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In this study, electron back scatter diffraction (EBSD) was employed to examine the microstructure
evolved during superplastic deformation of advanced Al-Mg-Li alloy. In contrast to the widely-
accepted conception of superplasticity, the microstructure was found to be characterized by elongated
grains, a notable fraction of low-angle boundaries, and a distinct (though a very weak) crystallographic
texture. All these observations suggested a significant activity of intragranular slip.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction recrystallization has been found [e.g. 4–8]. So far, however, such
Despite the phenomenon of superplasticity has been discovered
~100 years ago [1,2], it is still attracting a considerable research
interest. This is due to a very unusual (or even exotic) nature of
the involved microstructural mechanisms as well as the rapid
development of superplastic forming in recent years. Current
knowledge of the superplasticity is a result of extensive research
over the last ~75 years. These works established the basic relation-
ships between deformation conditions, the resulting microstruc-
tural processes and ductility, and thus enabled to develop a
widely-accepted physical model of this phenomenon.

It is worth noting that our current understanding of the
microstructural processes involved into the superplasticity is pri-
marily based on observations from optical microscopy and trans-
mission electron microscopy. However, a recent invention of
electron backscatter diffraction (EBSD) provided new opportunities
for investigation of this interesting phenomenon. This technique
enables quantification of various microstructural details over very
large scale thus opening a new dimension for microstructural anal-
ysis [3].

Indeed, the first EBSD studies of superplastically strained mate-
rials revealed a surprisingly high activity of intragranular deforma-
tion processes. Specifically, an extensive development of dynamic
studies are still limited.
The present work was undertaken to explore the microstruc-

tural behavior of advanced Al-Mg-Li alloy during superplastic
deformation. This material belongs to a relatively new generation
of aviation aluminum alloys with high specific strength and good
weldability and having a good potential for application in aero-
space industry.

2. Experimental

The material used in the present investigation was a commer-
cial Al-5.5%Mg-2.2%Li-0.12%Zr (all wt.%) alloy supplied in a hot-
rolled condition. To produce a fine-grained structure suitable for
superplastic deformation, the received material was solutionized
at 470 �C and then subjected to equal channel angular pressing
(ECAP) at 370 �C. This produced a material condition with a mean
grain size of ~3 lm, developed substructure, and a high fraction of
dispersoids of Al2LiMg and Al3Li phases evenly distributed in grain
interior.

The tensile specimen for superplastic test was machined along
the axis of ECAPed billet and had a gauge section of 5 � 3 � 0.8
mm3. The specimen was pulled to failure at 395 �C (�0.72Tm,
where Tm is the melting point) and the initial strain rate of
3 � 10-2 s�1 by using an Instron testing machine. The strain-rate-
jump tests were employed to evaluate the strain-rate sensitivity
parameter (m-value). To this end, crosshead velocity abruptly
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Fig. 1. Tensile behavior: engineering diagram (a) and true diagram (b). In (b), the variation of cross-head velocity.
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changed from 10 to 5 mm/min and vice versa during the tensile
tests. To enhance material ductility, the tensile tests were assisted
by ultrasonic vibrations with frequency of 20 kHz and amplitude of
5 lm by using in-house acoustic system [9].

The final microstructure evolved in the gauge section of the
failed specimen was studied by EBSD. The required surface finish
was obtained by conventional metallographic technique followed
by a long-term (24 h) vibratory polishing with colloidal silica. EBSD
was conducted with a Hitachi S-4300SE field-emission-gun scan-
ning electron microscope equipped with TSL OIMTM EBSD system
and operating at accelerated voltage of 25 kV. To examine the
microstructure at different length scales, several EBSD maps were
acquired with a scan step size of 2 or 0.5 lm. To ensure reliability
of EBSD data, all grains comprising two or fewer pixels were
removed from the maps using the standard option of EBSD soft-
ware. To eliminate the spurious boundaries caused by orientation
noise, a lower limit boundary misorientation cut-off of 2� was
employed. A 15� criterion was applied to differentiate low-angle
boundaries (LABs) from high-angle boundaries (HABs).
1 In this work, the grain shape aspect ratio was defined as the length of the major
axis divided by the length of the minor axis of the ellipse fitting to the grain
3. Results and discussion

The flow curves recorded during the tensile test are shown in
Fig. 1. From the engineering curve, the elongation-to-failure was
measured to be �1,000% (Fig. 1a) and therefore the material,
indeed, had experienced the superplastic deformation. The mean
m-value was measured to be 0.4. It is also important to mention
that the final stage of the true diagram was characterized by essen-
tial strain hardening (Fig. 1b) which presumably reflected an
extensive intragranular slip activity.

