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Diffracted transition X-radiation (DTR) of relativistic electron crossing a single crystal plate of limited thickness is considered within
the framework of x-ray diffraction dynamical theory in the geometry of Bragg. The analytical expression for spectral-angular
characteristics of DTR is obtained with tacking to account the orientation of external surfaces relative to the diffracting atomic planes
in the crystal. It is shown that under a fixed angle of electron incidence on the system of diffracting planes in the crystal the spectral-
angular characteristics DTR significantly depend on the external surface orientation.
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The transition radiation originates [1] when a fast charged particle crosses a boundary between two different
mediums. Ifone ofthe mediums is monocrystal the originated radiation can be diffracted on a system of parallel atomic
planes in the crystal [2-4]. This radiation is named the diffracted transition radiation (DTR). Up to now DTR in
dynamical approach was considered only in the case when crystals entrance surface is parallel to the system of the
atomic planes. In the current work the expression for spectral-angular distribution of DTR is obtained on the base of the
dynamical diffraction theory [5] with taking to account the angle between the entrance surface and the set of atomic
planes in the crystal, as a parameter. It is shown that spectral-angular density of DTR substantially depends on this
parameter. So by carving the crystal in different ways one can change the spectral-angular characteristics of DTR. The
conditions of observation of DTR amplitude increase and decrease is shown in the work. The limit process to the case
ofthe crystal entrance surface parallel to the atomic planes is specified.

THE BASIC FORMULAS
Let’s consider theradiation of afast charged particle crossing a monocrystal L thick with constant
velocity V (Fig. 1). To describe this process we will use the equations for Fourier direct image of electromagnetic field

E(k,ft>)= [UMBrE(r./)exp(TFfin/-7'kr). 1)

Since the Coulomb field of an ultrarelativistic particle in the
close approximation is transverse, the incident EO(k,a>) and

diffracted Ej(k, co) electromagnetic waves, can be defined by two
components with different values of transverse polarization
EO0(*,©) =4 1k, ffh)el) + 4 2)(k,ffl)e[R), 2)
Ej (k, co) = E"](k, f>)ejl’ + £ 12)(k,ffl)eJ2).

The unit vectorsc)l.e}2’.cjlland ej2) are chosen in the
following way. Vectors ej/’and ef2lare perpendicular to vectork ,
and vectors e”’and ej2) are perpendicular to vector k +g. The

vectors €e))2), e{2)are situated on the plane of vector k n k +¢g (it-

polarization), and el n ejllare perpendicular to this plane (<x-
Fig.l. The radiation process geometry.
polarization) ; It is obvious that ej/1=ejl’. The reciprocal lattice

vector g defines a set of reflecting atomic planes. By the use of two-

wave approximation of thedynamic theoryof diffraction [5], we can write the well-known equation set for Fourier
transform images of the incident wave and diffracted wave intensities [6]
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where y,, y_, is Fourier coefficients of crystal dialectical susceptibility expansion in series by reciprocal vectors of

the crystal lattice g

1(©.7) = Tt g (@) =3 (1}, (0)+ gy (@), @)
8 8

Let’s consider a crystal with symmetry (7, = ¥_,) .The y, is defined by expression
1
Xy = %o (F(g)/Z)(S(g)/No)exp[—;gzufj, 5)

where y, =y, +iy; is the average dialectical susceptibility of the crystal medium, F(g)- form-factor of the atom
containing Z electrons, S(g) is the structure factor of the elementary crystal cell containing N, atoms, #, - mean-
square amplitude of thermal oscillations of atoms in the crystal.
The quantities C*) and P in system (3) are defined in the following way
c® = egs)egs), =1, c® =cos26,,

(©)
PO =ef'(c/p). PU =sing, PP =cosp,

where ¢ =k -V /V? is the component of the virtual photon perpendicular to particle velocity V ( p=w8/V ,
#<<l is the angle between k and V), 8, is the angle between the electron velocity and the set of crystallographic
planes (Bragg angle). The azimuth angle ¢ is counted off from the plane made up by V and g . The value of the crystal
lattice reciprocal vector is defined as g = 2w sinfy /V , where @; is Braggis frequency. The system (3) describes the

field of o -polarization if s =1 or the field of 7 -polarization if s=2.
In this work the case of Braggis geometry is under the consideration, when a diffracted field exits the entrance surface

of the plate. The diffracted radiation is directed close to vector g + @V / y? (see Fig.1.).
By solving the dispersion equation following from system (3)

(@ L+ 1) — k)@ L+ g) - (k+8)°) - w“z,gzgcwz =0, (7)

in standard methods of the dynamical theory [5] we will have obtained the expression for wave vectors of incident and
diffracted waves
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here the following notations are inserted
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S is the angle between the entrance surface of the crystal target and the crystallographic plane of the crystal.



