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Theory of Smith-Purcell radiation from a 2D array of small noninteracting particles
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We construct the first-principles theory for the scattering of the Coulomb field of a fast electron traveling
along an array of nano- or microparticles. The electron’s trajectory is arbitrarily oriented in the plane parallel
to the surface. We show that Smith-Purcell radiation accompanying this process results in very rich diffraction
patterns, which differ dramatically from the ones for conventional diffraction gratings; a numerical analysis was
made for THz frequencies. The generalized Smith-Purcell dispersion relation has been derived; it describes the
link between frequency, two periods of the structure, the electron’s velocity, and the angle of radiation with
maximal intensity. The unique spatial distribution of the generated light can form the basis for the generation of
structured-light electron-driven photon sources.
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I. INTRODUCTION

Smith-Purcell radiation (SPR) is emitted when a charge
moves near a periodically inhomogeneous target. Purcell and
Smith first measured it in 1953 [1] and since then SPR has
been studied for different gratings and in various frequency
ranges (see the references in monographs [2,3]). The main
feature of SPR is its dispersion relation:

d (β−1 − cos ψ ) = sλ, s = 1, 2, . . . , (1)

with d being the period of the grating, λ being the wavelength
of radiation; β = v/c, where c is the speed of light in vac-
uum and v is the velocity of the electron; ψ is the angle of
observation relative to the electron trajectory; see Fig. 1. The
correspondence of each wavelength to each observation angle
in Eq. (1) means monochromaticity of SPR and possible large
observation angles.

Compared with traditional optics, the way of exciting ra-
diation using SPR is attractive due to (i) the opportunity to
excite electromagnetic waves in a wide spectral range (as the
electrons bring the Coulomb field that contains the frequen-
cies of wide range); (ii) absence of a feeding system for an
emitting antenna, which helps to avoid extra complexity of the
whole system; and (iii) possibility to tune the characteristics
of radiation changing the energy of the electron beam, etc.

Besides its customary applications in powerful orotronlike
sources of radiation and in nondestructive diagnostics of rel-
ativistic electron beams, during the last decade SPR has been
intensively investigated for more exotic structures, such as
plasmonic crystals [4–6], graphene nanoscale gratings [7–9],
and metasurfaces [10–13].

Mostly, the theory involved in the analysis is restricted
to the use of dispersion relations (the Smith-Purcell one,
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the plasmons one, etc.), while the analytical expressions de-
scribing dependence of the radiation field or intensity on the
parameters of the beam and of the target are rare (references
up to 2010 can be found in [2,4]; the cycle of research by
Garcia de Abajo with coauthors is of interest in this regard
[5,14]). Also, Glass in [15] developed a theory of SPR from
bigratings; his theory is impressively general, though it is
seminumerical and valid only for metal gratings (and, in the
IR range, for semiconductors) and for bigratings comprised of
periodically arranged bumps consisting of the same material
as the substrate.

The theory of SPR was developed in [16,17] for flat ar-
rays of nano- and microparticles. The theory in Ref. [16] is
valid for flat rectangular two-dimensional (2D) arrays of sub-
wavelength particles when the electron’s trajectory coincides
with one of two directions in which the target is periodic.
In practice, however, there is a distortion of the electron’s
trajectory caused either by electron beam divergence or by not
high enough accuracy in the beam positioning. Therefore, to
have the theory valid for a wide range of parameters is princi-
pally important, and the question arises: Can such a theory
be obtained from the one developed before by a relatively
simple replacement or substitution? Below we will show that
for surfaces with two periods the correct answer is “no.”

