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Abstract—The motion of electrons in the axial channeling mode in the [100] direction of a Si crystal can be
regular and chaotic (depending on the initial conditions). The contribution of regions of regular and chaotic
dynamics to the quasiclassical density of energy levels of the transverse motion of electrons is found in this
paper. The obtained values are used as parameters of the Berry—Robnik distribution describing the level
spacing statistics in the case of the coexistence of regions of regular and chaotic motion.
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INTRODUCTION

The range of problems of quantum chaos includes
the study of the difference between the behaviors of
quantum systems having, on the one hand, chaotic
dynamics and, on the other hand, regular dynamics
[1—4] in the classical limit. The statistical properties of
the energy levels of a quantum system are one of the
manifestations of quantum chaos that is simplest for
analysis. Thus, the distance s between the neighboring
energy levels of a chaotic system obeys the Wigner dis-
tribution [2—4]:

ps) = (mp’s/2)exp(-np’s’ /4), (1

where p is the average density of levels in the region of
the energy spectra of the system under consideration,
while, for systems with regular dynamics, the expo-
nential (Poisson) distribution exists:

p(s) = pexp(—ps),
with a maximum at s = 0.

Thus, the tendency to the grouping of energy levels
into shells exists in regular systems, while the energy
levels exhibit a tendency to mutual repulsion in chaotic
systems. Therefore, the manifestations of quantum
chaos are more noticeable in the quasiclassical region,
where the number of energy levels is large.

The manifestation of dynamic chaos in electron
channeling [5, 6] was studied for the case of motion
near the [110] direction in a Si crystal in [7—9]. In this
case, pairs of neighboring atomic chains produce a
double-well potential, above the saddle point of which

(2)

the motion of electrons turns out to be almost chaotic.
It was established that the statistical properties of the
levels in this region are described well by the Wigner
distribution (1).

The case where the classical dynamics of a particle
turns out to be regular at a given energy under certain
initial conditions and chaotic under others is more com-
plicated. Such a case occurs, for example, if an electron
moves near the [100] direction of a Si crystal [6].
Assuming that, in the quasiclassical limit, the regions of
regular motion and the (single) region of chaotic motion
generate two independent sequences of levels, Berry and
Robnik [10] and also (independently) Bogomolny [11]
showed that the distribution of level spacings is
described by the following formula:

ps) = éem(—pls)(pferfc (n"°p,s/2)

+ (2pips + npis/2) exp (—Ep%sz/4)),

where p, and p, are the densities of levels caused by reg-
ular and chaotic dynamics, respectively (p, + p, = p),

3)

ercf(x) = 2n_lfzjexp(—r2)dr =1-erf(x).

The average density of energy levels of a two-
dimensional system in the quasiclassical limit of quan-
tum mechanics is defined by the formula [10]:

p(E) = (2nh)* [3(E-H(x,y, p,.,)) dxdydp,dp,, (4)
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where H is the classical Hamiltonian of the system,
and the delta function expresses the energy conserva-
tion law for the motion of a particle. By integration

over p,, we obtain

p(E) = 2021h)” [y, (x.p,p, )| dxdydp,,  (5)

where v, is the particle velocity component in the
direction of the axis y, and integration is performed

over the region, determined by the condition

pi[2m+U (x,y) < E. (6)

In this paper, we estimate the contribution p, and
p, to the average density of nondegenerate energy lev-
els (5); it is based on inclusion of the structure of
regions of the regular motion in phase space of an elec-
tron moving near the [100] direction of a Si crystal in
the axial channeling mode.

EXPERIMENTAL

If the relativistic particle is incident at a small
angle y to the crystallographic axis closely packed
with atoms, then the case where it performs finite
motion in the transverse (with respect to the axis) plane,
which is called axial channeling, can occur [5, 6]. In
this case, the particle motion can be described as
motion in the continuous potential of an atomic chain
averaged along its length. The particle-momentum

component g, that is parallel to the chain axis is

retained in this potential, which makes it possible to
describe electron motion in the transverse plane using
the two-dimensional Schrodinger equation

ﬁ%ano=m§wm%n )
t
with the Hamilton operator
5 A NN
H=-—"—|2-+="—|+Ux ), (8)
215'”/c2 [ax2 aﬁ]

in which the role of the particle mass is played by the
quantity E”/cz, where E| = (m*c* + p“cz)l’;2 is the
energy of longitudinal motion [5].