In expression (8) index 7 =1,2 defines two branches of X-radiation waves passing through the crystal. Because the

inequality 2sin’ Og/ y?

;(é C® >>1 holds true in the range of X-radiation frequencies 7' (@) is a very fast function,

therefore it is convenient to use it as a spectral variable characterizing @ .
The solution of the first equation in set (3) for the Coulomb field of the relativistic electron in vacuum ( y_, =0) 18
as follows:

8ztieV 6P
o —y2-9* (10)

Eés)vac _

The same for the Coulomb field in crystal is as
8z’iey  6PY

E(s)cr _ ) 11
' A R (D
So, the field of the radiation formed on the crystal entrance surface is
o 87CieV 1 1
(s)yvac—cr _ (s) _
Ly T o op ( 2 _g2 2 2 ] ‘ (12)
- Xo—y = -0

By multiplying the amplitude of the radiation field formed on the entrance surface (12) by the reflection amplitude

coefﬁcientQ(s) which defines the reflection of the field in a crystal of limited thickness, we will obtain the amplitude of

DTR
DIR . 87’ieV 1 1
E® = pls)vac CVQ(S) _ ap's) _ Q(S)-
Rad 0 W 2 _02 %o _7,2 _02 (13)
The reflection amplitude coefficient Q(S) is given as [5]
el ig® il g
Q(S) _ C(S)lg e 2cos(yy) _eZCos(z//O)
< ol [3 6 LA WS ’
(—z—\/zz +q" jez“’s("’o) —(—zﬂ/zz +q" je 2cos(yo) (14)
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where the following notations are inserted ¢ =-C ;((S le, z= —(a ~(1+ 8)(}(0 —0* -y ))/ 2¢,

n/2—(05 +98) =y, is the angle between the incident electron velocity and external normal to the target surface. The

amplitude coefficient (14) reflects the existence of two branches in the solution (13) i.e. the existence of two branches
of X-radiation waves in the crystal.

If we substitute (13) by expression [6]

42 PR , P prRl?
—=w 2z EY ,
e =) Zl e (15)
we will get the following formula for the spectral-angular density of the radiation
2
APNPTR 2 2 5 1 1 5
@ =@ P _ Q(S)
dod? 7 Z::‘ y 240y e0t -4 | (16)
SPECTRAL-ANGULAR DISTRIBUTION OF DTR IN CASE OF A THIN CRYSTAL
With a thin crystal the absorption of radiation can be neglected and the reflection amplitude coefficient O can be
given by
lb(s) v 5( > b(s) v £
0 = ‘

&
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Parameter e « sin(0/; - 8)/sin(0/; + 8) defines the orientation of the crystal plate entrance surface. If ¢ >0 the

crystal is oriented according to Bragg’s geometry. In this case the part of TR formed on the entrance surface is
diffracted on the set of the atomic planes and exits the crystal through its entrance surface. Under the fixed value of
Bragg’s angle dB parameter 8 becomes negative and its absolute value grows when the electron incident angle

{6B + (?) decreases (in the limit case 8 —»-6B) which consequently leads to the increase of s . On the contrary, if the
electron incident angle increases e decreases (the limit value of 8 is reached in the case of 5 —»0n).
A very interesting expression is given for the square module of the reflection amplitude coefficient C)lv| ,

describing the DTR spectrum as the function of the orientation of the crystal plate entrance surface

sin  b(s)-
ToRu (18)
(sr
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The curves describing the spectrum of DTR built up on formula (18) are presented in Fig.2 for different values of
parameters . One can see that under the increasing of 8 the DTR spectrum becomes narrower, which signifies the
decreasing of the frequency region of the TR total reflection in the crystal. The total reflection region (anomalous
dispersion region) is the frequency region where the wave vector k [I's) of the incident wave (see (8a)) acquires a
complex value in the absence of absoiption (/rv =o0), the waves radiated on the entrance surface are completely
reflected in the ciystal by the atomic planes and do not move worward.

This region is defined in accordance with the expression for K <s) (8) can be presented as

4N -P ){\+s)l2<tfs) < -3 (s](l +s)/2, (19a)

or by
2sin“6B oB(l +0cos<pcotOB) " < I (i)
-V 7klcw -/?0< A
V2 ® (19b)
where = -70

Ml

Ig? The width of the area is A/;I\ =2-Je . It is

important to note that the magnitude of this area
depends on the orientation of the ciystal. From (19)
one can see that the presence of the total reflection
area is a dynamical effect, in cinematic approach,
when = 0. this area turns into the point of exact

Bragg resonance for the pseudo photon of the
relativistic electron Coulomb field

Fig.2. Influence of the crystal plate entrance

surface orientation on the DTR spectra.
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The middle point ofthe maximum is defined from (18) by

max - = -id2+r~2~Z2'Of\+5s)l12
4 F (1)



(22)

In accordance with (21) the total reflection area shifts to the left with increasing parameter a (see Fig. 2) and the
midband frequency omex grows (20). This effect is not connected with dynamic scattering because ®max does not

depend on parameter m/,,. With decreasing a the amplitude of DTR spectrum is on a considerable increase, which is

connected with the decreasing cross direction dimensions of the reflected photon beam.

