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Experimental evaluations of mechanical properties and investigations microstructure are time-intensive,
requiring weeks or months to produce and characterize a small number of candidate alloys. In this work,
machine learning approaches were used for prediction yield strengths of high-entropy alloys Al-Cr-Nb-
Ti-V-Zr system at 20, 600 and 800 �C. Surrogate prediction model was built with support vector regres-
sion algorithm by a dataset including more 30 alloys Al-Cr-Nb-Ti-V-Zr system. Four model alloys were
fabricated for testing the surrogate model by vacuum arc melting. After that model alloys were annealed
in a quartz tube at 1200 �C 10 h. The microstructure of alloys after heat treatment were investigated with
methods of scanning electron microscopy and X-ray structural analysis. Specimens of model alloys were
compressed in the air at a nominal strain rate of 10�4 s�1 at 20, 600 and 800 �C in a universal testing
machine to determine the yield strength. The model showed the satisfactory accuracy prediction of yield
strengths as single-phase as multi-phase alloys at all test temperatures. In connection with the small size
of training dataset accuracy prediction of yield strengths for alloys outside composition space of training
dataset is lower than inside.
� 2020 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the International Confer-
ence on Modern Trends in Manufacturing Technologies and Equipment 2020.
1. Introduction

Conventional alloys have one principal element, with minor
modifications achieved by adding relatively small amounts of
other elements. This strategy saves the characteristic properties
of the base element and makes this alloy family attractive. Another
approach is to use five or more basic elements instead of one for
creating high entropy alloy (HEA) – a multicomponent single-
phase solid-solution alloy in or near an equiatomic composition
[1–3]. But in this case, the number of possible alloy systems is sig-
nificant increases because the number of HEA systems is a function
of N! while the number of conventional alloy systems equals the
number of potential elements [4]. In the absence of approaches
for the rapid screen of a large number of candidate alloys their
investigation takes a lot of time.

Calculating the phase diagram of each candidate alloy using the
calculated phase diagram method (for example CALPHAD) [4–7]
can help decrease the value of alloys for experimental evaluations.
While CALPHAD predictions are reliable over composition ranges
for which the databases have been built, but multi-component sys-
tems remain largely unexplored.

Surrogate machine learning models successfully use in various
fields of modern materials science [8–10] and are promising for
enables rapid predictions of mechanical properties and phase com-
position of HEA. A robust strategy for predicting the formation of a
single-phase solid solution HEAs was proposed by Tancret et al.
[11]. Their approach based on an assessment of phase formation
and a Gaussian process statistical analysis predicted 62 single-
phase equimolar HEA. Wen et al. [12] proposed a materials design
strategy combining a machine learning (ML) surrogate model with
experimental design algorithms to search for high entropy alloys
(HEAs) with large hardness in a model Al-Co-Cr-Cu-Fe-Ni system.
Their design strategy predicted 35 alloys with hardness values
higher than the best value in the training dataset. Amongst these
alloys, the hardness of 17 alloys are enhanced by >10% compared
to the maximum hardness in our training dataset.

In this work, we use the approach proposed Wen et al for the
prediction of yield strengths of alloys Al-Cr-Nb-Ti-V-Zr system in
a wide range of temperature.
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https://doi.org/10.1016/j.matpr.2020.08.145
mailto:klimenko@bsu.edu.ru
https://doi.org/10.1016/j.matpr.2020.08.145
http://www.sciencedirect.com/science/journal/22147853
http://www.elsevier.com/locate/matpr


1536 D.N. Klimenko et al. /Materials Today: Proceedings 38 (2021) 1535–1540
2. Materials and methods

In this work, machine learning approaches were used for pre-
diction strength characteristics of high-entropy alloys Al-Cr-Nb-
Ti-V-Zr system at room temperature, 600 �C and 800 �C. Dataset
for surrogate prediction model included more 30 alloys [13–17].

Alloys of the Al-Cr-Nb-Ti-V-Zr system in a known part of the
composition space can be either single-phase or multiphase.
Therefore, surrogate prediction model was built with features rep-
resenting aspects of structure and mechanical properties. List of
features and equations for their calculation are provided below.
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Fig. 1. The experimental and predicted values of yield strength at roo

Table 1
The compositions of model alloys.

