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Abstract—On a smooth closed surface, we consider integrals of the Cauchy type with ker-
nel depending on the difference of arguments. They cover both double-layer potentials for
second-order elliptic equations and generalized integrals of the Cauchy type for first-order ellip-
tic systems. For the functions described by such integrals, we find sufficient conditions providing
their continuity up to the boundary surface. We obtain the corresponding formulas for their
limit values.

Let D € R? be a given finite domain bounded by a smooth surface I' = 9D, and let Q(x,y;€) be

a continuous function of the variables x € D, y € I, and ¢ € R3, £ # 0, homogeneous of degree —2
and odd with respect to &; i.e., Q(ré) = r2Q(&), r > 0, and Q(—¢) = —Q(&). In the domain D,
consider the integral

/@@ww—xmwwmﬁ reD, (1)

where ds, is the surface area element on I'. Such integrals arise as double layer potentials for
second-order elliptic equations [1, Chap. I1]. For example, the double layer potential

/an L

for the Laplace equation, where n(y), y € I', is the unit outward normal, can be represented in the

form (1) with
Q(y, &) = (&1 + na(y)&s + na(y)éallé] .

Another example is provided by Cauchy type integrals corresponding to the Moisil-Theodoresco
system [2]

0 & & &
0 & 0 =& &
D u=0, DE=
<(’9:E> ! © & & 0 =&
& =& &0

for a four-component vector function v = (uy, us, us, u4). By [3, p. 243], the function

/M —x,n(y)|p(t) ds;
with matrix kernel

Q&) = Men(y)],  M(En) = zﬂ(a)é|<>

is a solution of this system.
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In the above-represented examples, under the assumption of certain smoothness of the density
© and the surface L, the function u(x) can be extended by continuity to L, and the corresponding
formula holds for its limit values. In the present paper, we consider a similar problem for general
integrals of the form (1). The relation for the limit values ¢ (yo) of the function (1) at the boundary
points yo will contain the singular integral

¢* (yo) = /Q(yoyy;y —yo)p(y)dsy,  yo €T, (2)

which is understood in the sense of principal value as the limit of integrals over LN {|y — yo| > €}
as € — 0.

Note that the problem on the continuity of the function ¢ up to the boundary for the case in
which the kernel @ depends only on ¢ was considered in [4], where the following assertion was
proved.

Lemma 1. Let Q(&), £ # 0, be a continuously differentiable odd function homogeneous of de-
gree —2; next, let P be a given plane with unit normal n, and let G be the half-space with boundary
0G = P for which n is the inward normal. Then the singular integral

q/cxy—x)dsy, reG, 3)

treated in the sense of principal value at infinity as the limit of integrals over PN {|y| < R} as
R — oo exists and is independent of x € G. One also has the relation

‘- / Qly — yo— ) ds, 1 / QW —yo—1)— QU —w)lds,, (3

Pr{ly—yol<1} Pr{ly—yo|>1}

where yo € P and integrals exist in the ordinary sense.

All forthcoming considerations will be carried out in the framework of the Holder classes C".
Note that, in this class, the norm of a function ¢ defined on a set Iv is given by the relation

|l e = |¢loe + [¢]yE, Where

m_
el =suple@), el = sup DLW g ooy
EaS]

wry T =yl

If [¢]1 g < o0, then one says that the function ¢ satisfies the Lipschitz condition. If the set I is

a closed domain, then one can introduce the class C''(FE) of continuously differentiable functions
© by the conditions @, ¢’ € C*(F), where ¢’ stands for any of the first partial derivatives of ¢.

Let H™, be the class of functions Q(§) € C™, & # 0, homogeneous of degree —2. One can readily

see [4] that the functions @ € H!, satisfy the Lipschitz condition outside a neighborhood of the
point & = 0. More precisely, they admit the estimate

Q(€) — Q)| < C(IE]™* + Inl?)I€ —nl, (4)

where C' > 0 is a constant independent of ). In particular, this estimate implies that the second
integral on the right-hand side in (3’) exists in the ordinary sense.