The cause of the formation of subordinate maxima (see Fig.2) in DTR spectrum is the interference between the
second wave field penetrating the ciystal and the first wave field originateng on the input ciystal surface passing
backward inside the ciystal.

Ifwe substitute (18) for (16) we will get the general expression for the spectral-angular distribution of DTR.

(sr -a
sill b(s)

_d2NmK (sV (23)
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It is necessaiy to note that in the particular case of entrance ciystal surface parallel to a ciystallographic plane
(8 =0 or <= 1)the expression (23) turns into the expression for DTR obtained in [7].

ANGULAR DENSITY OF DTR
In order to study the dependence of the angular density of DTR on parameter 8 let’s integrate (20) with the

frequency function ” {s\co)

dNE™  cdan Dm oo TIROTR T S;_( !

c — de¢ .
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To build the curves describing the angular density for cr -polarization let’s write (24) as
dne't e vt VO o
dQ. k2 25in2(9§2004
(
sil ~ bil) ) (25)
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(r 2+01)Z 2 p44 -a +asin" bil)
co"

where 6 =6smcp.

The curves of the angular density of DTR is
calculated by formula (25) presented in Fig.3. The
curves are built for different value of parameter a
and fixed values of other parameters shown in the
figure. Fig.3 shows that with the increasing of the
incidence angle of the electron on target (with
decreasing 8) the angular density of radiation rises
steeply, which is important from the point of view of
creating alternative quasimonochromatic sources of
X-radiation.

CONCLUSION
The detailed theoretical analysis of relativistic
electron DTR in ciystal is carried out in Bragg’s
Fig.3. Influence of orientation of the scattering geometiy. On the base of the dynamical
crystal plate on angular density of DTR. theory of x-ray diffraction the analytical expression
for spectral-angular characteristics of DTR is
obtained by taking into account the orientation of external surfaces relative to the diffracting atomic planes in the



crystal. It is shown that under a fixed angle of electron incidence on the set of reflecting atomic planes the spectral-
angular characteristics of DTR depend substantially on the orientation of the entrance surface of the crystal. The abrupt
increase of the angular density of DTR with the increasing of parameter € we explain by the decreasing of cross
dimensions of the reflected photon beam under increasing the angle of electron incidence on the entrance crystal
surface. And for all that the total reflection area will narrow and its middle frequency shifts downward (n shifts
upward). This effect can be used for intensity enhancement of x-radiation source built on a basis of DTR mechanism.
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METO/I YBEJIUYEHHIS CHEKTPAJIBHO-YIJIOBOM INIOTHOCTHA JIJAGPATUPOBAHHOI'O
HEPEXOJHOI'O U3JIYUEHUSA PEJIATUBUCTCKOI'O 3JIEKTPOHA B MOHOKPUCTAJLJIE
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B pamkax guHaMpueckod TeopmH AH(paKOHH paccMaTpuBaeTcs quparnpoBaHHoe mepexogHoe wm3mydenme  (JIIIH)
PETSITHBACTCKOTO 3JIEKTPOHA, IISPECeKaromero MOHOKPHCTAIHIECKYIO ILUIACTHHKY KOHEWHOH TONMHWHEI B reomerpuu bpsrra.
[omyvyensl aHanUTHYECKHE BBIPAXKSHHS! I CHEKTPAITFHO-YIIOBEIX XapakTepucTuk JIIM ¢ ydeToM pasmuIHBIX OpHeHTAIHH
BXOJIHOH MOBEPXHOCTH OTHOCHTENBHO NU(ParHpyIONHX aTOMHBIX IOocKocTeld kprctamna. [lokaszano, 4ro mpr ¢rKCHpOBaHHOM
yIie HaJeHus 3MeKTpoHa Ha CHCTeMy AU(ParupylomuX INIOCKOCTeH KpHCTallla, CHEeKTPAlbHO-YITOBBle XapakTeprctuku JIIH
CYIIECTBEHHO 3aBHUCSIT OT OPHEHTAINH BXOJHOH TOBEPXHOCTH.

KJIIOYEBBIE CJIOBA: pensITHBACTCKHH 3MEKTPOH, NePeXOfHOe H3IIydeHHe, IUHAMHUYeCKas JUGPaKOUs, YIIOBO®
pacmpesieneHre, MOHOKPHCTAILI