As for radiation from a conventional diffraction grating, the
oblique incidence of an electron leads to increasing the period
by the factor 1/ cos χ ; see Fig. 2. Consequently, the dispersion
relation in Eq. (1) transforms [18] into

d

cos χ
(β−1 − cos ψ ) = sλ, s = 1, 2, . . . . (2)

For a conventional grating this deviation leads to a strong
spatial redistribution of SPR [18,19] called the “conical ef-
fect.” This is angular redistribution of SPR maxima from a
plane to a conical surface with the axis along strips and the
generator close to the electron trajectory (compare Figs. 1
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FIG. 1. Generation of SPR by an electron moving near a conven-
tional diffraction grating.

and 2). This effect was discussed in [19], analytically de-
scribed in [18], and experimentally proved in [20].

The situation changes for two-periodic targets consisting
of small particles (Fig. 3): Now the oblique incidence results
not in mere lengthening of the period, but in the modifica-
tion of the arrangement of inhomogeneity along the electron
trajectory; see Fig. 4. This should lead to complication of
the diffraction pattern and therefore to an essentially different
dispersion relation.

This arrangement can be similar to the quasicrystals.
Indeed, the radiation is emitted mainly from the area “illumi-
nated” by the Coulomb field of the electron under its trajectory
(gray area in Fig. 4). The projection of particles emitting
radiation on the electron trajectory can form a quasicrystal,
so the total radiation can be considered as the radiation from a
quasicrystal [21,22]. Among other aperiodic chains SPR from
a one-dimensional quasicrystal was calculated and analyzed
by Saavedra et al. in [14]. They show that the angular distri-
bution of radiation from such a target is well ordered but is
more complex than that from a strongly periodic target.

For two-dimensional targets, the emerging aperiodicity
means that the existing theory for normal incidence of the
electron cannot be directly extended to the case of oblique
incidence, and therefore a separate calculation is required.

FIG. 2. Generation of SPR by an electron moving near a conven-
tional diffraction grating at arbitrary angle χ (oblique incidence).

FIG. 3. Generation of SPR by an electron moving near 2D pe-
riodic array of subwavelength particles at arbitrary angle (oblique
incidence).

Below, we derive the fully analytical theory of radiation for
electrons passing over a two-periodic array of subwavelength
particles for arbitrary angle between the electron trajectory
and directions of periodicity of the 2D array. As we will
see, introducing the additional parameter—arbitrary angle
χ—leads to a dramatic change in the diffraction patterns com-
pared with those for a conventional diffraction grating, and the
generalized dispersion relation must be used to describe it.

II. RADIATION FIELD AND INTENSITY

In this section, we state a theory of radiation generated by
an electron passing over a 2D periodic array. The array is a
finite number of identical small particles having characteristic
size r0 and arranged as a 2D rectangular lattice. The particles
can be of any form, including holes—what is important is that
their size is less than the wavelength. The coordinate system
is chosen so that dx and dy are the periods of the grating along
the OX and OY axes, correspondingly. Counting the objects
by the index m = {mx, my}, which is the set of two integers
mx and my, one can define the coordinates of the particles as

Rm = dxmxex + dymyey,

mx ∈ [−Mx, Mx], my ∈ [−My, My]. (3)

FIG. 4. The projection of particles that emit radiation on the
electron trajectory. The gray area is one illuminated by the Coulomb
field of the electron.
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A free electron travels parallel to the target plane with the
velocity v and impact parameter h being the shortest distance
between the electron and the plane. The projection of the
velocity on the plane OXY makes an angle χ with the OX
axis, i.e., v = v(cos χ, sin χ, 0); see Fig. 3.

To calculate the field of radiation we solve the Maxwell’s
equations and then express the field components through the
current density of the electron. The Fourier image for the
solution of the Maxwell’s equations is (see, e.g., [2])

E(r, ω) = −4π i

ω

∫
dqeiqr q(q, jtot (q, ω)) − k2jtot (q, ω)

q2 − k2
,

(4)

where the frequency ω, the velocity of light in vacuum c, and
the wave number k are related by k = ω/c.

The total current density jtot consists of the current density
of the free electron j0(r, t ) = evδ(r − vt ) and the current
density j induced in the target: jtot = j0 + j.