Just as in (1), functions Q(§) = Q(u, &) depending on the parameter u € E are most interesting.
By C¥(E; H",) we denote the class of functions Q(u; &) that belong to H”, for each u and, treated
as functions of the first variable, belong to C”(E) together with their partial derivatives with respect
to &; moreover, the following norm is finite:

QIS = sup QW] g, )

1€=1, k<n
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where Q) stands for the set of all partial derivatives of Q(u,§) of order k with respect to the
variables &1, &, and &;.

We introduce the class L' of continuously differentiable homeomorphic mappings of the space
R? into itself that, together with their inverses, satisfy the Lipschitz condition. Such mappings
« are referred to as Lipschitz mappings; by definition, for some constant M > 0, they admit the
two-sided estimate

M e —yl <o) —a(y)l <Mz —yl,  z,y R (6)

Consider the Jacobi matrix Da, whose columns are the partial derivatives da/dx;. Obviously,

1

afr) —aly) = [Alx, @ —y),  Al,y) = /(Da)[w(l —7) +yrldr, (7)

0

where the matrix A in brackets acts on the vector £ — y in the standard way. By substituting this
expression into (6) and by setting x = y + r&, r > 0, with a fixed vector £, we obtain the similar
estimate

MYEL < [(Da)())E] < MIE] (8)

uniformly with respect to  and £ in the limit as » — 0. In particular, the inverse mapping
a ! is continuously differentiable as well, and the Jacobi matrices D(a*!) are uniformly bounded.
The converse is also true: if the mappings o' are continuously differentiable and their Jacobi
matrices are uniformly bounded, then o € L'. In what follows, we consider Lipschitz mappings
« with the property Da € CY(R?); the class of such mappings is denoted by L. Obviously,
the inverse mapping 3 = o~ ! belongs to that class together with a.

Consider the relationship between Lipschitz transformations and the above-introduced functions
Qe H",.

Lemma 2. Let Q(x,y;&) € C"(Ey x FEy; H2,), where E; C R?, and let o € L™ be a given

Lipschitz transformation. Then there exists a function Q(x,y;€) € C*(Ey x Ey; H',), where E; =
a Y (E;), such that

ka,y) = Qla(x), aly); ay) — a(@)] — Qa,y;y —x) € C"(Er x By); ©)

moreover,

Qx, 2;§) = Qafx), alw); (Da)(w)E]. (10)

Proof. If © = y, then the matrix A(x,y) occurring in (7) coincides with the Jacobi matrix
(Da)(x), which, by assumption, belongs to the class C*(R?). Therefore, we have the estimate

A2, y) — Az, 2)| < Clz —yl”,

where the operator norm in R**® = L(R3) is taken on the left-hand side. Consequently, this,
together with (8), implies the two-sided inequality

M)l < A, )¢l <2ME] if |z -yl <6, (11)

where 9§, 0 < § <1, is chosen from the condition 2MC'§ < 1.

Take a smooth cutoff function x(z) identically equal to unity for x| < §/2 and identically zero
for |z| > ¢, and set

Q(x,y;€) = x(@ —y)Qla(x), aly); Alx, y)E]. (12)

Obviously, this function satisfies condition (10). Let us show that it belongs to the class

CY(FE; x Fy; H',). By the choice of the function Yy, it suffices to verify this assertion for the
set ¥ C E) x F, distinguished by the condition |x — y| < 4.
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By (4), the function Q[a(x),a(y);n| satisfies the Lipschitz condition in the spherical layer
(2M)~! < |n| < 2M uniformly with respect to  and y. By (11), the vector A(x,y)¢ varies in
this layer for || = 1 and (x,y) € E. Therefore, in view of the condition A € C*(R?® x R?), from
this we find that Q[a(x), a(y); A(x,y)é] € C¥(E) uniformly with respect to |¢| = 1. In a similar
way, one can also prove this fact for the partial derivatives,

ggx@—w;;mmawg%mm»mwwu%w&

where the A;; are the entries of the matrix A.
By (7) and (12), for the function k(xz,y) in (9), we have the expression

k(z,y) = [I = x(z - ylQla(x), aly); aly) — afw)].

