integral in (1.3) for w = 0) and using (1.7), we obtain (1.3). This is the required
representation.

Remark 1.1. Consider the particular case where v = o/ = 1/2. Then (see [7, p. 369, formula

(32)]) )
Jra ) = %L\/HGXP <—Z—t> .

Thus, the relation in (1.3) takes the form

Ty s () wo 2t\/_/7'e p( 2)7’5( Yug dr- (1.8)

The representation in (1.8) can provide the smoothing effect (see item (iii) in Condition 2) for the
resolving operator Tjz/5 (1) in the case where this effect for the operator T (t) is absent. For example,
this takes place if A and B are differential operators.

The following assertion is the solvability theorem for the Cauchy problem for the inhomogeneous
equation.

Theorem 1.2. Let 8 < 1, and let Condition 1 be satisfied. Let one of the following two conditions
hold:

(a) a function h(t) belongs to C ((0, 00), E), is absolutely integrable at the origin, and takes values in
D(A) and the function Ah(t) belongs to C ((0,00), E) and is absolutely integrable at the origin;



(b) a function h(t) is such that the function I'=Ph(t) is continuous for t > 0 and continuously
differentiable for t > 0 and DPh(t) is absolutely integrable at the origin.

Then the problem

DPu(t) = Au(t) + h(t), t>0, (1.9)
lim DP=Yu(t) = ug (1.10)

has a unique solution, which is defined by the relalion
¢

wwnww+/%@—@ma%. (L11)

0

Proof. Tt suffices to check that the function
¢

ww/m@—@ma%
0

satisfies Eq. (1.9) and condition (1.10), which is the zero initial condition.
Let condition (a) be satisfied. Then, for ¢ > 0, we have

T

DPu (t) = 1 di/t—r 5dr/T5(r—£)h(£)d£
0

o i=£
1 d -
mﬁo/dﬁo/(t—ﬁ—w) PTa(x)h(8) da.

Since the integrand (with respect to £) is a continuous function of the variable ¢ — &, it follows that

i—¢
1 _
DPo(t) = W?E (t—&—a) Ty () h () do

0

) t p i—¢
- el e\ B
+F(1_ﬁ)/d£dt/t )Ty (2) h (€) da
0 0
= ?L%Dﬁ "Ts(t —¢ /DBTﬁ (t —&)h(€) dé

R+ /Tﬁ (t — &) AR(E) dE — h(t) + Av(t).

0

Hence, the function v(t) satisfies Eq. (1.9).
Further, we check that the function v(t) satisfies condition (1.10). We have

lim D=1y (1) = b lim (t—T)_ﬁdT/Tﬁ (T —&) h(¢) dE.

t—+0 I'(1—p3)t—=+o0
0 0



Since T (t) satisfies the estimate in (5), it follows that

T

j(t —7)7" dr/Tﬁ (T = ) h(&) d¢
0

0

i T

< M/(t —7)7" dr/(r &M (©)l de = M B(B,1 - B) / Ih (&)l de,
0 0 0

for t € [0, 1], where B(-,-) is the beta-function. Hence, the function v(t) satisfies condition (1.10).
Now, let condition (b) hold. Then

DPu(t) = D [ Ta(rhit — ) dr - i & [a-97a [ 13ome -y ar
0 0

Tﬁ(t)mﬁ/(t—r—x)—ﬁh(x)dw ! /Tg(T)dT%/(t—T—m)_ﬁh(m) dae
0 0

¢
— Ts (t) D°~h(0) + /Tﬁ (1) DPh (t — 7) dr = T5(t) D"~ h(0) + /Tﬁ(t —)DPh(E) de. (1.12)
0 0
On the other hand, it follows from the relation

I'=Bh(x) 51

I°DPh(z) = h(z) — ) x” 7,

0<p<1 (1.13)

(see [18, formula (2.61)]), that

o) = [ Tat0-6) (5 D HOE 1+ PO ) de
0

1 / - I DB R dr — £ _ A=l oy ph-1 .
+F(ﬁ)O/T5(t £)d£/(£ )PTID () dr = O/(t )31 (7) D~ h(0) d