For the wavelengths λ � r0 in the dipole approximation
the current density j reads

j(r, ω) = −iω
∑

m

d(Rm, ω)δ(r − Rm), (5)

where δ is the Dirac delta function; d is the dipole moment,
which for λ � r0 can be expressed through the polarizability
α(ω):

d(Rm, ω) = α(ω)E0(Rm, ω). (6)

Here the sum over all m means the double sum over mx and
my :

∑
m (· · · ) = ∑

mx

∑
my

(· · · ). When writing down Eq. (6)
we replaced the field acting to the particle by the Coulomb
field of electron E0(r, ω). This approximation means that the
fields from the neighboring particles are neglected. Then the
Fourier transform of the current density is

j(q, ω) = − iω

(2π )3 α(ω)
∑

m

E0(Rm, ω)e−iqRm . (7)

Therefore, Eq. (4), when written for components, reads

Ei(r, ω) = E0
i (r, ω) − α(ω)

2π2

∫
d3q

qiq j − k2δi j

q2 − k2

×
∑

m

E0
j (Rm, ω)eiq(r−Rm ), (8)

where δi j is the Kronecker delta.
Knowing the formula for the Coulomb field of the electron

in a system K ′ (see Fig. 2), in which it moves along the OX ′
axis, E′0(r′, ω), we can find E0(r, ω) rotating vectors by the
angle χ about the OZ axis: E0(r, ω) = AE′0(A−1r, ω), where
A−1 is the inverse matrix A:

A =
⎛
⎝cos χ − sin χ 0

sin χ cos χ 0
0 0 1

⎞
⎠. (9)

Applying this transformation we find

E0(r, ω) = − eω

πv2γ
e

iω
v2 vR

{
i

γ
K0

(
L

ω

vγ

)
v
v

+ L
L

K1

(
L

ω

vγ

)}
,

(10)

where L = [v, [v, r − hez]]/v2, e is the charge of the electron,
γ is the Lorentz factor of the electron, and K0 and K1 are
modified Bessel functions of the second kind of the zero and
the first order, correspondingly.

The field of radiation Erad(r, ω) is the total field E(r, ω) in
the far zone (kr � 1) minus the Coulomb field E0(r, ω). So,
after integrating in Eq. (8) we have

Erad(r, ω)
∣∣
kr�1 = α(ω)

eω

πc2β2γ

eikr

r

×
∑

m

eidxmxϕx eidymyϕy [k, [k, Pm]], (11)

where kx, ky are the corresponding components of the wave
vector k = kn, and n is the unit wave vector,

ϕx = ωvx

v2
− kx, ϕy = ωvy

v2
− ky, (12)

Pm = i

γ

v
v

K0

(
Lm

ω

vγ

)
+ Lm

Lm
K1

(
Lm

ω

vγ

)
, (13)

Lm = [v, [v, Rm − hez]]/v
2. (14)

Then, the emitted energy of radiation per unit photon en-
ergy dh̄ω and per solid angle d� reads

dW (n, ω)

dh̄ωd�
= cr2

h̄

∣∣Erad(r, ω)
∣∣2

. (15)

Substituting Eq. (11) into Eq. (15) we obtain

dW (n, ω)

dh̄ωd�
= e2

h̄c

1

π2

ω4|α(ω)|2
c4β4γ 4

∣∣∣∣∣
∑

m

eidxmxϕx eidymyϕy

×
[

k,
v
v

K0

(
Lm

ω

vγ

)
− iγ

Lm

Lm
K1

(
Lm

ω

vγ

)]∣∣∣∣
2

.

(16)

When the electron moves parallel to the OX axis, i.e., for
χ = 0, Eq. (16) coincides with that from [16]. In the case of
a chainlike target, i.e., for χ = 0 and My = 0, the obtained
result coincides with the result from [23].

Note that all the theory developed here does suppose that
the single particles composing the array do not interact. This
approximation holds true when the distance between them
significantly exceeds their sizes; see [24].