Since 1 — y(z —y) = 0 for |x —y| < §/2, it suffices to show that k(x,y) € C*(F) on the set
F ={(z,y) € By x E,, |x —y| > 8/2}. By (6), we have the estimate |a(z) — a(y)| > §/(2M) for
(x,y) € F. Therefore, by virtue of (4), the function Q[ca((z), al(y); ] satisfies the Lipschitz condition
in the domain |n| > §/(2M) uniformly with respect to (x,y) € E. It follows that the function k
belongs to the class C*(F'), which completes the proof of the lemma.

Throughout the following, we assume that I" is a Lyapunov surface and belongs to the class C'1.
The latter means the following: for each a € I, there exists a homeomorphic mapping y = y(t) =
(71(t), 72(1), v3(t)) of class C*(B) of the unit disk B = {t € R?, || < 1} onto some neighborhood
of the point a on the surface I' such that the rank of the Jacobi matrix (D«)(t) is equal to 2 at
each point; i.e., the tangent vectors

Oy

are linearly independent.
Note that the surface area element on I' is given by the formula

dSy - HCl (t), Co (t)” dtl dtz,

where |-, -] stands for the vector product. In other words, the integral of a function ¢ € C(I') over
the surface v(B) C I' is given by the formula
[ elards. = [ ebillet), el de (14)
v(B) B

We denote the tangent plane to the smooth surface I' at a point a by (dI')(a). The surface I is flat
in a neighborhood of that point if there exists a ball B centered at a such that BNT' = BN (dl')(a).
By definition, a Lipschitz transformation § rectifies the surface I' in a neighborhood of a if the
image G(I') is flat in a neighborhood of the point 3(a).

Lemma 3. (a) Let I' € C and a € I'. Then there exists a Lipschitz transformation 3 € LY
rectifying U in a neighborhood of a.

(b) Let a Lipschitz transformation y = a(x) € LY take a smooth surface T' € C'* to T. Then
the following change-of-variables formula holds:

/@(y) dsy = /@[a(w)]J(w) dsz,  J(x) =[[(Daje(x), (Dajes(2)]l; (15)

where ey and ey are unit mutually orthogonal vectors lying in the tangent plane (dT)(x). In addition,
the coefficient J(x) belongs to C¥(1).
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(¢) Let T' € CY, and let a function Q(yo, y; &) belong to C*(I' x I'; H%,) and be odd with respect
to & fory =1yo. Then there exists a singular integral

/Q(yo, Yy — o) dsy, = lim / QYo y;y — o) dsy, (16)
r

T\ B.

where B, is the ball centered at yo € I with radius <.

Proof. (a) Let a = (a1,a0,a3) € I', and let a homeomorphic mapping y = ~(¢) of the disk
B = {|t] < 1} € R? onto a neighborhood of the point a on the surface I' belong to the class
CY(B); moreover, the 3 x 2 Jacobi matrix D~ has rank 2 at each point ¢ € B, and a = ~(0).
Then one of its second-order minors, for example, that in the first and second rows, is nonzero.
Therefore, by the inverse function theorem, there exists a mapping ¢t = w(yy, ¥2) of a neighborhood
G of the point (ay,as) onto some disk [t| < = of the class C'*(G) that is the inverse of y; = v(t),
i = 1,2. By setting f = 73 o w, we obtain a real function f € C'*(G) whose graph coincides with
I’ in a neighborhood of a.

Let a smooth function y be identically equal to unity in a neighborhood of the point (a4, a5) and
identically zero outside some compact set lying in G. Then the function g(y1, y2) = f(y1, y2)x (Y1, ¥2)
belongs to the class C*(R?), and its graph coincides with I in a neighborhood of a. Therefore,
the transformation §§ = 3(y) given by the relations

v = Y1, Yo = Y2, U3 = ys — 9(Y1, Y2),
satisfies all assumptions of the lemma.