(B)
i t—7
1 B-1p)B
‘|‘m T/g(T) ClT (t—7—£) D h(g) d£ (1.14)
0 0
Using (1.13) and the closedness of the operator A again, we obtain
t
—A/ (t — )P~ Ts(r onde / )P YDA Ts(r)vg dr
0
I8DAT, T ! T !
= = = — ——1. (1.1
e (Ot = T5(0)to — v (117

It follows from (1.13)—(1.15) that



-1 : _ -1
Aolt) = To(O) D h(0) = D% hio) + (T5<t—£>Dﬁh<£> - %Dﬁh@) e
0
_ p—1 s t Y _ N ]
T3 (0 D h0) = 1 0P 0) + [ Talt — DA de = hit) + 1= D7 (o) ~

DPu(t) — h(t).

Hence, the function v(t) satisfies Eq. (1.9).
To verify that the function v(t) satisfies condition (1.10) if condition (b) is satisfied, one should
represent DAv(t) as follows:

DF=lu(ty = [ Ta(s)I'=Ph(t — s) ds.

o—

2. Cauchy-Type Problems for Perturbed Fractional-Order Equations

We pass to the investigation of the perturbed problem (1), (2). In the sequel, we use the following
function of the Mittag-LefHler type (see |2, Chap. III-IV]):

),;F(/UHP)'

Theorem 2.1. Let a < § < 1, Conditions 1 and 2 be satisfied, and w = 0 in inequalities (5) and
(6). Let Conditions 3 and 4 be satisfied. Then problem (1), (2) has a unique solution satisfying the
estimate

ey < 2B

CoMiT(B) COer(/@)F(:u)taJru—l
ING)

T(a + 1) (o + 1)
LM MoT(B)D(5/v) (ta”—lEMM (LMgF((S/I/)t‘S) o

t* | uol| +

YOtV By o1 (LMQF(é/y)t‘S) + oD ()t O By s (LMQF(é/y)t‘S)) . (2.1)
where 6 = v(1 — 7).

Proof. Taking into account Theorems 1.1 and 1.2, we reduce problem (1), (2) to an integral equation.
By virtue of (1.3) and (1.11), this integral equation can be written as follows:

/fT,, VT )uo dr + //fT,,t—sTﬁ PVF(s, B(s)u(s)) drds, (2.2)

where ug, T3(T)up € D(A) C D and v = a/f. Denoting B(t)u(t) by w(t), we obtain

w(t) — /fw() (6T (o dr + //fwt—s Ty(r) F (s, w(s)) drds. (2.3)

To solve Eq. (2.3), we use the iteration method, assigning

wolt) =0, wy(t) — / Ju (O BT (Fuo dr + / / ot DT5(r)F(s, 0) drds,
0



Wﬂw/hmw@ Puodr + //ﬂy— (O)T5(r)F (s, wn(s)) drds, n e N.
0
Using inequality (6) and item (ii) of Condltlon 3, we estimate the norm
()] §<M&Hu@Hj/ng@)7_7dTFA42ij[j[ng@-—s)T_7(1%s“_l)drds. (2.4)
0

Taking into account that the function f-, () is defined by relation (7) and using [15, integrals 2.3.4.1
and 2.3.3.4], we obtain

o) o+ioo o)
/fw(lf)T_V dr = —21i / e dz/f‘V exp (—72") dr
s
0 T—100 0
ra— (1 —1)
B Gt ) 2ty—v(1=7) gy — N TV w(-9-1_ 5 (2.5
27 /)ez ST T —q) >0 (25)

Applying relation (2.5) to (2.4) twice and computing the obtained integral, we have
F(l — ’7) ty(l—'y)— F(l — W)ﬁj(l_w
I (1 —7)) Pl —7) +1)
D= NEt 0t MyE(6/v) (6—1 Co s Col'(O)T(1) 51 —1>
M>C < t + =t =t .
R YO EaT R ) ol TG )

Using item (iii) in Condition 3, we estimate (in the same way) the norm of the difference

