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Abstract. Crack formation process in the Ti-23Al-23Nb-1.4V-0.8Zr-0.4Mo-0.4Si (at.%) alloy 

based on orthorhombic titanium aluminide (Ti2AlNb), especially in the weld zone (WZ), heat-

affected zone (HAZ), and base metal (BM), during laser beam welding (LBW) at room 

temperature was considered. It was determined that the crack spread in the WZ throughout the 

crystallites of β-phase. In the HAZ, cracks spread throughout the globular β-phase crystals body 

and along the edges of globular α2- and O-phases. The cracking stopped in BM due to a 

mechanism similar to shear ligament toughening. Cracking can be effectively suppressed by 

increasing the LBW temperature. 

1. Introduction 

Alloys based on orthorhombic titanium aluminide (Ti2AlNb) are one of the most promising high-

temperature alloys for the aerospace and automotive industries due to their high specific strength 

characteristics, creep and oxidation resistance, low density, and usage temperatures up to 750 °C [1]. 

However, the fabrication of structures of these alloys requires the usage of different welding techniques. 

Meanwhile, welding of Ti2AlNb-based alloys usually results in the formation of pores or cracks in the 

welded joint. Cracks not only reduce the welded joint strength [2], but also lead to premature destruction 

of the welded structure [3] and, therefore, are unacceptable defects.  

Crack formation in the Ti2AlNb-based alloys depends strongly on the welding method and 

subsequent heat treatment mode [3,4]. To prevent cracking, special approaches such as solder design, 

alternating nanometric layers, welding using high currents, various structures of metal interlayers 

(brazing and diffusion welding), preheating are used [5,6]. Solders and interlayers can reduce residual 

stress and formation of brittle phases, but the intermediate metal affects the mechanical properties of the 

weld. In electron beam welding [7,8], local heating can be used to, for example, to reduce the residual 

stresses after welding by 30%. At the same time, they can also increase the grain size in the weld and 

heat-affected zone [7,8]. 

Laser beam welding (LBW) can be considered as one of the most promising techniques for the 

Ti2AlNb-based alloys due to high energy density, relatively narrow welds, and no need for the inert gas 

atmosphere for the process. It is known that during laser welding of titanium alloys, weld ductility 
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deteriorates due to gas saturation, and heat-affected zone is subjected to greater atmospheric influence 

and local stresses due to low thermal conductivity [9]. If local stresses exceed the critical values at the 

temperatures when the material exhibits limited ductility - cracking occurs [9,10]. 

Thus, to understand the ways of solving the problem of cracking during LBW, it is necessary to study 

the process of welding cracks formation. This article is devoted to the investigation of the crack 

formation process and growth in a welded joint made of an alloy based on Ti2AlNb after LBW. 

2. Experimental 

The Ti-23Al-23Nb-1.4V-0.8Zr-0.4Mo-0.4Si (at.%) alloy based on Ti2AlNb with the initial globular 

structure was chosen as the program material in the present study. Plates with the following dimensions 

were used: length 22 mm, width 15 mm, and thickness 2 mm. LBW of two plates was carried out in the 

lower position (PA ISO 6947) in a butt joint without grooving and filler materials at room temperature 

(RT) and 400 ℃. LBW was performed using an 8.0 kW fiber laser in a controlled atmosphere chamber 

(Ar 4.6, gas flow rate 40 L / min). The following optimal LBW modes were determined in the experiment 

- a laser power of 2.5 kW, a welding speed of 3-5 m / min, with a laser defocusing distance of 0.0 mm. 

Images of the microstructure were obtained on a FEI ESEM Quanta 200 scanning electron microscope 

using a backscattered electron (BSE) detector at an accelerating voltage of 30 kV. The fine structure 

was examined on a JEOL JEM-2100 transmission electron microscope (TEM) at an accelerating voltage 

of 200 kV. Foils for TEM were made from 0.3 mm plates with subsequent thinning to a thickness of 0.1 

mm. Next, these foils were subjected to jet electrolytic polishing on Struers Tenupol-5 with an 

electrolyte (60 ml HClO4, 600 ml methanol, 360 ml butanol) at a voltage of 27 V and temperature of -

30 ℃. After electrochemical polishing, the foils were washed in distilled water and ethanol and dried. 

