


denote the corresponding open hall by B,(X). The union 
o f the intersections o f the sphere Sr(X) with all (/// + I )- 
dimensional strata is called the «(-dimensional frag­

ment o f this sphere and denoted by S'" (X ). 1'he sphere 
can be regarded as a stratified set as well; it is natural to 
define its ///-strata to be the connected com ponents o f

the set S"r‘(X). Integrals over a sphere are calculated 
with respect to the stratified measure introduced above. 
For admissible r, and r2, the spheres 5 Г[ (X) and S r, (X),

as well as their fragments X " (X) and S"r[(X), are simi­
lar, This easily implies the formula
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(2)

where v is the outer normal to the sphere S, (X) at a 
point o f the sphere Sr(X). Here, it is assumed that X  e 
iio and the function n is globally continuous on 12() (this 
condition is not used in this section, but we need it in 
what follows) and differentiable inside each stratum 
Gkj с  Ц), and the integrals on the right-hand side o f  (2) 
converge for all ///. We denote the set o f all such func­
tions by СЧЦ)).

M ultiplying both sides o f  (2) by r1" and taking the 
sum over all ///, we obtain

(3)

A stratified sphere not necessarily contains fragments 
o f all dimensions, and formally, the right-hand side 
may include redundant terms. To avoid confusion, we

assume that the integrals over empty S"r' (X) vanish.

4. A NECESSARY CONDITION 
FOR AN EXTREM UM

In this section, we give the main result.
T heorem  1. Let X  e  £20 be a point o f  nontrivial m ax­

imum o f  a function и e  C ‘(£20).

Then, there exists an arbitrarily small admissible 
r > 0  such that
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Recall that we call X  a point o f nontrivial maximum 
of the function и if, for points Y close to it, ii(Y) < u(X) 
and the function X  is constant in no neighborhood o f X.

The proof is based on the following two lemmas.

L em m a 1. Let f 0 and f  be continuous functions on 
[(); continuously differentiable on (0; a] and such 
that / 0(0) = / ,(0 )  = 0. I f  the function f 0 is nonpositive and

r f \ ( r )  + M r ) > 0 ,  (5)

then the Junction / ,  is nonnegative.
L em m a 2. Let f0, f u . . . ,  f„ be continuous functions  

on |0 ; a 1 continuously differentiable on (0; a ] and such 
that/ ( 0 )  = 0 fo r  z' = 0, 1 ,. ..,/ / .  I f  the functions f a r e  non- 
positive and

r f '„ ( r )  + r  ~ 7 ;  j( r )  + ... + f '0(r )  > 0 , (6)

then f ( r )  = 0  f o r  all i.
ITiese lemmas easily imply the above theorem, 

because assuming the opposite, we can find a positive 
number a such that the integral on the left-hand side of 
(4) is nonnegative for r e  (0; a]. By virtue o f (3). this

im p lies;-'/!/ W  +  ^ " 1/ i - i W + -  +  f'o </) ^  0 for r  e  
(0; a\. where

I
fn,(r) = ~  J  »

for m = 0, 1 d. Without loss o f generality, we can
assume that u(X) = 0  at the point o f  maximum. ЧЪеп. 
the functions f„ are nonpositive and. by continuity, can 
be set to zero at r = 0. Thus, they satisfy all conditions 
o f  Lem m a 2. T herefore,/m(r) = 0 for all in. This imme­
diately implies that и = 0 on the ball BU(X), which con­
tradicts the nontriviality o f the maximum at the point X.

The above theorem  plays the key role in the proof of 
the strong maximum principle for elliptic inequalities 
on stratilied sets, which is discussed later on.

5. DIVERGENCE OPHRAIORS
AND LAPLACIANS ON STRATIFIED SETS

We say that a vector field F  on Q 0 's tangent to £i0 
if. for any stratum a kl с  Qq and any point X  e  a kj, the

vector F (X) belongs to the space c kj tangent to TyCkj at

the point X\ it is natural to assume that F  = 0 on zero­
dimensional strata.

*)
The divergence o f the tield F  at a point X  e  L20 is 

defined by the relation

Ф ?(5 )
( V F ) ( X )  = lim

s - > x  p ( B )  '
(7)

where Ф ^(5) denotes the flow o f the vector field F  

through the “stratified" surface S  obtained as the inter­
section o f some smooth surface S  in the ambient space 

Ш" with LI and D is the part o f LI contained inside .S'. We



assume that S  is contained in some ball Br(X) o f admis­

sible radius and the normal to S  at the point X  e  a kj n  
S  belongs to the space tangent to a kj for all к and j; for 
example, S = Sr(X) satisfies this condition. The How 
Ф-,(5) is com posed o f  flows through the separate m-

fragments S„, (m = 1,2, . . . ,d )  o f the surface S. llie  sum ­
mation o f these separate flows yields

Ф p(S)  = v f/ц,
s

where v is the outer normal to S  with the properties 
specilied above and (i is the stratified measure on the 
surface S  treated as a stratified set; stratification is per­
formed in the same way as in Section 3 (for spheres).