L4 MyCy

lwr ()] < Mz [[uoll

wa—wﬁwS//ﬂﬂﬁwawﬁﬁﬂﬂaw%J%ﬂmwms
0

2 7 ING))N
LMQF 5/’/ //fTV t—S 7_ 'y< 6—1 ||U || + =2 CO (5+ CO (5) (M)S(%Lu—l) drds
0

'+ p)
0
LMZT2(8/v) [ 051 Co 25 , Col'(20)1(11) 254 —1

- — T . (2.6
=@\ el st e (26)

Taking into account (2.6), for n € N, by induction, we obtain the inequality

LM T (5 /) _ Co Col'(nd)T (1) _

n — Wy < 2 nd—1 _tné tn6+u 1y 2.7
Jon(t) =t ()] € b (57 ol + 070+ B (27)

Hence, the series

Y (walt) = wna (1)

n=1
uniformly converges on any segment [to, 1], 0 < to < t;. Therefore, w,(t) uniformly converges to a
function w(t) on the same segment, where w(t) is continuous on [to,?1] and satisfies Eq. (2.3). By
virtue of (2.7), the following estimate holds for that function:

oIl <D llwa(t) = wa—i (1]
n=1



< - LkM§+1Fk+1(5/V) (t(kJrl)(S—l ]| + Co k13 COF((k+1)5)F(M)t(k+1)6+u—1>
T T((k+ 1Y) (k+1)6 D((k+1)8 + )
LkMka(é/y)tk5 LkMka(é/y)tk5
< 5—1 2 $ 2
et (4 i S A 1 o Sl
LFMET® 5/1/)15’“5
S+pu—1
+Col' () ¢ Zr ((k +1)0 + p)

— MyT'(5/v) (té—lEM (LMQF(é/y)t‘S) luoll + Cot® Es 541 (LMQF(é/y)t‘S)
HCOT (W) Ey g, (LMgF(é/y)t‘S)) . (2.8)

where I, ,(-) is a function of the Mittag-Leffler type, t € [to, 1], 0 < g < t1.

Since the segment [tg,%1] is chosen arbitrarily, it follows that the function w(t) is a solution of
Eq. (2.3) continuous on (0, c0) and satisfying inequality (2.8) on (0, c0), i.e., w(t) is absolutely inte-
grable at the origin. Moreover, from relation (2.3), we conclude that the function w(t) satisfies item
(ii) in Condition 2.

Finally, using relation (2.2) and Theorem 1.2, we obtain the following representation of the solu-
tion w(t) of problem (1), (2):

/fw JT5(7)uo dr + //fTVt_STB ) F (s, w(s)) drds.

By virtue of (5), (2.8), (2.5), and item (ii) in Condition 3, it satisfies the inequality

Ju(®)l < /fw(t) [T (7)uoll dr

//hm—smm>@ommm+//ﬂy ) 175 (7)(F (s, w(s)) — F(s,0)|| drds
0 0

+
- MI(3) to—! o]l + COMll“(ﬁ) o CoMI(B)(p)ttr—t
=T T "N T T(at p)
n LM1M2II:((§))F(1 - ’7) ||U0|| /(t o S)a—lsé—lE&é (LMQF((S/V)S(S) ds

LM M F
CO 1 2 6/1/ / a 136E676+1 (LMQF((S/V)S(S) ds

0

t
+ CoLMlMQF(,@ 5/1/ /
0

T yalgdtu=lp s (LMgF((S/V)s‘S) ds.