(b) Consider a neighborhood I'g of some point a of the surface I' represented parametrically by
the equation y = (1), |[t] <1, of the class C'* occurring in the proof of (a). Then 4 = a1l o~y is
a parametrization of I'y = o *(I'y) of the same type. Let ¢ be defined by analogy with (13) on the
basis of 4;. Then, by virtue of (14), relation (15) written out for I'y and I’y acquires the form

/@[W(t)]l[cl(t)ycz(t)]ldt = /@[’V(t)]J[’W(t)]I[él(t),52(t)]|dt,

B B

where B stands for the unit disk on the plane R?. Therefore, the coefficient J is given by the
formula J[¥(t)]|[¢1(2), E2(t)]| = |[es(t), c2(F)]|- At the point § = F(t), the vectors & = 07/0t; are
linear combinations ¢ = p; 11 +p; 22, ¢ = 1,2, of the vectors e; and e, with determinant det p # 0.
Obviously, [¢1,¢] = [p1,1€1 + P1.2€2, 2,181 + D2gea] = (det p)les, e2]. Since ¢; = 9y/0t; is related to
¢; by the formula ¢; = (Da)(y) ¢;, where the Jacobi matrix Do is evaluated at the point § = F(%),
we have

le1, e2) = [pra(Da)er + pro(Da)es, pa 1 (Da)ar + pa 2(Da)as] = (det p)[(Da)eq, (Daes).

Since |le1, es]| = 1, it follows that relation (15) holds for J.

It remains to show that J € C*(I'). To this end, it suffices to choose the unit vectors e;(x)

occurring in (15) from the class C*(I'y). By using orthogonalization, one can start from a pair
of linearly independent vectors. By virtue of assertion (a) of the lemma, such a choice is always
possible.

(¢) First, suppose that the surface I' is flat in a neighborhood of yo; i.e., B, NI' = B, N (dl")(yo)
for some r > 0. Next, since Q(yo,yo;&) is an odd function of &, it follows that the integral of
QYo, Yo; ¥ — Yo) over the circular annulus I' N (B,\B.), 0 < £ < r, is zero. Consequently,

/ QWo,y;y — vo) dsy
I'\B.

= / [QWo, 3y — yo) — Q(Wo, Yo; ¥ — Yo)| dsy + / QYo Yo; ¥ — Yo) ds.

'\ B. I\ B
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By the definition of the norm (5), we have the estimate

|Q0, 93€) — QUyo, o3 )| < QU1 1y — wol”

thus, the bracketed expression in the preceding relation is integrable over I'. Therefore, the
limit (16) exists.

In the general case, we use assertion (a) of the lemma and consider a transformation 3 € L'
rectifying I" in a neighborhood of yo. Without loss of generality, one can assume that #(yo) = yo
and (Df3)(yo) is the identity matrix. In particular,

Ay) =y =ly—wlAly),  lim A(y) =0. (17)

By (15), in the notation of Lemma 2, we have

/ Qo, ;Y — yo) dsy = / Qo Y3y — o) J (y) ds, + / k(yo, y)J (y) ds,.
M B. T\S(B:) T\B(B:)
Obviously, the last term on the right-hand side in this relation has a limit as £ — 0. The assumptions

of the above-considered case hold for I' = B(I') and Q(yo, y;€)J(y). Therefore, it suffices to include
the image ((B.) of the ball B, in balls of close radius appropriately. By (17), for |y — yo| = &,

we have the estimates
e(1=0.) <18(y) —yol <e(1+4.),

where

Je = ma‘x IA(y)] =0 as —0.
Y—Yo|=£€

Consequently,
B; g /B(Bg) g B;; BSE — B5i555- (18)

Since the surface I is flat in a neighborhood of the point ¥, it follows that, for sufficiently small &,
its intersection with Bf\B_ is a circular annulus of area

(1 +0.)* — (1 —0,.)%] = 4re?s,.
By virtue of (18), we have

/ QJds, = /Qstz / QJ ds,. (19)
M\A(B.) mBd BI\A(BE)

As was shown above, the first term has a limit as £ — 0, and the absolute value of the second one
does not exceed the quantity

/ Gy, v5 — w0l 1) ds, < C5,

BI\BZ
with some constant C' > 0 independent of . Therefore, the left-hand side of relation (19) has

a limit as € — 0, which completes the proof of the lemma.
Consider the original integral (1).