Low-magnification EBSD map taken from the failed specimen is
given in Fig. 2a. To investigate the microstructural distribution
along the sample length, this map was divided into three
microstructural regions, where Region 1 was located close to the
sample shoulder, and Region 3 was close to the rupture location.
To provide a closer inspection of the evolved microstructures, the
higher-resolution EBSD maps obtained from these areas were
shown in Fig. 2b to d. The appropriate microstructural data derived
from the maps were summarized in Figs. 3 and 4.

From the above observations, it is seen that the microstructure
distribution was very uniform thus suggesting a homogeneous
character of material flow during superplastic deformation. In all
cases, the final microstructure was dominated by the grains with
the mean grain size of ~10 lm (Fig. 3a). This implied a significant
coarsening of the original fine-grained structure during the super-
plastic deformation.

Of particular interest was the observation that the final grains
were typically elongated along the tensile direction (Fig. 2b to d).
Despite the mean grain shape aspect ratio1 was measured to be 2,
in some cases it achieved ~7 (Fig. 3b). Such grain morphology sug-
gested an extensive slip occurring in grain interior.

Another significant issue was a notable fraction of LABs (12–
15%) present in the superplastically-strained material. It is impor-
tant, that the LABs were typically oriented perpendicular to the
grain elongation (several examples are arrowed in Fig. 2b to d),
as is often found in materials heavily deformed at high tempera-
tures. It is possible, therefore, that the final microstructure domi-
nated by low-aspect ratio grains originated from subdivision of
elongated grains. This mechanism of microstructure evolution is
well aligned with definition of continuous recrystallization.
Despite the agreement with literature [4–8], the available
microstructural data are not sufficient to definite conclusion to
be drawn, and the assumption above require further thorough
verification.

It is also important to emphasize that the superplastically
strained material was characterized by a development of distinct
crystallographic texture (Fig. 4). In all cases, the texture was dom-
inated by the {hkl} h1 0 0i and {hkl} h1 1 1i fiber orientations which
normally expected to form during axial tension of aluminum alloys
[10]. Similar to the microstructure morphology described above,
this texture observation also suggested a significant intragranular
slip activity occurring during superplastic deformation.

Remarkably, the evolved texture was exceptionally weak with
the peak intensity being below 2 times random (Fig. 4). In this con-
text, it is worth noting that severe plastic deformation of a solu-
tionized aluminum alloys (i.e., the grain-refinement processing
similar to that used in the present work) may give rise to a decom-
position of the supersaturated solid solution with the concomitant
precipitation of a secondary phase along grain boundaries [11,12].
It is believed that such grain-boundary phase may exert a lubrica-
tion effect during subsequent superplastic deformation [13]. If so,
it should partially relax the strain constraints between the neigh-
boring grains and thus result in a poorly-developed texture, similar
to that observed in the present study. Despite the prior microstruc-
tural observations revealed no signs of the grain-boundary phase
in the studied material [14], the above mechanism is considered



Fig. 2. Composite EBSD orientation map showing microstructure distribution in superplastically-deformed specimen (a) and higher resolution maps illustrating
microstructure in Region 1 (b), Region 2 (c), and Region 3 (d). In all cases, individual grains in the maps are colored according to their crystallographic orientations relative to
tensile direction; LABs and HABs are depicted as white and black lines, respectively. In (a), the grain boundaries are omitted for simplicity; in (b-d), examples of LABs are
arrowed. Note: Tensile direction is horizontal.

Fig. 3. Grain size distributions (a) and grain-shape-aspect-ratio distributions (b) measured in different locations of superplastically-deformed specimen.
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reasonable in explaining of the textural data, and therefore this
issue demands further study.
4. Conclusions

In this work, EBSD was applied to investigate a structural
response of Al-Mg-Li alloy to superplastic deformation. The
microstructure distribution in the gauge section of the
superplastically-strained specimen was found to be fairly uniform
thus indicating a very homogeneous character of material flow. In
contrast to the widely accepted concept of superplastic deforma-
tion, the grains were found to be elongated along the tensile axis,
contained a considerable fraction of LABs and were characterized
by a crystallographic preference of orientations {hkl} h1 0 0i and
{hkl} h1 1 1i . All these observations suggested a considerable con-
tribution of intragranular slip into global material flow.

From the analysis of microstructure morphology, it was sur-
mised that the microstructural evolution was governed by a subdi-
vision of elongated grains due to the development of LAB
substructure, and, therefore, it fitted a definition of continuous
recrystallization. On the other hand, it was recognized that this
hypothesis was not supported enough by solid experimental data
and thus additional verification is required.



Fig. 4. Inverse-pole figures showing crystallographic orientation of superplastically-deformed material in Region 1 (a), Region 2 (b), and Region 3 (c).
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