In the theory constructed by Glass [15], the radiated power
is expressed through the coefficients that are to be obtained
from the infinite set of linear equations (see the discussions
before Eq. (20) and around Eqs. (56) and (57) in [15]), con-
trary to our Eq. (16), which is fully analytical. Besides, we can
consider the restricted gratings, while Glass’s theory describes
the radiation from the gratings infinite in the transversal direc-
tion. Instead of that, Glass’s theory allows for surface plasmon
excitation in contrast with Eq. (16), which describes the radi-
ation in the far zone only.

III. DISPERSION RELATIONS

As modified Bessel functions are monotonous, the maxima
of the radiation are mainly defined by exponents in the sum
in Eq. (16). The next system of two dispersion relations is
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obtained from Eq. (16),

λsx = dx

(
βx

β2
− nx

)
,

λsy = dy

(
βy

β2
− ny

)
,

(17)

with sx and sy being integers, and βx,y = vx,y/c. The observa-
tion angles are defined as follows:

nx = cosθ, ny = sinθ sin φ, nz = sinθ cos φ. (18)

Unlike the case of conventional diffraction grating, these
two dispersion relations cannot be obtained from those for
normal motion of the electron by adjusting the period fol-
lowing the rule discussed above, such as d → d/ cos χ ; see
Fig. 2. Taking into account that the components of the unit
wave vector nx and ny are less than unity, we find the limits
for the integers sx and sy from Eq. (17):

dx

λ

(
βx

β2
− 1

)
� sx �

dx

λ

(
βx

β2
+ 1

)
,

dy

λ

(
βy

β2
− 1

)
� sy �

dy

λ

(
βy

β2
+ 1

)
.

(19)

For βy = 0 we have βx = β, and the first equation of the
two in Eq. (17) turns into the conventional dispersion relation
for SPR from Eq. (1) with only positive integers sx. In this case
the second one in Eq. (17) goes to the additional dispersion
relation caused by the second period, coinciding with the
formula (2.15) from [17]:

λsy = −nydy. (20)

For sy = 0 the second relation in Eq. (17) reads

ny = βy/β
2. (21)

Equation (21) coincides with the equation for the conical
surface of maximal SPR from conventional gratings (so-called
“conical effect”) [18]; this cone has its axis directed along the
y axis (see Fig. 2). The essence of it is in the spatial distri-
bution of SPR over a conical surface for the case of oblique
movement of the electron above the grooves of the grating.
We have justified another explanation in [25]: Equation (21)
coincides with the condition of Cherenkov radiation from a
superluminal source, which is the area of the target excited by
the Coulomb field of the moving electron.

For sx = 0 we obtain a similar equation for the conical
surface of the cone with its axis directed along the x axis.
For sy = 0 from Eq. (21) and the first equation of the two in
Eq. (17) we find

λs = dx

βx
(1 − βxnx − βyny), s = 0, 1, 2 . . . , (22)

which coincides with the dispersion relation for SPR for a
conventional grating [18]. Actually, Eq. (22) can easily trans-
form into Eq. (2) provided that χ is the angle between the
vector v and the x axis, and ψ is the angle between the vectors
v and k.

Besides, it was shown in [18] that the dispersion relation
for SPR from a conventional grating is similar to that for the
plane wave diffracted on the grating, with the only difference

FIG. 5. Angular dependences of spectral-angular distribution of
SPR from a conventional grating and from a 2D array of particles
for the wavelength λ = 1 mm and normal motion of the electron
above the target. Here γ = 16, Mx = 3 (seven periods along the
electron trajectory), My = 5 (11 periods in each row), r0 = 0.1 mm,
ε = 2, h = 1 mm, dx = dy = 2 mm, and χ = 0. White dashed lines
correspond to the dispersion relation for SPR from a conventional
grating.

being that the components of the unit wave vector of the
incident plane wave n0x, n0y should be substituted by βx/β