Theorem 1. Let the surface T' € CY bound a finite domain D, and let Q(x,y;§) €
C¥(D x I'; H?,) be a given function odd with respect to & for x =y € I'. Then for ¢ € CHI),
0 < u < v, the integral (1) defines a function ¢(x) that can be continuously extended to I' and
belongs to the class C*(D). Its limit values satisfy the formula

¢ (o) = a(yo)o(yo) + & (y0), o, (20)

where ¢*(yo) is the integral (2) and q(yo) is defined by analogy with Lemma 1 for Q(yo, yo; &), the
plane P = (dI')(yo), and the inward (for D) normal n(yo).
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Proof. It suffices to prove that the function ¢ belongs to the class C* only for boundary points
a € I'. In other words, for each point a, there exists a ball B centered at a such that ¢ € C*(DNB).

In this case, ¢ can be continuously extended to the closure DN B and belongs to C*(D N B).

First, suppose that the surface I' is flat in a neighborhood of a, for example, in the intersection
with the ball By, = {|x —a| < 2r}; for B, we take the ball B,. In this case, we prove the theorem
under the less restrictive condition Q € C*( D x I'; H,) for the kernel. Let us start from the case
in which the kernel @) = )y is independent of z; i.e., consider the function

m@)l/@@w—xmwm%, reDNB. (21)

The fact that this function belongs to the class C* was proved in [4], and the following estimate

was obtained there: X
[polcn(prpy < ClQIV 0l r- (22)

In the general case, we apply this estimate to the function

@@w)/@@%y—wﬂw%w v,z e DA B,
T

where z is treated as a parameter. Then, by (22), we have the estimate
|91(2,2") — ¢1(z,2")] < Cla” — 2" (23)
uniformly with respect to z. The difference quotient
Go(x) = [91(2,2) = pr(2", )|z = 2|7
for the function ¢, with respect to the first variable can be represented in the form (21) for the

kernel
QU y;&) — (", y;8) (24)

|Z/—Z//|“ :

Qo(% §) =

Next, we use the following well-known property [5, p. 47] of functions satisfying the Holder condi-
tions: if some function f(x) belongs to C¥(F) and 0 < u < 1, then the function

gz, y) = [f(x) = fW)lle —y|™*

defined to be zero for x = y belongs to the class C* #(F x E), and the corresponding estimate
|9l,—p.exe < C|f|, g holds. By definition (5) applied to (24), this result permits one to claim that

Q € Cv#(T'; H',) uniformly with respect to 2z’ and z”. By (22), where v and p < v should be
replaced by 7 = v — pp and 1 < 7, respectively, we obtain the estimate

6125 2) — 1(2",2)] < Cl — 2|F,

which, together with (23), implies that ¢; and hence ¢(x) = ¢1(x, x) belong to the class C*.

Let us prove (20) at the point yo = a. By denoting Q(yo, y;£)¢(y) by Q(yo,y; &) again, without
loss of generality, one can assume that ¢ = 1. First, suppose that Q(a,a;&) = 0. In this case,

we have
1Q2, 4; )| = 1Q(x,5;:6) — Qla, a;§)| <1QIS (| — al + [y — al)¥]] 7. (25)

Let the point © € D tend to a along the inward normal to I'. Then the vectors x —a and y — a,
y € BNT, are orthogonal; therefore, v — y|? = |v —a|?> + |y — a|®> > (Jx — a| + |y — a])?/2. This,
together with (25), implies that

(lz —al + |y —al)”

ol ly—ap <A

1Q(z,y;y — )| < Q|
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Therefore, by the Lebesgue dominated convergence theorem, one can pass to the limit in the
integral (1) as  — a, which provides relation (20) for a = yo and ¢(a) = 0.
In the general case, set

Qr,y;¢) = [Qx,y;8) — Qa,a;8)] + Q(a, a;§).

The assumptions of the above-considered case hold for the integral defined by the bracketed expres-
sion. Therefore, without loss of generality, one can assume that Q(&) = Q(x,y;¢) is independent
of x and y. In this case, ¢ = ¢(a) is given by relation (3), where P = (dI')(a) and the point x lies
in the half-space defined by the normal n(a). Since PN B =1'N B, we have

- [ Qu-ads,~ [ Qu-a)ds,

T\B P\B

On the right-hand side of this relation, one can pass to the limit in the integrands as  — a; thus,

+a)—q/Q(y—a)dsy— /Q(y—a)dsy-

T\B P\B

/Q —a dsy/Q(y—a)dsyO,

P\B

it follows that ¢*(a) = ¢ + ¢*(a), which completes the proof of formula (20).

