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The problem of transition radiation under impact of relativistic particles under small angle to the atomic string of
a crystal is considered. The conditions under which the non-uniformity of the electron density along the string is not
substantial are obtained. In this case the problem of transition radiation is reduced to the problem of the particle
radiation on the thin fiber-like dielectric target. The formulae for the spectral-angular distribution of transition
radiation under both regular and random collisions of a particle with the set of fiber-like targets are obtained. The
radiation of the particle on a single atomic plane and on a set of planes in crystal is also considered.

1. INTRODUCTION

The transition radiation arises under crossing by
charged particle the boundary between two media with
different diclectric properties (see [1-4] and references
in them). For relativistic particle this radiation is
concentrated in the region of small angles along the
direction of the particle motion. The process of radiation
develops in large spatial region along the particle
velocity, that is called as the coherence length [2,5.6]. If
the particle in the limits of this region crosses some
boundaries of different media, the interference of
radiation emitted under crossing of every boundary is
substantial. It was shown in [7] that for long waves not
only longitudinal, but also transverse dimensions of the
region of radiation formation could have macroscopic
sizes. If the transverse size of the target satisfies the
condition L, <74, where 1 is the length of the

radiated wave and y = (1- I

is the particle's
Lorentz-factor (we use the system of units, in which the
velocity of light is equal to unit), than the transverse
sizes of the target and its geometrical shape make
substantial influence on the transition radiation.

In the presented paper the problems on transition
radiation by relativistic particle on dielectric targets of
some particular geometries are considered. We consider
the region of high frequencies of radiated waves, for
which the dielectric function of the medium can be

presented in the form:
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\4re’n,(r)/m is the plasma frequency, m is

the electron mass, 77, (7) is the electron density in the target.

2. TRANSITION RADIATION IN THE
FRAMES OF PERTURBATION THEORY

For the case of high frequencies of radiated waves,
®>>0

where o »=

p . the second term in the dielectric function of

the medium (1) can be considered as a small
perturbation. In the frameworks of perturbation theory
which was built, the spectral-angular density of

radiation with given polarization is determined by
relation

dE 072
=—|el| . @)
do do 47 2
where ¢ is the polarization vector, e Lk, |eF 1, k is

the wave vector of the radiated wave, and the value J
in our case can be wntten 1n the form
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where EGEO) (r) is the Fourier component of the non-

disturbed Coulomb field of the uniformly moving
relat1v1stlc partlcle
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The spectral-angular distribution of radiation
summed over polarizations is determined by equation
dk

do do  4r?

Using the Fourier transformation of the electron
density distribution 72, (r)
- Jd3rne (rye "

we can rewrite (5) in the form
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3. TRANSITION RADIATION ON A
DIELECTRIC FIBER AND ATOMIC STRING

Let us consider the transition radiation by relativistic
particle incident on a thin dielectric fiber under small
angle ¥ << 1 to its axis . The atomic string in crystal [6]
or nanotube [8] can be treated as such fiber in the case
when the length of radiation formation (the coherence
length) exceeds in much the atomic string thickness
along the particle motion direction:
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where R is the screening radius of the atomic potential
(Thomas-Fermi radius), ¢ is the radiation angle (the
angle between the wave vector 4 of the radiated wave
and the particle velocity).
Let us take the electron density distribution in the
fiber in Gaussian form,
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where z axis is directed along the particle velocity v,
the axis of the fiber is parallel to (x, z) plane, V;, is the
distance between the particle trajectory and the axis of
the fiber, 7, is the electron density per unit length of

the fiber. The Fourier transformation of this distribution
has the form:
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The spectral-angular distribution of radiation (6) must
be averaged over all possible values of the impact

parameter o,
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where 2y is the distance between the atomic strings in
the crystal along the y axis. After substituting (7) with
1, determined by (10) into (6) and averaging according
to (11), one can demonstrate that for small radiation
angles (8 << 1) and for small angles of incidence (
¥ <<1) the condition (8) leads to the possibility to
neglect the second exponential factor in (10), that
corresponds to the case of zero thickness of the fiber. In
other words, the details of the electron density
distribution in the fiber are not substantial under such
conditions.

For the case of infinitely thin dielectric fiber we
obtain:
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¢ is the azimuth angle (the angle between the x axis
and the projection of the wave vector £ onto the plane
(x, ). This function is plotted on the Fig. 1. One can
see that the angular distribution possesses the axial
symmetry relatively to the axis of the fiber (6 =V ,

¢ = 0) (it can be easy shown analytically from (13)).

Near the axis of symmetry of the angular distribution
the intensity has rather high level, but with incraesing of
the incidence angle ¥ the minimum in the center
developes itself. For v ~10y ~! the distribution has the

shape of narrow double ring.

Fig. 1. Surface plot (view from above) of the
function 100-F©,0) for vy =107, 7 = 2000 (8, = 8 cosy
, By =08I00 ) The lines of equal level of the surface
are shown

Choosing the polarization vectors in the form
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we find that radiation is partially polarized in ¢®

direction with polarization

P= !

(15

292 )2
1+2y9cosq)—1+y9 ’
21y

This function is plotted on Fig. 2.

Fig. 2. Polarization of radiation determined by Eq. (15)
at the same conditions as in Fig. 1

When our particle moves through the cristall it
collides with the periodical set of parallel atomic
strings. The motion of the particle in this case can be
both regular and chaotic [9]. If the particle moves
chaotically in the plane perpendicular to atomic strings
(under the constant incidence angle ¥ ), we can neglect
the interference of radiation produced by interaction of
the particle with different strings. In this case the
symmetry of angular distribution of radiation intensity,
described above, leads to the same form of the angular
distribution (13), as in the case of the single string. The
total intensity of radiation will be proportional to the
number of strings under collision.

If the particle motion in the crystal is regular, the
account of interference effects is necessary.



4. TRANSITION RADIATION ON
ATOMIC PLANE IN A CRYSTAL

Now let us consider the transition radiation of the
particle on the atomic plane in crystal in the case when
this atomic plane can be treated as a uniform thin
dielectric plate. The problem of radiation on a plate is
not new in the theory of transition radiation (see for
example [1-3]), but our perturbation theory permits to
obtain results in a rather simple way.

The Fourier transformation of the electron density
distribution under condition (8) can be written in the
form

ny=Q2n)n,b(q,) (q,18 + q.) . (16)

Here 7, denotes the electron density per unit area of the
plane. Substitution (16) into general formulae (6), (7)
gives us the following result for the spectral-angular
distribution of transition radiation:
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The angular distribution (18) is plotted on the Fig. 3
for the case ¥ = 4y ! One can see that the distribution

is symmetrical relatively to the reflection by the atomic
plane. The shape of distribution looks like two empty
cones, one of which is directed almost along the particle
velocity, and the second is "reflected" by the atomic
plane.
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Fig. 3. 3-dimentional plot of the function ¥, ®.0) (18)
(0,=0cosp ,b,=0s9 )fory = 2.1073, 7 = 2000

The polarization of radiation is determined by
Stocks parameters:
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The radiation is lincarly polarized with polarization

P=Jf+EF | Tt is easy can be seen that for Stocks

parameters (19) we have P=1 for all values of ¢ and
¢ . The angle between vector ¢ and direction of
maximum polarization & is determined in our case of

{5= 19

100% linear polarization by relation &1=Sin2e
£5=cos2 (see Fig. 4).
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Fig. 4. Vector plot of polarization of radiation at the
same conditions as on Fig. 3. Directions of arrows
indicate the direction of maximal polarization

(respectively to ¢V direction)
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