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Abstract. CeGdRLaPrO2-δ (where R: La, Y and Dy) rare-earth high-entropy oxides (HEOx) with 

the Ia-3 (206) structure were obtained. The structural, microstructural and transport properties 

of the compounds were studied. All samples exhibiting good homogeneity and electrical 

conductivity typical of materials for the manufacture of solid electrolytes. 

1.  Introduction 

The idea of developing high-entropy oxides was borrowed from the accumulated research experience 

in the design of high-entropy alloys [1]. In the literature, the first works in this area have been found 

since 2015. For the first time, an entropy-stabilized (CoCuMgNiZn)O solid solution with the structure 

Fm-3m was synthesized [2]. Since then, a number of studies have been published on both the properties 

of these oxides [3] and the search for new high-entropy oxide systems. As a result, the range of known 

high-entropy oxides has expanded significantly. Despite a very early stage of their development, oxides 

with high entropy have already shown great promise as functional materials, demonstrating, for 

example, colossal dielectric constant, high ionic conductivity [4] and low thermal conductivity. Some 

of the high-entropy oxides have been successfully tested as anode materials for lithium-ion batteries or 

cathode materials for Na-ion cells [1-4]. 

In this work, single-phase high-entropy oxides of the composition (CeGdDySmPr)O2-δ, 

(CeGdYSmPr)O2-δ and CeGdLaSmPrO2-δ were obtained for the first time. These materials were 

synthesized by the sol-gel method followed by cold uniaxial compaction and free sintering at 1500 °C 

in air. Comprehensive studies of structural, microstructural and electrical transport properties were 

carried out. The results of studying the electrical transport properties demonstrate a similarity with the 

properties of classical systems based on cerium oxides (Ce0.8Pr0.2O2-δ). 

2.  Materials and methods 

Cerium(III) nitrate hexahydrate (Ce(NO3)3·6H2O, 99.9%), gadolinium (III) acetate tetrahydrate 

(Gd(CH3COO)3·4H2O, 99.9%), dysprosium (III) acetate tetrahydrate (Dy(CH3COO)3·4H2O, 99.9%), 

samarium (III) nitrate hexahydrate (Sm(NO3)3·6H2O, 99.9%), praseodymium (III) acetate sesquihydrate 

(Pr(NO3)3·6H2O, 99.9%), lanthanum (III) nitrate hexahydrate (La(NO3)3·6H2O, 99.9%), ytrium (III) 

acetate tetrahydrate (Y(CH3COO)3·4H2O, 99.9%), 28−30% ammonium hydroxide (NH4OH) and 

deionized water were used for the synthesis. Starting materials were weighted in a way to maintain 

equimolar proportions of the cations and then they were dissolved in 100 ml of deionized water. The pH 
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of the solution was adjusted by adding 28% NH4OH dropwise until the pH reached ∼11. The solution 

was stirred for 1 h, then the resulting gel was evaporated at a temperature of 120 °C until complete 

drying. In the second step, the obtained precursors were annealed at a temperature of 900 ˚C for 2 hours 

in an air atmosphere. Next, all samples were pressed into pellets of 20 mm diameter, under pressure of 

200 MPa, using a uniaxial hydraulic press. The pellets were then free-sintered in a chamber furnace for 

4 h at 1500 °C, and subsequently cooled down to room temperature with the furnace. 

The morphology and size of the powder particles were identified by transmission electron 

microscopy (TEM Jeol 2100). The crystal structure was examined by x-ray diffraction (UltimaIV). The 

element composition and microstructure of specimens was controlled by scanning electron microscopy 

Quanta 200 3D with EDS (energy dispersive spectroscopy) detector. The specific electrical conductivity 

(σ) of the AC was measured on a Novocontrol Concept 43 impedance meter using a four-probe method. 

3.  Results and discussion 

Figure 1 (a) presents the XRD diffractograms of the studied HEO (CeGdDyLaPrO2-δ, 

CeGdDyLaPrO2-δ and CeGdDyLaPrO2-δ) samples after annealing at a temperature of 900 °C. Already at 

this stage of obtaining powdery materials, all the samples under study are single-phase, (body-centered 

cubic) and the peaks corresponding to space symmetry group Ia-3 (206). 

 The changes in the lattice parameters for the samples are reflected in the corresponding changes in 

the position of the diffraction peaks, as shown, for example, for the peak (2 2 2) (Figure 1 (a)).. The 

lattice parameters calculated by the Rietveld refinement for all the samples are presented in Figure 1 (b). 

The parameters increase with increasing ionic radius (rion(R+3)) of the variable element. Significant 

structural changes of all materials during sintering were not observed, the values of the lattice parameters 

were constant. 