Alloy Al, % at Cr, % at

Al5Cr5Nb38Ti32V5Zr15 5 5
Al8Cr11Nb32Ti20V20Zr9 8 11
Al5Nb24Ti40V5Zr26 5 0
Al4Cr3Nb21Ti40V4Zr28 4 3
Difference in shear modulus:

Dl ¼
X

ci
2 � li � l

� �
li þ l

c parameter:

¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs þ r

�� �2
� r

�
2

rs þ r
�� �2

vuuuut
0
BB@

1
CCA= 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rl þ r

�� �2
� r

�
2

rl þ r
�� �2

vuuuut
0
BB@

1
CCA

Kparameter:
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X parameter:
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In order to reduce the computation time and improve model
robustness by removing the irrelevant and redundant features,
we used a correlation analysis. The Pearson correlation coefficient
map between different features was built. Pair of features with a
correlation coefficient >0.95 were considered as highly correlated
and one of these features was excluded from the model.

We employed several well-known machine learning models –
including a ridge regression model (rid), a regression tree model
(tree), a k-nearest neighbor model (knn) and support vector regres-
sion with a linear kernel (svr.lin), a polynomial kernel (svr.poly),
and a radial basis function kernel (svr.rbf) for prediction the yield
strength of high-entropy alloys Al-Cr-Nb-Ti-V-Zr system.

At the first stage grid search was used for hyperparameter opti-
mization with estimate root mean square error. After that we con-
sidered influence of size training dataset on prediction accuracy all
usedmodels. Our original dataset was split randomly into a training
set and a testing set. The size of training setwas between30 and90%.
Surrogatemodels were trainedwith the training sets andwere used
m temperature (a) and 600 �C (b) for the svr.rbf surrogate model.

Nb, % at Ti, % at V, % at Zr, % at

38 32 5 15
32 20 20 9
24 40 5 26
21 40 4 28
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for prediction yield strengths of the testing set. Obtained values
were used for calculation of root mean square error for all machine
learningmodels. The error depends only slightly on the size training
dataset for the two model – tree and knn. For other model the error
decreaseswith increasing size of the training set. Optimal size of the
training dataset was defined at 70% of full dataset.

The third stage was directed at determining the better model.
We employed the bootstrap with replacement and randomly chose
50 training set (size of training set is 70% of full dataset). We
trained a model on this bootstrap dataset and made predictions
for all the data points in the original training dataset. Obtained val-
ues were used for calculation of root mean square error for all
machine learning models. The svr.rbf and tree have the minimum
prediction error and svr.rbf was chosen as the model to predict
yield strengths of HEAs.

Fig. 1 shows comparison predicted and experimental value of
yield strengths at room temperature and 600 �C for svr.rbf surro-
gate model. As can be seen from the Fig. 1, the surrogate model
works better for room temperature than for high temperature.
We obtained 1000 random 70% training sets for predictions yield
strength of model alloys.

3. Experiments and discussion

Model alloys for testing surrogate model were chosen with two
methods. In the first approach alloys were chosen with single-
Fig. 2. Microstructure of model alloys after annealing at 1200 �C 10 h Al5Cr5Nb38Ti32V5Zr
phase alloy formation criteria [18]. Grid search alloys system Al
– Cr – Nb – Ti – V – Zr was done in the range of concentrations
all components 5–50% with step 3%. The number of alloys is satis-
fied single-phase alloy formation criteria: d < 5.4%, VEC < 6.87,
DH_mix = �16.25–4 kJ/mole, X > 1.1, u > 7, g > 0.19 is 221. As
model alloys were selected Al5Cr5Nb38Ti32V5Zr15, Al8Cr11Nb32Ti20-
V20Zr9, Al5Nb24Ti40V5Zr26 and Al4Cr3Nb21Ti40V4Zr28.

The compositions of model alloys are listed in Table 1. Alloys
were fabricated by vacuum arc melting only and annealed in a
quartz tube at 1200 �C 10 h. After heat treatment alloys were
investigated with methods of scanning electron microscopy
(Fig. 2) and X-ray structural analysis (Fig. 3a)

As can be seen from Fig. 2a, for the alloys Al5Cr5Nb38Ti32V5Zr15,
Al8Cr11Nb32Ti20V20Zr9, Al5Nb24Ti40V5Zr26 and Al4Cr3Nb21Ti40V4Zr28
phase contrast weren’t observed. X-ray structural analysis showed
only one BCC phase in this alloys. In Al8Cr11Nb32Ti20V20Zr9 alloy
observed three areas with different composition: matrix phase
(colored gray in Fig. 2b) and inclusions of Cr-rich (colored dark gray
in Fig. 2b) and Zr-rich (colored light gray in Fig. 2b). X-ray struc-
tural analysis in this alloy showed BCC phase, Laves phase and
phase type Zr5Al3.