3. Results and discussion 

The initial structure of the examined alloy consisted of equiaxed α2- and O-phase grains/particles with 

a mean size of 1.5 μm (Figure 1a). β-phase layers with a thickness of 0.4 ± 0.1 μm were found at the 

boundaries of the α2/O grains/particles. TEM observations have revealed a rather high dislocation 

density inside the O-phase grains/particles. In some cases, dislocations were arranged in subgrain 

boundaries. In turn, the grains of the α2-phase were mostly free of dislocations. However, many bending 

contours inside the grains indicated strong internal stresses (Figure 1b). 

 

  
Figure 1. The initial structure of base metal (BM) before LBW (a) SEM-BSE and (b) TEM images. 

 

After the LBW of the studied alloy at RT, a transverse crack appeared, propagating over the entire 

width of the weld zone (WZ) and the heat-affected zone (HAZ) that ended only in the base metal (BM) 

(Figure 2). The crack appeared in the center of the joint symmetrically to the weld axis (Figure 2a). Most 

likely, the crack was formed due to the tensile stresses that were generated because of the bending of 

the welded plates. The plates were likely bent because the laser heated them from only one side during 

welding. The crack propagated in step-wise nature; the crack boundaries were sharp. Besides, secondary 

smaller cracks were found near the main one. 

Fracture in the WZ area occurred predominantly throughout crystallites of the β-phase. The crack in 

this area had a stepwise shape. In the HAZ, the crack propagated along the β-phase globular particles 

(Figure 2b). In this case, the formation of secondary cracks parallel to the main one was also observed. 
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In BM, cracking propagates mainly along the edges of the β-phase interlayers and globular crystals of 

α2 and O-phase (Figure 2c). 

 

   
Figure 2. (a) transverse crack in a welded joint, (b) transverse cracks in HAZ, and (с) the top of the 

crack in base metal after LBW. 

 

Cracking of Ti2AlNb-based alloys with transverse cracks formation has been associated with high 

HAZ cooling rates (> 400 K/s) that resulted in the propagation of cracks into the base metal. The cracks 

deviated to an angle of 45° before blunting and stopping [10]. Crack development in the HAZ caused 

brittle transgranular cleavage [7], while crack propagation in the BM was prevented by a mechanism 

similar to shear ligament toughening with a deviation at an angle of 45° [11]. 

To avoid cracking in the Ti2AlNb-based alloys after the LBW, it was necessary to reduce the HAZ 

cooling rate. This can be effectively done by pre-welding heating. For example, photographs of the 

welds obtained at RT and 400 °C are shown in Figure 3. The presence of cracks perpendicular to the 

welding direction after RT LBW is evident. In turn, no defects were found after LBW at 400 °C. This 

example shows that cracking can be effectively suppressed by increasing LBW temperature. However, 

attention must be paid to the effect of the welding temperature on other aspects, in particular on the 

structure and mechanical properties of the weld. 

 

 
Figure 3. Photographs of joints welded (a) at RT and (b) at 400 ℃. 

 

4. Conclusions 

The Ti-23.0Al-23.0Nb-1.4V-0.8Zr-0.4Mo-0.4Si (at.%) alloy after laser beam welding at room 

temperature was examined. Extensive cracking after welding was found. The crack growth in the WZ 

area occurred predominantly throughout crystallites of the β-phase. The crack had a stepwise profile. In 

the HAZ, the crack propagated along the β-phase globular particles. The formation of the secondary 

crack occurred parallel to the main one. In the BM, cracking propagated mainly along the edges of the 

β-phase interlayers and globular crystals of α2 and O-phase. The crack growth in the BM stopped due to 

a mechanism similar to shear ligament toughening.  It was also demonstrated that cracking can be 

effectively suppressed by increasing the welding temperature to 400 °C. 
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