The continuous potential of an individual atomic
chain can be approximated by the formula [5]:

BR2
Ul(x,y)=-U,In| 1+ —F———|, 9)
1 (%,7) 0 [ x2+y2+0tR2]
where U, =66.6 eV, o=0.48, PB=1.5 and

R =0.194 A (the Thomas— Fermi radius) for the Si
crystal [100] chain. Such chains form square lattice
with a period of @ =1.92 A in the (100) plane. The
potential electron energy in the chain field is described

Ux,y), eV

Fig. 1. Potential energy (10) of an electron in the Si crystal
[100]-chain field with the inclusion of the contributions of
the eight nearest neighbors.

by the following sum if the contributions of its eight
nearest neighbors are taken into account:

1

1
U(x,y) = > Ulx ~ia,y - ja),

i=—1j=—1
the form of this function is given in Fig. 1.

(10)

The eigenvalues E|, of Hamiltonian (8) with poten-
tial (10) (energy levels of the transverse motion of a
channeled electron) are found numerically using the
so-called spectral method described in [7, 8, 12, 13].
We note that, in the case under consideration, the
potential has the symmetry of a square, and all states
that are accessible for the particle can be classified by

irreducible representations of the group D, (or the

group C,,, which is isomorphic to it, forexample, [14])
depending on the type of wavefunction symmetry.
This group has four one-dimensional irreducible rep-
resentations corresponding to nondegenerate energy
levels and one two-dimensional representation corre-
sponding to doubly degenerate levels.

The classical dynamics of the electron in
potential (10) was studied by means of the Poincaré
section method [3—6]. We remind that the regularity
or the chaotic character of particle motion is closely
related to the integrability of the equation of motion. If
the number of integrals of motion is equal to that of
degrees of freedom (up to two in our case), then the
system is integrable. In this case, the particle trajectory
in phase space lies on the surface

EJ_ =H(x5yapxspy)s (11)

having the topological properties of a torus. In this
case, the motion turns out to be regular (periodic or
quasiperiodic). In the opposite case, the motion is
chaotic.

The Poincaré section method makes it possible to
clarify whether the system has another (together with
the energy) integral of motion. In this method, all
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Fig. 2. Poincaré sections for (a) E; =—14 &V and
(b) £, =—12.0885 &V of an electron with an energy of
B =5 GeV moving in potential (10).

points of intersection of the trajectory with any plane,
for example, with the plane (x, p,) in phase space, are
recorded in the process of numerical simulation of the
particle trajectory. If the following integral of motion

J = J(xa s pxspy)s (12)

exists together with the energy, then, under the condi-
tion y = 0, we obtain the relation between the vari-
ables x and p,. excluding the variable p, from Egs. (11)
and (12). In this case, the recorded points lie on a
smooth curve in the Poincaré graph (Fig. 2). In the
case of the absence of a second integral of motion, the
points lie chaotically within the limits of some region
(as, for example, in Fig. 2b).

The contribution of the regions of regular motion
to the total density of levels (4) was estimated as fol-
lows. When calculating integral (5) by means of the

Monte Carlo method, random points (x,y,p,),
within the region allowed for motion (6), were consid-
ered as the initial points of the phase trajectories, each
of which was traced up to the intersection with the
plane (x, p,). In the case where the intersection point
fell within the region of regular motion at the Poin-
caré intersection, the contribution of the corre-
sponding initial point was taken into account not only

in the total level density p, but also in the density p,,
corresponding to regular motion. We emphasize that,

for the given initial point (x, y, p,), two possibilities
of choosing the sign of the velocity component along
axis y exist:

v, =t[2(E, ~U (x,y)-2E) /5], (13)

However, the presence of these two possibilities was
already taken into account when passing from (4) to (5);
therefore, when executing the numerical algorithm,
we always choose only one (positive) sign.