2,
βy/β

2. This fact indicates that there is a close analogy between
SPR and the optics of diffraction gratings. Similarly to the
case of conventional gratings, Eq. (17) can be obtained from
the formulas describing the diffraction of plane waves on 2D
gratings [26] directly using Floquet’s theorem (the notations
have been changed, see Eqs. (6) and (7) in [26]):

kx = K0x + 2π lx/dx,

ky = K0y + 2π ly/dy,
(23)

where K0x and K0y are the components of the wave vector of
the incident wave, kx and ky are the components of the wave
vector of the diffracted wave, and lx and ly are integers. Keep-
ing in mind that kx,y = 2πnx,y/λ, K0x,0y = 2πn0x,0y/λ, and
replacing n0x and n0y by βx/β

2 and βy/β
2, we immediately

obtain Eq. (17), where lx,y = −sx,y.

IV. COMPARISON BETWEEN 2D AND CONVENTIONAL
GRATINGS

The angular dependences of spectral-angular distribution
of SPR from a conventional grating and from a 2D array
of particles are shown in Figs. 5(a) and 5(b) for similar pa-
rameters. Figure 5(a) was plotted using the theory for the
conventional grating made of infinitely thin and perfectly con-
ducting strips; see [27]. Both targets have the same period in
the direction of the electron’s motion.

As we see from Fig. 5, the angular distribution from a 2D
array is more complex: While the central (at φ = 0) maxima
are at the same angles θ as those for the conventional grating,
they are forked and less intense; also, there are additional
maxima at φ �= 0. The relative intensity of the maxima and
the angular width are the same for both gratings.

As we see in Figs. 5(a) and 5(b), the maxima of radiation
are in the white dashed lines corresponding to the dispersion
relation for conventional SPR. This is because the period is
the same and the first equation of the two in Eq. (17) coincides
with Eq. (1). The radiation peaks in Fig. 5(a) are concentrated
near φ = 0, i.e., in the plane ny = 0 shown in Fig. 1 (this is
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FIG. 6. The same as in Fig. 5, but for oblique movement of
electron above the gratings, χ = 30◦.

so due to the decreasing exponent in SPR, which is common-
place for SPR from conventional gratings; see, e.g., [2]).

For 2D array in Fig. 5(b) the peaks, however, are distributed
over nonzero azimuthal angles, which is described by the
second equation of the two in Eq. (17), βy being equal to zero
[Fig. 5(b)] or not [Fig. 6(b)].

Note that most peaks for the oblique incidence, Fig. 6(b),
are out of the white curves. It corresponds to what we have dis-
cussed above in the Introduction: In the case of the 2D array,
the dispersion relation for oblique incidence cannot be ob-
tained by a simple amendment of that for a normal incidence,
as it takes place for the conventional grating; see Fig. 6(a).

For the conventional grating, the deviation of the electron
from motion along the x axis to nonzero χ leads to the conical
effect: All maxima shift to positive φ. For the 2D array, how-
ever, all maxima curve and are at both positive and negative
φ.

V. ANGULAR DISTRIBUTION OF RADIATION
FOR 2D GRATING

The changing of spectral-angular distribution of SPR with
growth in the value of χ for the 2D array is shown in Fig. 7.
The dashed white curves correspond to the dispersion rela-
tions; see Eq. (17). The radiation maxima are at the angles at
which these white curves intersect. We see that the obtained
dispersion relations define the maxima positions very well.

Some maxima are forked, having the local minimum
placed exactly at the intersections of the dispersion relation
curves; see, e.g., one at φ = 0◦ and θ = 90◦ in Fig. 7(a).