For compression test 6x6x9 mm specimens were cut off after
annealing at 1200 �C 10 h. Yield strengths was determined at 20,
600 and 800 �C with universal testing machine Instron 300LX-
B1-C3-J1C, strain rate 1∙10�4 s�1. Engineering curves of compres-
sion tests of samples were showed in Fig. 3.
15 (a), Al8Cr11Nb32Ti20V20Zr9 (b), Al5Nb24Ti40V5Zr26 (c) and Al4Cr3Nb21Ti40V4Zr28 (d).



Fig. 3. Engineering curves of compression tests of model alloys at room temperature (a), 600 �C (b) and 800 �C (c).

Table 2
Predicted and experimental value of yield strength at room temperature and 600 �C.

Alloy rYS at 20 �C,
MPa

rYS predicted at 20 �C,
MPa

rYS at 600 �C,
MPa

rYS predicted at 600 �C,
MPa

rYS at 800 �C,
MPa

rYS predicted at 800 �C,
MPa

Al5Cr5Nb38Ti32V5Zr15 1215 1232 845 837 420 448
Al8Cr11Nb32Ti20V20Zr9 1425 1459 1065 1015 525 581
Al5Nb24Ti40V5Zr26 880 1162 616 796 880 1162
Al4Cr3Nb21Ti40V4Zr28 940 1243 511 826 405 415
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Al8Cr11Nb32Ti20V20Zr9 alloy demonstrates the highest strength
over the entire temperature range of tests and low ductility at 20
and 600 �C. Al5Cr5Nb38Ti32V5Zr15 alloy shown similar behavior
and less strength. Al5Nb24Ti40V5Zr26 alloy demonstrates good duc-
tility over the entire temperature range of tests and well strength
at 800 �C. In contrast, Al4Cr3Nb21Ti40V4Zr28 alloy shown extremal
low strength at 800 �C.

Predicted and experimental value of yield strength for model
alloys at testing temperatures are submitted in Table 2.

Comparison of predicted and experimental value of yield
strength for model alloys at testing temperatures are shown in
Fig. 4.

The accuracy prediction of yield strengths for Al5Cr5Nb38Ti32V5-
Zr15 and Al8Cr11Nb32Ti20V20Zr9 alloys is quite high at all test tem-
peratures. For Al5Nb24Ti40V5Zr26 alloy prediction errors is much
higher at 20 and 600 �C, but for at 800 �C it is much lower. The
accuracy prediction of yield strength for Al4Cr3Nb21Ti40V4Zr28 alloy
is the smallest at all test temperatures.
In the Fig. 4b–d shows predicted and experimental value of
yield strength for model alloys and the largest and smallest yield
strength values in the training dataset for each temperature stud-
ied. The distribution of yield strength values in the training dataset
is similar to normal distribution. Because the size of the training
dataset is quite small the number of alloys near its boundaries is
not enough for high accuracy prediction. For Al5Cr5Nb38Ti32V5Zr15
and Al8Cr11Nb32Ti20V20Zr9 alloys yield strengths is well predicted
at all test temperatures because their values near the center of
the training dataset. The yield strength of Al5Nb24Ti40V5Zr26 is well
predicted at 800 �C and much worse predicted at other tempera-
tures when its yield strength near boundary of training dataset.

4. Conclusion

Surrogate model for predict yield strength for alloys of AlCrNb-
TiVZr system at 20, 600 and 800 �C was built. The model showed
the satisfactory accuracy prediction of yield strengths as single-



Fig. 4. Predicted and experimental value of yield strength for model alloys at all testing temperatures (a), at room temperature (b), 600 �C (c) and 800 �C (d) with training
dataset boundaries.
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phase as multi-phase alloys at all test temperatures. In connection
with small size of training dataset accuracy prediction of yield
strengths for alloys outside composition space of training dataset
is lower than inside.
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