We denote the set o f  tangent vector fields continu­
ous on each stratum and having a divergence on 42,, by 

1 1 
С  (Qq). A field belonging to С  (Ц ,) may not be glo­
bally continuous on Ц ,; i.e.. a vector field on £2,, is a set 
o f independent fields on separate strata. It can be shown 
(see [6]) that if  X  e  c k then

( V F ) ( X )  = (V*. , £ ) ( * ) +  £  v - % * ) .  (8)
°i,> °<-i.

where Уk , is the classical divergence operator on 
o k_ ,, and an expression o f  the form a kj > a k ,, means

that the stratum a k 1; is adjacent to c kj. 'ITie vector v is 
the unit normal to c t ,, at the point X  directed inward 
the stratum c kj. In what follows, for a function, say. u: 
£2 —» IF®, a notation o f  the form » | (X) (where X  e  

о * _ „ >  o i7) is used for the continuous extension to the 
point X  o f the restriction » |0j o f the function и to c kj.
Certainly, it is assum ed that such an extension exists. 
This is so if, e.g.. the restriction is uniform ly continu­

ous on c kj. If ii is not globally continuous on £2, then.
generally, mL (X) *  u(X).

Suppose that a function u: £2у —> 1R is differentiable 
inside each stratum. Then, we can consider the vector 
field V//. whose restriction to each stratum o k, o f  £20 
coincides with the field o f the gradient V kn. Note that 
we do not assume the existence o f any relations 
between the restrictions o f it to separate strata; thus, in 
fact. У n is a set o f  independent vector fields (one field 
on each stratum). If Vu  belongs to the class С(Ц>). 
then we can consider (he operator An = V(V«), which is 
natural to call the Laplace operator. As usual, we use 
the same symbol V for the gradient and the divergence, 
interpreting it as the divergence if  it is applied to a vec­
tor field and as the gradient if it is applied to a scalar

function, in the rest o f the paper, ii is assumed to be
1

continuous on £20. If. in addition. \ u  e  С  (£20), then we 
write и € C2(L2o).

Together with the operator A, we consider the oper­
ators Ar acting as Arii = V(pVu) ,  where p  is the so- 
called stratified constant (a function constant on each 
separate siraiuin). In this paper, we assume that p  
equals 0  or 1 on each stratum. This is needed to simplify 
the statements o f results; in the general case, proofs are 
similar. All such operators can be considered as ana­
logues o f the Laplace operator. In the simplest case, p  
is nonzero only on the so-called free strata (that is, the 
strata not contained in the boundaries o f other strata); 
examples o f  free strata are the strata o f  highest dim en­
sion. We refer to the corresponding Laplacian as the 
soft Laplacian, as opposed to the rigid Laplacian, which 
corresponds to p = 1 tin the entire set 12„. The results 
obtained in this paper apply to these two extreme cases 
and all cases between them. It is possible to consider 
also the case where p  = 0  on some free strata, but this 
case turns out to be fairly meaningless.

6. THE STRONG MAXIMUM PRINCIPLE

First, note that, unlike for the classical strong maxi­
mum principle, the inequality An > 0 on a stratified set 
may admit nonconstant solutions having local maxima. 
Nevertheless, the following exact analogue o f the 
strong maximum principle is valid.

T heorem  2. Lei n e  C2̂ , , )  be a solution to the ine­
quality An > 0 on S20. Then, и may have no points o f  
nontrivial local maximum in £2,,.

This theorem is easily derived from the fact that, as 
well as in the classical case, the inequality An > 0 
im plies the nonnegativity o f the integrals o f  the nor­
mal derivative over the adm issible spheres. As m en­
tioned above, the integral o f  the normal derivative 
over a sphere can be represented in the form r" f'„ (r) + 

r" 1 f  '„ i (r) + ... + fo (r) .  As a result, the inequality 
An > 0 implies (6). which contradicts (if X  is a point of 
nontrivial maximum) Theorem 1. Hie proof that the 
inequality An > 0  implies the nonnegativity o f the inte­
grals o f  the normal derivative over the admissible 
spheres is based tin the following analogue o f Green's 
formula.

T heorem  3. I f  u, v  e  C2(£20), then, on the halls o f  
admissible radius,

|  ( u A v - v A u ) d \ i  = |  ( n ( V v )v -  v (V //)v)</|i.
Br(X) S,(X)

This theorem is a special case o f the corresponding 
theorem from [6|.



It should be mentioned that, it dii,, = 0 .  then the ine­
quality admits only constant solutions (see |6]), and 
Theorem 2 is trivial in this case. It is also clear that this 
theorem implies the absence o f  positive nontrivial m ax­
ima for the solutions to the inequality An -  qu > 0  pro­
vided that the function q is nonnegative. This function 
is also assumed to be continuous on each stratum o f Ц ,.
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