We note that fluctuations in the level spacings
with respect to the average value l/p are studied in

quantum-chaos theory. Because the average density
of energy levels in a potential of form (10) increases

with increasing F, the initial array of levels under-
goes the expansion procedure in the range under
study [2, 4]. The new array of levels has the unit aver-

age density (p =1).

RESULTS AND DISCUSSION

The construction of Poincaré sections shows that
the dynamics of the electron is completely regular for
the states at the potential-well depth (10). This is due to
weakness of the influence of neighbors of the central
atomic chain on its potential, which leads to conserva-
tion of the projection of the orbital angular momentum

on the chain axis together with the energy E, during

motion of the electron. As F, increases, the moving
electron can visit regions at the periphery of the ele-
mentary cell, where the influence of neighboring
chains leads to significant violation of the axial poten-
tial symmetry, the consequence of which is motion

chaotization (starting from an energy of £, = —14 eV
for the electron with £, = 5 GeV).

Region 7 in Fig. 2 stands out among the regions of
regular motion. The motion in it is close to that in the
central field. The presence of this region is traced in
the entire range of energies of transverse motion under
consideration, namely, from —14 eV (completely regu-
lar motion) to —12 eV (upper edge of the potential

well); in this case, in the range of £, = —12.8 &V, the
contribution of this region becomes determinative
(regular tori including regions of types / and 2 in the
Poincaré graphs also exist for deeper levels).

It is this region where the regularity of motion
admits simple and obvious interpretation. The pertur-
bative influence of neighboring chains is negligibly
small near the chain axis, which leads to approximate
preservation of the orbital angular momentum. The
centrifugal barrier appearing in this case “prevents”
the particle “from approaching” regions where there is
no angular-momentum conservation and motion cha-
otization is produced.

It turns out that the contribution of this region to
the average density of levels is constant with a good
accuracy in the entire range under discussion and is
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Fig. 3. Projection of two regions of phase space corre-
sponding to a region of type [ at the Poincaré section for
three-dimensional space (x, y, v,.) (Fig. 2b). The cut plane
(x, v,), the Poincaré section, and the electron trajectory in

the plane (x, y). are also shown. The light region corre-
sponds to the counterclockwise orbital motion; and the

dark one, to the clockwise one.

approximately 34%. We emphasize that the Berry—
Robnik—Bogomolny result (3) was obtained under
the assumption that the contribution of the regions of
regular motion to the level density is constant in the
entire range under consideration. Thus, p, = 0.34 can
serve as a lower estimate of the contribution of the reg-
ular-dynamics regions in the range

-12.82 < E, £-12.08 eV, (14)

where the contribution of this region becomes deter-
minative. The average contribution of all regular

regions is approximately p, = 0.43 in this range.

We note that two symmetric regions not intersect-
ing in four-dimensional phase space and correspond-
ing to motion in the given orbit clockwise and counter-
clockwise in the plane (x, y) correspond to the region
of regular motion at a Poincaré section of each type,
for example, of type I. However, projections of these

regions on three-dimensional space (x, y, v,) inter-
sect, as shown in Fig. 3. In this case, in accordance
with the foregoing in the discussion of formula (13),
the corresponding contribution of levels related to reg-

4 Vx

Fig. 4. Projection of a phase-space region of type 2 (corre-
sponding to counterclockwise orbital motion) on the
three-dimensional space (x, y, v, ) under the same condi-
tions, as in Fig. 3.

ular motion to the density p, is determined by an inte-
gral of form (5) only by one of such two three-dimen-
sional regions.

The form of an analogous three-dimensional
region of type 2 (corresponding to counterclockwise
motion) is shown in Fig. 4.