Therefore, the solution satisfies the estimate
M T(B)t*! luol] -+ CoMT(B)t>  CoMT(B)T(p)t>t#=1
r@) N T o+ w)
LM MoT(B)D(5/v) (ta”—lEMM LMgF((S/I/)t‘S) o

lu(®)]| <




ot Ey s (LMQF(é/y)t‘S) + ol ()t = s s (LMQF(é/y)t‘S)) :
The following relation was used:
1%t By (et7)) = 1P Ep oy (7)), o,0,p >0

(see [18, p. 141, formula (23)]).
To establish the uniqueness of the solution of problem (1), (2), we assume, to the contrary, that
there exists another solution. We denote it by U(t). Then, by virtue of Theorems 1.1 and 1.2, we have

/ Fro (O T5(F)u dr + / / ot (1) F (s, W(s)) drds,

where W () satisfies Eq. (2.3).
Let us prove the uniqueness of the solution of Eq. (2.3) in the class of functions continuous on (0, co)
and satisfying the estimate

W ()] < M1, M >0, w>0, (2.9)

where § = (1 —v) < 1. Note that the functions satisfying estimate (2.8) belong to the specified class
due to the following asymptotic behavior of the Mittag-Leffler function for 0 < < 2 (see [2, p. 134]):

1 - 1
B, (z) = =207 1 exp (zl/“) =+0 (—) , 2R, z— +oo. (2.10)
wel?) = ;FP ) 2"+

Let > 0 and t € (0,b]. Set

m = sup (t' e W (t) —w(t)]).
t€[0,b]

The supremum is finite because we consider the class of functions satisfying inequality (2.9).
The difference W(t) — w(t) satisfies Eq. (2.3) for up = 0. Therefore, taking into account rela-
tion (2.5), we have

||W<1t>—w<1t>||<LM?F / SIUW(s) — w(s)]| ds
0

= LMaD(1 =) I(W (1) —w(®)]). (2.11)
Hence, the following inequality holds:

W (1) — w(t)]| < LM?FF(S(S)_ y)m O/ (t— 5)P= 1071683 ds — LMLT(1 — 7)m IP(£=1e).  (2.12)

Substituting (2.12) into (2.11), we obtain the inequality
IW(t) = w(®)] < LPMZT(1 = 1)mI® (107" ).

Continuing this procedure, we arrive at the inequality

ké—lsé—lews ds

LkMka 1 —
W (t) —w(t)]] < L*MET*(1 — y)ymI* (" ey = /

LEMET (1 — )T (6)
< Tk £ 1)) t e’ 'm forall ke N. (2.13)



Taking the supremum, we obtain the inequality
LEMETA(1 = )1 (0) 1

=TTk 1 D))

The factor
LAMETH(1L = 9)T(8)
I'((k+1)9)
is the common term of the series defining the Mittag-Leffler function (cf. (2.8)). Therefore, it vanishes
as k — oo. Thus,

m = sup (t' e W (t) —w(t)]) =
t€[0,b]

Since the positive number b was chosen arbitrarily, it follows that W (t) = w(¢) for ¢ > 0. This
completes the proof of the uniqueness.

Note that estimate (2.1) contains a detailed dependence of the solution on the data of the problem.
This dependence can be used in further research. If only the behavior of solution of problem (1), (2)
as t — 0 and ¢ — oo is investigated, then, taking into account (2.10), one can represent estimate (2.1)
as follows:

lu(@®)| < Mt Le“H|ug||, M >0, wy > 0. (2.14)

Theorem 2.1 establishes the solvability of problem (1), (2) for any « provided that 0 < a < 8 < 1,
Conditions 1—4 are satisfied, and w = 0 in inequalities (5) and (6). Let us prove that if 0 < a =5 < 1,
then similar results can be obtained without the requirement w = 0 in inequalities (5) and (6) and
without Condition 4.

Theorem 2.2. Let Conditions 1-3 be satisfied, and let « = § < 1. Then problem (1), (2) has a
unique solution satisfying estimate (2.14).