 
Figure 1. The XRD patterns (a) of CeGdLaSmPrO2-δ (1), CeGdDySmPrO2-δ (2), and 

CeGdYSmPrO2-δ (3) and ionic radius of the variable element effect on the lattice parameters (b) 

 

Typical morphology of powders annealed at 900 ˚С are presented at Figure 2. The results of TEM 

investigation of the synthesized powders demonstrate a similar pattern for all compositions. The typical 

morphology of CeGdLaSmPrO2-δ powders are presented in Figure 2. After heat treatment, the 

nanoparticles of CeGdLaSmPrO2-δ have an irregular shape. To estimate the average size of nanoparticles 

in the powder of CeGdLaSmPrO2-δ, histograms of the particles size distribution were plotted using the 

TEM images in Figure 2 (b). Next, these histograms were analyzed by lognormal unimodal distribution 

fittings. It is shown that the nanoparticles have an average size of 28 nm, with a standard deviation of 

±7 nm. 
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Figure 2. Typical TEM image for example of CeGdLaSmPrO2-δ starting powders (a) and histogram 

of the nanoparticles size distribution (b) 

 

The elemental analysis of CeGdRLaPrO2-δ (where R: La, Y and Dy) was measured by scanning 

electron microscopy-energy dispersive spectroscopy (SEM-EDS). EDS - analysis shows that the 

element composition ofthe tested powders corresponded to the nominal composition. This reveals that 

the nanoparticles are composed of the stoichiometric phase of CeGdRLaPrO2-δ (where R: La, Y and Dy). 

 

 
Figure 3. Typical microsctructure of the fracture surface of bulk samples for example of 

CeGdLaSmPrO2-δ (a) and temperature dependence of the electrical conductivity in lnσ (1/T) 

coordinates (b) 

 

A SEM image of the fractured surface sow of the exemplary samples are presented in Figure 3 (a). 

The SEM image obtained in a phase contrast mode (detector-BSD) show that the bulk samples are phase 

homogeneous and have a disordered grain structure with an average size of grains ~ 3,3 µm. Closed 

pores are observed on the fractured surface. As can be seen from the presented EDS data, the obtained 

samples are close to the assumed equimolar composition, with the only exception related to the lower 

content of Pr (Table 1). The presence of pores and the violation of stoichiometry most probably resulted 

from the evaporation of Pr during thermal treatment, as indicated by the bluish residues visible in the 

alumina crucibles. According to the results of the EDS analysis, all samples on average, the 

concentration of praseodymium decreases about 1.5 at.% relative to the pre assigned stoichiometric 

composition. 

Electrical conductivity (σ) was measured in the temperature range from room temperature to 800 °C 

in air. Figure 3 (b) shows the temperature dependence of the electrical conductivity of the 
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CeGdLaSmPrO2-δ ceramic system in lnσ(1/T) coordinates according to the Arrhenius law (see the 

corresponding equation in figure 3 (b)). [5] 

 

 

Table 1. Average composition of the studied materials derived from EDS area analysis of bulk samples 

 

Sample Element (At. %) 

Ce Gd La Dy Y Sm Pr O 

CeGdLaSmPrO2-δ 8.0 7.9 7.7 - - 7.8 6.0 62.6 

CeGdDySmPrO2-δ 8.3 7.7 - 7.8 - 7.4 5.9 62.9 

CeGdYSmPrO2-δ 7.9 7.8 - - 7.6 7.7 6.1 62.9 

 

The values of the activation energy (Ea) of the conduction process, calculated for two temperature 

(T) range, from 170 to 400 °С and from 460 to 560 °С. It was found that both in the low-temperature 

region (170 °C - 400 °C) and in the middle-temperature region (450 ° - 560 °), the activation energy of 

the CeGdLaSmPrO2-δ ceramic system remained practically unchanged, amounting to 0.52 eV and 0.53 

eV, which is associated with a constant mechanism of oxygen-ionic conductivity caused by the drift 

motion of oxygen ions under the influence of an external electric field in a given temperature range [6-

8]. The electrical conductivity of the obtained ceramics at a temperature of 510 °С reaches 0.1·10-2 S/cm, 

which meets the requirements for the ionic conductivity of materials for the manufacture of solid 

electrolytes [6], and corresponds to materials based on cerium oxide. 

4.  Conclusion 

In this work, three different compositions from the CeGdRLaPrO2-δ (where R: La, Y and Dy) systems 

were prepared using the method of sol-gel synthesis and sintering at 1500 °C. All the samples under 

study are single-phase, (body-centered cubic), and the peaks correspond to that space symmetry group 

Ia-3 (206). Based on the evolution of the lattice constants, as well as the EDS-spectroscopy data, it can 

be stated that the received materials are composed of the stoichiometric phase of CeGdRLaPrO2-δ (where 

R: La, Y and Dy). The synthesized initial powders are nanosized, with an average particle size of 28 

nm. When nanopowders are sintered, bulk materials are obtained. Sintering at 1500 °С leads to partial 

evaporation of praseodymium, which is confirmed by the EDS method. In the low-temperature region 

(170 °С - 400 °С) and in the middle-temperature region (450 °С - 560 °С), the activation energy of 

electrical conductivity of the CeGdLaSmPrO2-δ ceramic system remained practically unchanged, 

amounting to 0.52 eV and 0.53 eV. The electrical conductivity of the obtained ceramics at a temperature 

of 510 °С reaches 0.1·10-2 S/cm, which meets the requirements for the ionic conductivity of materials 

for the manufacture of solid electrolytes. 
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