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Abstract. Methodological aspects of the high-resolution dilatometry analysis of the reverse 

α→γ-transformation in cold-worked metastable austenitic steel Fe-0.07C-18.7Cr-9.2Ni-0.6Ti-

1.1Mn-0.4Si (wt.%) were considered. It was shown that the reverse α→γ-transformation occurs 

in the temperature range from AS=520 °C to AF=920 °C. Two consecutive stages corresponding 

to shear and diffusion transformations were revealed. An abnormal increase in the sample length 

of the program steel during the reverse α→γ-transformation was found. The recrystallization 

process also developed during austenitization and was accompanied by a decrease in length of 

the specimen. 

1. Introduction 

Dilatometry has established itself as one of the main methods for examination of phase transformations 

in steels and iron alloys [1–4]. The dilatometry method is based on measuring changes in length of a 

material under heating/cooling. The measurements provide information about phase transformations and 

structure changes, i.e. is able to capture all processes that have a volumetric effect. Advances in research 

equipment make it possible to identify extremely fast phase transformations or record very weak effects 

with high accuracy [4].  

Mathematical analysis of dilatometric data, i.e. using the first derivative, increases the accuracy of 

determining the phase transformation temperatures critically [5,6]. However, high-resolution 

dilatometry has revealed that even the derivative often shows a superposition of several peaks from 

various transformations [6–8]. After proper analysis, the austenitization stages in dual-phase ferrite-

perlite steels [9], the bainite-ferrite steels [7], and the martensitic steels [10] were revealed. In these 

materials, different transformations can occur in the same temperature range but in different micro-

volumes. However, this approach has never been used in the case of the reverse α→γ-transformation 

during heating of cold-deformed metastable austenitic steels. Thus, the purpose of this work is to analyze 

the reverse α→γ-transformation in cold-worked metastable austenitic steel using high-resolution 

dilatometry. 
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2. Experimental 

Metastable austenitic steel Fe-0.07C-18.7Cr-9.2Ni-0.6Ti-1.1Mn-0.4Si (wt.%) was used as the program 

material. Pure nickel was selected as the reference material. Before cold deformation, a rod of the 

program steel was heated to a temperature of 1050 °C, held for 2 hours and water quenched. Then the 

rod was deformed at room temperature using a radial forging machine to a true strain of 2.14.  

Transmission electron microscopy was performed using a FEI Tecnai 20 G2 TWIN microscope at an 

accelerating voltage of 200 kV. Samples with a thickness of 300 microns were cut by an electric-

discharge machine from the center of the rod in longitudinal and transversal sections. Then they were 

ground on both sides with abrasive paper with a decreasing grain size. Subsequent electrolytic thinning 

of disks with a diameter of 3 mm and a thickness of 100 microns was performed using TenuPol-5 in a 

mixture of 95% acetic acid (CH3COOH) and 5% perchloric acid (HClO4) cooled to -40 °C. The content 

of the α-phase was measured using a multifunctional eddy-current tester MVP-2M. 

Dilatometry was performed using a Linseis R.I.T.A. L78 quenching dilatometer in a helium (purity of 

99.9999%) atmosphere. Cylindrical samples with a diameter of 3 mm and a height of 10 mm were cut 

from the center of the rod. The long axis of the samples was aligned with deformation direction. The 

samples were heated to 1000 °C at a rate of 10 °C/s. Analysis of dilatometric curves was performed by 

obtaining the first derivative of dilatograms (d(ΔL)/dT)) with subsequent peaks fitting in the Fityk 

software [11]. Asymmetric Gaussian curves were used for the approximation of the experimental results. 

The corresponding R-square values were ≥0.95. 

 

3. Results and discussion 

In the initial condition, the program steel had a lamellar dual-phase martensitic-austenitic structure, 

containing 62.5±0.9 % of deformation-induced martensite. In the longitudinal section, the grains were 

stretched along the axis of the rod (Figure 1a). Meanwhile, the grains had a fairly equiaxed shape (Figure 

1b) with an average diameter of 240±10 nm in the transversal direction. Thus, it seems that the grains 

had a columnar shape. A more detailed description of the initial structure can be found elsewhere 

[12,13]. 

 

 
Figure 1. TEM bright-field images of a structure of the program steel in а longitudinal and b transversal 

section. 

The dilatometric curve (ΔL) for the nickel sample was linear without any visible inflections. The first 

derivative of the dilatometric curve (d(ΔL)/dT-curve) also did not demonstrate any evidences of the 

phase transformation (Figure 2a). At the same time, the ΔL curve obtained during heating of the program 

steel exhibits a series of inflections, associated with the development of the reverse α→γ-transformation 

(Figure 2b). The temperatures of the start (AS) and finish of the transformation (AF) were determined 

from the d(ΔL)/dT. The respective values were AS = 520 °C and AF = 920 °C. 

The d(ΔL)/dT-curve in a AF - AS range is obviously the product of a superposition of several peaks from 

different events (Figure 2c). Fitting the peaks to asymmetric Gaussian curves helped to consider the 

effect of varying conditions during heating [10]. Note that the beginning and end of the peak on the 
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d(ΔL)/dT-curve corresponds to the temperatures of the start and finish of the transformation, 

respectively; the peak area indicates the volume effect of the transformation [14]; and the maximum 

position corresponds to the highest speed of the process. 

The performed analysis has allowed to identify three peaks in the temperature range of the α→γ-

transformation (Figure 2c). Peaks #1 and #2 were associated with an increase in the length of the 

specimen, since they had upward orientation from the baseline. These peaks are likely direct products 

of the α→γ-transformation. A similar anomalous increase in the sample length during the reverse α→γ 

transformation was observed in AISI 304 steel [15]. In that case the volumetric expansion was associated 

with the effect of the gamma fiber texture ({111}<110> and {111}<112>) in the deformation-induce 

martensite. Furthermore, the α→γ-transformation by shear mechanism occurs at a lower temperature, 

while the activation of the diffusion mechanism usually requires higher temperatures [16]. Therefore, 

peak #1 corresponds to the shear transformation, and peak #2 – to the diffusion transformation. Peak #3 

was oriented downward from the baseline, which corresponds to a decrease in the sample length. A 

similar effect was earlier associated with the development of recrystallization during heating of cold-

deformed steel [17]. 

 

  
Figure 2. a dilatometric curve (ΔL) and d(ΔL)/dT-curve of the pure nickel sample and b the program 

steel; с the sketch explaining d(ΔL)/dT-curve for the program steel. 

4. Conclusions 

A method for analyzing the reverse α→γ transformation in cold-worked metastable austenitic steel Fe- 

Fe-0.07C-18.7Cr-9.2Ni-0.6Ti-1.1Mn-0.4Si (wt.%) using dilatometric curves was described. The reverse 

α→γ-transformation started at AS=520 °C and finished at AF=920 °C. Peaks from the reverse α→γ-

transformation by the shear and diffusion mechanisms, as well as from the recrystallization process, 

were identified. The established approach allows us to develop the heat treatment regimes for cold-

worked metastable austenitic steels to obtain the required structures and properties. 
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