Proof. Taking into account Theorem 1.2, we reduce problem (1), (2) to the integral equation
¢
u(t) = Ta(t)up + /Ta (t—s)F (s, B(s)u(s)) ds. (2.15)
0

Introducing w(t) = B(t)u(t), we obtain the equation
¢
w(t) = Ta(thuo + / B)Talt — $)F (s, w(s)) ds. (2.16)
0
To solve it by the iteration method, we set

i
wolt) — 0, wi(t) = Ta(Ouo, wnyr(t) — Toltuo + / B)T(t — s)F(s,wn(s)) ds, n e N.
0

Using inequalities (5) and (6) and item (iii) in Condition 3, we estimate the norm of the following
difference:
¢

[wa(t) —wr )] < LMz/(t — )71 i ()| ds < LMiMoD(1L = 9)e IV (%7 JJuo| . (2:17)
0

Taking into account (2.17), by induction, we obtain the relation

lwn(t) —wa—1 ()] < ML M= TP (1 = m)e 10 DET (197 ug |



ML MR () (L ) jam L
Fla+ (n—1)(1-9))
Further reasoning regarding the existence of a unique solution is similar to the proof of Theorem 2.1.
The following estimate holds for the solution w(t) of Eq. (2.16):

P g, e N.

o0
. M, LFMET(@)DF(1 = 7)o~ 1HR0=2) gt [y | .
lw(®)] < Myt="e |lug] + < Mot~ e Jug ],
; T(o + k(L — 7))

(2.18)
where My > 0 and wgp > w.
Using (2.18), we deduce estimate (2.14) of the solution u(t) of problem (1), (2) from relation
(2.15).

Remark 2.1. An assertion similar to Theorem 2.2 is also valid for & = g = 1, but item (ii) in
Condition 2 should be replaced by the following assumption: for any x € D, either the functions
B(t)x and AB(t)x belong to C([0, o0), ) and the function B(t)x takes values in D(A) or the function
B(t)x belongs to C''(]0, c0), ).

The following assertion is a theorem on the continuous dependence of the solution of problem (1),
(2) on the initial data.

Theorem 2.3. Suppose that the conditions of Theorem 2.1 are satisfied and u,(t) is the sequence of
solutions of the problem

DU (1) = Aun(t) + F (¢, Bh)un(t)), >0, (2.19)
lim D, (t) = g, € D(A). (2.20)

If g = uo € D(A), Agn, — Aug, and B(t)g, — B(t)ug uniformly with respect to t € (0,b] for any
positive b, then the sequence un(t) of the solutions of problem (2.19), (2.20) converges to a solution u(t)
of problem (1), (2) uniformly with respect to t € [to, b] for any to € (0,b).

ta_l
Proof. Consider the sequence U, (t) = u,(t) — (o) gn, Which satisfies the problem
a—1 ta—l
DU, (1) = AU (1) + F ([ t, BOUL(t) + ——Bt)gn | + —— Agn, 2.21
(0= A0 1+ F (1 BOUO) + 1B ) 1 Frs g (221)
lim DU, (t) = 0. (2.22)
t—0

By Theorems 1.1 and 1.2, the function U, (t) satisfies the integral equation

t oo

)= [ [ Jeatt=o)1507) (F (37 B(s)Un(s) + T;;
0 0

Setting W, (t) = B(t)U,(t), we obtain (as in the proof of Theorem 2.1) that

t oo

a—1

B ) 17

mAgn> drds.

Sa—l Sa—l

Un(t) = / / Frot — $)T5(r) (F <3,Wn(s) 4 mB(s)gn> 4 mAgn> drds, (2.23)
00
where W, () satisfies the integral equation

0

Wi (t) — j / Jrult = ) BU)T5(7) (F <3,Wn(s)+
0 0

Sa—l

(o)

Sa—l

m3(3)9n> +

Agn> drds. (2.24)



Let n and k be sufficiently large positive integers and £ > 0. Taking (2.24) into account, we obtain
(as in the proof of Theorem (2.13)) that

W) = Wage)] < S 5/” /t— Y Wa(s) — Wi(s)]| ds

0
t

5 v 1 a—
/ / Y527 (1 Agn — Agrll + L 11B()gn — B(s)grl) ds
0

and

m = sup (' 0 WL(t) — Wi(D)|]) < Mom +&, Mo < 1.
t€[0,b]

€
Hence, m < T Then, by virtue of the completeness of the space I, the sequence tl_‘se_"’th(t)

— Mo

converges to a function t'~%e~“*W (t) continuous on [0, b] uniformly with respect to t € [0,b]. Thus,
Wi (t) converges to a function W (t) uniformly with respect to ¢t € [to,b], 0 < to < b, where W (%)
satisfies inequality (2.9) and item (ii) in Condition 2.