The quasiclassical energy-level density of an elec-
tron with an energy of E, = 5 GeV channeled in the Si
crystal [100] direction was calculated in accordance
with formula (5) by means of the Monte Carlo
method. It is shown in Fig. 5 by a solid line; and the
estimate of the contribution of regular-motion regions
to it, by points. The error of this estimate is due to the
difficulty in precisely determining the boundaries of
the regular-motion regions and to that in taking into
account contributions of small (in volume) regular-
motion regions, the appearance of which accompanies
the destruction of invariant tori at the interface
between regions of regular and chaotic dynamics.

Figure 6 shows the distribution of level spacings for
four types of nondegenerate energy levels of the trans-
verse motion of an electron with a longitudinal-
motion energy of 5 GeVin the range (14). In Fig. 6, the
solid line denotes the Berry—Robnik—Bogomolny

distribution with p; = 0.3428 (the heavy dashed line;

JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHROTRON AND NEUTRON TECHNIQUES Vol. 14 No. 2 2020



SYSHCHENKO et al.

500
450}
4001

350

|
% 300 ai
a
250
200+

- j_

150 P~

~aooP s & -;y.lszfsz
—135 3.0
E eV

100 Looom.
—14.0

—12.5 —12.0

Fig. 5. Average energy-level density of transverse motion
(the solid line) and the contribution of regions of type /to
it (circles), and also the total contribution of all regular-
motion regions (points; the error is due to the difficulty in
precisely determining the boundaries of the regular-
motion regions). The dashed line denotes the average den-
sity of energy levels related to regular-motion regions in the
range (14).
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Fig. 6. Distribution of level spacings in region (14). The
heavy solid line denotes the Berry—Robnik—Bogomolny

distribution for p; = 0.4274; the heavy dashed line, the
same for p; = 0.3428; and the thin solid line, the same for

p; = 0.1450, estimated as a result of fitting using the max-
imum likelihood criterion. The thin dotted line corre-
sponds to distribution (2); the thin dashed one, to distribu-

tion (1).

in this case, x2 is 8.7225) and p, = 0.4274 (the heavy

solid line, X2 =12.9508). In both cases, we see that
the Berry—Robnik—Bogomolny distribution describes
the real distribution of level spacings better than distri-

butions (1) (the thin dashed line, x2 =17.9184) and

(2) (the dotted line, x* = 30.8545). However, fitting

using the maximum likelihood criterion with p, as a
free parameter leads to a value of about 15% (the thin

solid line, x2 = 3.5489), which is much smaller than
the real contribution of the regular trajectory region to
the level density in the range under consideration. The
appearing discrepancy is due to the fact that the
Berry—Robnik—Bogomolny distribution assumed
that the chaotic and regular regions of phase space
generate two independent sequences of levels, neglect-
ing correlations between them.

CONCLUSIONS

In the paper, we have considered the channeling of
5-GeV electrons near the [100] chains of a Si crystal. It
was shown that, near the upper edge of the potential
well formed by the continuous potential of the atomic
chain, the influence of neighboring chains leads to the
appearance of a significant region of chaotic dynamics
in the phase space of transverse electron motion.

Within the framework of the quasiclassical approxi-
mation of quantum mechanics, we calculated the
energy-level density of transverse electron motion and
determined the contribution of regular-motion regions
retained in the upper part of the potential well to it.

The value of the relative contribution of the regu-
lar-motion regions to the level density is contained in
the Berry—Robnik—Bogomolny distribution as an
example of a parameter; this distribution describes the
statistics of the level spacings of a quantum system, the
classical analogue of which has partly regular dynam-
ics and partly chaotic dynamics. It is established that,
in the case of the channeled electron under study, the
Berry—Robnik—Bogomolny distribution describes
the statistical properties of nondegenerate energy lev-
els better than the pure Poisson and Wigner distribu-
tions. However, the Berry—Robnik—Bogomolny dis-
tribution does not take a series of peculiarities of the
system dynamics into account. In this context, it can
be expected that the Podolskii—Narimanov distribu-
tion [15], taking tunneling accompanied by chaos into
account, will describe the actual distribution of energy
levels of transverse electron motion better at small
level spacings.
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