Also, there is certain inclination of the maxima at χ �= 0,
and the greater χ is, the more inclined the maxima are. At
first sight, the dispersion relations seem not to define the
inclinations of the maxima (their fine angular structure), be-
cause the intersections of the curves are just the points. Yet,
that is not true: These inclinations can also be described by
the same dispersion relations. Actually, considering the two
expressions in Eq. (17) simultaneously, we find

λ(sxβxdy + syβydx ) = dxdy(1 − nxβx − nyβy). (24)

Note that Eq. (24) can be obtained immediately by consid-
ering the electron-wave synchronism condition in a structure
with two periods. That is, any of the systems

λsy = dy
( βy

β2 − ny
)
,

λ(sxβxdy + syβydx ) = dxdy(1 − nxβx − nyβy),
(25)

FIG. 7. Spectral-angular distribution of SPR for different χ . All
the parameters are the same as in Fig. 5. Here χ is equal to (a) 0◦; (b)
10◦; (c) 30◦; (d) 45◦; (e) 60◦; (f) 80◦. White dashed curves correspond
to dispersion relations given by Eq. (17).

or

λsx = dx
(

βx

β2 − nx
)
,

λ(sxβxdy + syβydx ) = dxdy(1 − nxβx − nyβy),
(26)

or the initial Eq. (17) as well, is a generalized Smith-Purcell
dispersion relation derived for the 2D array considered, which
is an arranged array of subwavelength particles, having two
periods.

Equation (24) defines the angular spread of radiation near
its maxima. In Figs. 8, 7(d), and 7(e) the same angular distri-
butions are shown for χ = 45◦, 60◦, but while in Figs. 7(d)
and 7(e) the white lines correspond to Eq. (17), in Fig. 8 these
white lines are defined by Eq. (24). It is seen that the disper-
sion relation Eq. (24) perfectly describes the inclination of the
SPR maxima: They are extended along the white curves.

In Fig. 8 there are several maxima that do not lie at any of
the dashed lines (the most intensive one is the bright spot on
the right). That is because the description (“description” rather
than “nature”; see below) of this peak differs from the others:
It is not because of the periodic structure of the grating (i.e.,
SPR); it is, better to say, an artifact of diffraction radiation
that is emitted directly forward if χ = 0, or, if χ �= 0, either
forward or under the direction of mirror reflection.

Interestingly, these peaks are still described by the inter-
section of the lines from dispersion relations; see Fig. 7. We
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FIG. 8. Spectral-angular distribution of SPR for different χ . All
the parameters are the same as in Fig. 5. Here χ is equal to (a) 45◦;
(b) 60◦. White dashed curves correspond to dispersion relation from
Eq. (24).

assume it reflects the deep intrinsic link between diffraction
radiation and the Cherenkov radiation. Indeed, Smith-Purcell
radiation on the one hand is the special case of diffraction ra-
diation, and on the other hand it formally describes Cherenkov
radiation at the “zero” order of diffraction: This is evident
from, e.g., Eq. (1) at s = 0 and β → β

√
ε in the presence

of the material with ε being the dielectric permittivity; see
also Eq. (5) in [28]. Since, in its turn, diffraction radiation can
be understood as a Cherenkov radiation from superluminal
sources, see [25], we infer that it is natural when the maxima
of diffraction radiation are well described by the generalized
Smith-Purcell relation. However, note that this description is
very special: Strictly mathematically in Fig. 7 the white lines
do not cross at the peaks discussed; i.e., there is no solution
of the system of Eq. (17). We see the radiation at these points,
however, due to the simple fact that the radiation peaks have
the finite width, and when two lines describing positions of
maxima approach nearly enough, their tails overlap. At that,
the positions of “purely” Smith-Purcell peaks are ideally de-
scribed by Eq. (17), or the equivalent systems of Eq. (25) or
(26).