Relation (2.23) implies the uniform (with respect to t € [to, b]) convergence of U,(t) to the function

= O/to/oofw(t —s)T3(7) (F (s, W(s) + %B(s)u()) + %AU()) drds,

which satisfies problem (2.21), (2.22). Finally, u,(¢) converges to the function u(t) = U(t) + —
uniformly with respect to ¢ € [to, b], while u(t) satisfies problem (1), (2).

Remark 2.2. An assertion similar to Theorem 2.3 on the continuous dependence of the solution of
problem (1), (2) on the initial data can also be formulated and proved for o = g < 1.

In the particular case where the operator B does not depend on ¢ and is bounded and Condition 4
is satisfied, the part of Theorem 2.2 regarding the unique solvability contains [6, Theorem 8]. In [6],
it is proved that (in the specified particular case) for o = § < 1, the resolving operator T, (t, A + B)
for problem (1), (2) is of the form

W(t, A+ B) = ZS

where Sy(t) = T, (t, A) is the resolving operator for problem (3), (4) for 5 = « and
¢
p - /Ta(t—s,A)BSn_l(s) ds,  n—1,2,. ..
0

In [3], the perturbation theorem is proved for an equation which, unlike Eq. (1), contains the Caputo
fractional derivative, provided that the operator A is a generator of an analytic semigroup and g = 1.
The following example is given in [3].

Example 2.1. Let ¥ = Ly (R™). Then Condition 4 is satisfied (see [1, p. 20]). We define the operator
A on the set D(A) = W™ (R?) as follows:

ap1+ +pnu(t m)
a
p pl [ am%" ?
lp|=2m




where
Y ap(@)E = (1) Mol¢ P
lp|=2m
for all z, £ € R™ and the coefficients a,(x), |p| = 2m, satisfy the Holder condition uniformly in R™. It
is known from [3] that the operator A satisfies Condition 1 if 8 =1 and w = 0.
We define the operator B(t) on D = W2™ 1 (R?) D D(A) as follows:

p1t+-+on p1+-+pn t
B(tyu(t,z) = Y %@@awmm“tw /WE: btxﬁa%muggpd&
lp|<2m—1 1 p|<2m—1 1 "

where 2 C R", the coefficients a,(, x) are continuous and bounded with respect to x € R™ for any
Ip| < 2m — 1 and any t > 0 and satisfy the Holder condition with respect to ¢ with power p > «
uniformly with respect to x € R™, the coefficients b, (¢, x, &) are continuous,

//m@maﬁﬁm<+m

R? Q
and
//%Mm%@—%mwﬂﬁﬂmgCM—m% w>a, C>0.
R? Q
It is known from [3] that there exists v € (0, 1) such that the operator B(t) satisfies Condition 2 for
w = 0.

Let the operator F'(t,w) satisfy Condition 3. Then, by virtue of Theorems 2.1 and 2.3, problem (1),
(2) (the Cauchy-type problem for an integrodifferential equation) is well posed and uniquely solvable
for ug(z) € W™ (R") and o < 1.

3. Loaded Fractional-Order Differential Equations

Consider the following Cauchy-type problem in a Banach space F:

Du(t) = Au(t) + g(u(t))p, t>0, (3.1)
lim D> tu(t) = ug, (3.2)

where 0 < « < 1, ¢ is a nonlinear continuous functional defined on E, A is a linear closed densely
defined operator, and p is a fixed element of the space FE.

Problem (3.1), (3.2) is a particular case of problem (1), (2) for F'(t, B(t)u(t)) = g(u(t))p. Equa-
tion (3.1) contains the functional g depending on the sought solution u(t). Hence, it is natural to call
it a loaded differential equation (see the definition of a loaded differential equation, e.g., in [12, Chap.

2)).

Condition 3.1. (i) If the function I'=®u(t) is continuous fort > 0 and continuously differentiable
for t > 0, then the function D¥g(u(t)) belongs to C'((0,00), F) and is absolutely integrable at
the origin.