How does the spatial distribution of radiation change when
the number of particles in each row increases? Increasing
My when the period is fixed results in the narrowing of the
radiation peaks, until the length of the row along OY reaches

FIG. 9. Angular dependences of spectral-angular distribution of
SPR from 2D array for (a) for My = 10, i.e., 21 particles in a row
(dy = 1 mm); (b) for My = 50, i.e., 101 particles in a row (dy =
0.2 mm). Here χ = 30◦ and other parameters are as in Fig. 5.

the value γ βλ—the effective distance to which the Coulomb
field of the moving electron extends—and after that ceases to
change. If we fix the length of the rows (the transversal size
of the 2D array) adding the particles, we turn the rows into
continuous strips, and so as a result the diffraction pattern ap-
proaches that for a conventional grating; compare Figs. 6(a),
9(a) and 9(b).

VI. CONCLUSION

To sum up, we have constructed the theory of Smith-
Purcell radiation from a 2D array—a two-periodic array
consisting of subwavelength particles. The theory gives com-
paratively simple and at the same time fully analytical expres-
sions, describing the distribution of radiation over the angles
and frequencies. The size and form of the particles composing
the 2D array are arbitrary, and so are the periods, with two
limitations: The particle’s size should be subwavelength, and
the interaction between separated particles can be neglected.
The energy of the electrons is arbitrary and the orientation of
the electron’s velocity is arbitrary as well, with the restriction
that the electron’s trajectory is parallel to the surface.

Based on the theory developed, we have derived two
dispersion relations [see Eq. (25), or Eq. (26), which is
equivalent] that play the role of a generalized Smith-Purcell
dispersion relation for the array having two periods. This
new dispersion relation describes both spectra and the fine
angular structure of the radiation maxima together with
their positions: With growth of χ all maxima shift and in-
cline. Qualitatively, this corresponds to the phenomenon of
the diffraction of light on bigratings in optics. As Liang
et al. demonstrated recently [29] using numerical simulations,
based on the FDTD (finite-difference time-domain) method,
for a ribbon electron beam passing above a 2D array (they
considered the array composed of holes) the direction of SPR
can be steered by adjusting the angle equivalent to the angle
χ in Fig. 3, which perfectly agrees with our results.

Interestingly, unlike the dispersion relation from the ar-
rays/gratings with the only period in one direction at oblique
incidence, which is obtained from the conventional Smith-
Purcell one by simple replace d → d/ cos χ , the dispersion
relation in the case of 2D arrays cannot be obtained by a simi-
lar rule changing the periods effectively. The whole diffraction
pattern proves to be pretty complicated, considerably more
complex than that for an array periodic in just one direction.
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The nonrelativistic limit of the theory is applicable for
description of electron-photon spectroscopy techniques using
electron microscopes; in its relativistic limit the theory forms
the basis for the techniques of generating radiation using com-
pact linear accelerators. Using 2D arrays in the capacity of
radiating targets should allow the designing of new radiation
sources, especially in the THz range, and developing new
diagnostics techniques.
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T. Feurer, and I. Kaminer, Graphene metamaterials for intense,
tunable, and compact extreme ultraviolet and x-ray sources,
Adv. Sci. 7, 1901609 (2020).

[9] K. Tantiwanichapan, X. Wang, A. K. Swan, and R. Paiella,
Graphene on nanoscale gratings for the generation of terahertz
Smith-Purcell radiation, Appl. Phys. Lett. 105, 241102 (2014).

[10] Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, Manipulating
Smith-Purcell Emission with Babinet Metasurfaces, Phys. Rev.
Lett. 117, 157401 (2016).

[11] L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, Terahertz and
infrared Smith-Purcell radiation from Babinet metasurfaces:
Loss and efficiency, Phys. Rev. B 96, 165435 (2017).

[12] Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, Efficient terahertz
and infrared Smith–Purcell radiation from metal-slot metasur-
faces, Opt. Lett. 43, 3858 (2018).

[13] C. Roques-Carmes, S. E. Kooi, Y. Yang, A. Massuda, P. D.
Keathley, A. Zaidi, Y. Yang, J. D. Joannopoulos, K. K.
Berggren, I. Kaminer, and M. Soljačić, Towards integrated tun-
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