(ii) For any u,v € FE, there exists a positive L such that

lg(u) — g(v)| < Llju —v]. (3.3)
Theorems 2.1 and 2.2 imply the validity of the following assertions.

Theorem 3.1. Let o < 8 < 1, Condition 1 be satisfied, and w = 0 in inequality (5). Let Conditions
4 and 3.1 be satisfied. Then problem (3.1), (3.2) has a unique solution satisfying the estimate

lu®)ll < Mt~ e lugll, M >0, wi>w. (3.4)

Theorem 3.2. Let a = 3 < 1 and Conditions 1 and 3.1 be satisfied. Then problem (3.1), (3.2) has
a unique solution satisfying estimate (3.4).



The above solvability theorems for the Cauchy-type problem for loaded abstract equations can be
used for the investigation of inverse coefficient problems for fractional-order equations.

4. Inverse Problems for Fractional-Order Differential Equations

Consider the problem of finding a pair (w(t), (1)) satisfying the following conditions:

DPw(t)y = Aw(t) + p(t)p, >0, (4.1)
%i_I)I(l) DP~Lp(t) = u, (4.2)
fw(t)) = (1), (4.3)

where 0 < 5 < 1, p and g are fixed elements of D(A), f is a linear continuous functional over F (i.e.,
f belongs to the adjoint space E*), and ¥(t) is a given scalar function.

For example, a problem to reconstruct the dependence of the perturbation on the time, using an
additional observation at a space point, is a particular interpretation of the considered inverse problem.

Definition 4.1. A pair (w(t),¢(t)) is called a solution of problem (4.1)—(4.3) if w(t) is an abstract
function and @(t) is an absolutely integrable function such that w(t) satisfies Eq. (4.1) and Condi-
tions (4.2) and (4.3).

In [14], one can find a review of publications devoted to inverse problems for abstract integer-order
differential equations. In [17], their particular implementations can be found. The inverse problem
(4.1)-(4.3) for fractional-order equations was not considered before.

Condition 4.1. (i) 0 < g <1 and p € D(A), where D(A) is the domain of the operator A.
(ii) f e E* and f(p) # 0 (the nondegeneracy condition).
(iii) The scalar function I'™Py(t) is continuous for t > 0 and continuously differentiable for t >
0, the fractional derivative DPy(t) is absolutely integrable at the origin, and the conjugation
condition

f(uo) = lim Dﬁ_lz/}(t)
t—0
is satisfied.

In particular implementations, the nondegeneracy condition f(p) # 0 means that a reconstructable
source acts at the observation point (see [17]).

Theorem 4.1. Let Conditions 1 and 4.1 be satisfied. Then problem (4.1)—<(4.3) has a unique solution.
Proof. A solution of problem (4.1)—(4.3) is sought in the form

w(t) = 0()p + u(l), (4.4)
where

0(t) = IPp(t). (4.5)
It is easy to verify that the function wu(t) satisfies the equation

DPu(t) = Au(t) + 0(t)Ap, t >0,

and the initial condition

lim DA~ Lu(t) = ug. (4.6)
t—0
Taking into account condition (4.3), we obtain the following linear equation for the function 6(t):
Y(t) = 0() f(p) + f(ull)). (4.7)

Thus, to solve inverse problem (4.1)—(4.3), it suffices to find a solution of the loaded equation

DPu(t) = Au(t) + g(u(t))g, t>0, (4.8)



sat

isfying condition (4.6), where ¢ = Ap € E and

is a continuous functional (its linearity is not assumed).
By assumption, the operator A satisfies Condition 1. Obviously, the functional g(u(t)) satisfies
Condition 3.1. By virtue of Theorem 3.2, the Cauchy-type problem (4.8), (4.6) has a unique solution

u(t

).
The function (t) can be uniquely found from relations (4.5) and (4.7). It is of the form
1
_ DB — B _ B
olt) = D200) = 5o (D700 — 1 (D7u))).

Finally, the function w(t) is defined by relation (4.4).
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