Thus, under the assumption that the surface I is flat in a neighborhood of the boundary point
a, the proof of the theorem is complete. In the general case, we use assertion (a) of Lemma 3,
i.e., a Lipschitz transformation 3 € L*" rectifying the surface I in a neighborhood of a. Without
loss of generality, one can assume that 3(a) = a and (Dg3)(a) = 1. Then, by virtue of Lemma 2,
formula (1) relating the functions ¢ and ¢ becomes the similar relation

Since

/wa—x y)ds, 1 /kxy y)ds, — do(@) + du(2), zeD,

for p(z) = la(z)] and @ = o) (z) € CH*(T), where o = 3.
Obviously, ¢; € C¥(D), and by virtue of the preceding argument, the function $o belongs
to C*(D), and ) )
o (a) = G(a)p(a) + P5(a). (26)

Obviously, this relation also holds for ¢. Relation (10), together with the assumption (Da)(a) = 1,
implies that the function Q(a,a;&) coincides with Q(a, a; §); therefore, G(a) = ¢(a). By the same
argument, we find that J(a) = 1 and @¢(a) = ¢(a). It follows from the proof of assertion (c)
of Lemma 3 that ¢*(a) = ¢*(a); thus, relation (26) becomes formula (20) for ¢. The proof of
Theorem 1 is complete.

It follows from the expression (3’) for the coefficient ¢ in Lemma 1 that, under the assumptions
of Theorem 1, the function ¢(yo) occurring in (20) belongs to the class C*(I"). In particular, the
singular operator ¢ — ¢* is bounded in the space C*(I"). This fact is well known for general singular
operators on smooth manifolds. In the case of kernels Q(x, y; &) of special form, the coefficient ¢(yo)
can be rewritten in a more explicit form.

Lemma 4. Suppose that, under the assumptions of Theorem 1 for x =y, the function Q(x,y,§)
is given by the relation

Q,y;€) = Q1(§nu(y) + Q2(E)na(y) + Qa(§)ns(y), (27)
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where the n; are the components of the inward normal on 1'; moreover,

0Q1 | 0@y | 0Qs
o o | oe = 0. (28)

Then the coefficient ¢ = q(yo) is independent of yo and is given by the relation

q= —% / [Z@(ﬁ)&] dse. (29)
l€l=1

i=1
Proof. By Lemma 1, we have

q(yo) = /Q(yoyyo;y — @) ds, = lim /Q(yoyyo;y — o) dsy,
P

PNBgr

where P is the tangent plane dI'(yy) and xo = yo + n(yo). Here the integrand is defined by the
right-hand side of relation (27) with constant coeflicients n;(yo) of the inward (for D) normal n(yo).
Let G* be the half-spaces for which 4n(yo) is the inward normal. Consider the half-ball G~ N Bg,
whose spherical part of the boundary will be denoted by Q3. In this part, one can use the Gauss
divergence theorem for Q(yo, yo; ¥y — o). By (28), we obtain

/ Q1 — 2o)ns(y) T Qoly — 20)maly) + Qaly — zo)ns(y)]ds, = O,

8(G7QBR)

where the n,(y) stand for the components of the outward normal (for G~ N Bg). Therefore,

- /Q(yo,yo;y — xg) ds, = % /[Ql(y —20)y1 + Q2(y — 2o)y2 + Qa(y — x0)ys] dse,

PNBgr Q5

where we have used the fact that n;(y) = y;/R on Qp. After the substitution y = R¢ and |¢] = 1,
the integral on the right-hand side acquires the form

/R2 Q1 (RE — 20)&1 + Qa(RE — 20)&o + Qa(RE — 20)&s] ds,,.

By virtue of homogeneity, we have R?Q;(R¢ — o) = Q,(€ — 20/ R); thus, the last integral converges
as R — oo to the limit

[10196 1 Q)6 1+ @u©)l s,
Oy
which, by virtue of the oddness of Q;(§), coincides with the right-hand side of formula (29).

Let us illustrate the lemma by the integrals considered at the beginning of the present paper.
In the case of a double layer potential for the Laplace equation, we have

n(y)§
S5

Qy; &) =

accordingly,
3

> Q6 -
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and formula (29) provides the value ¢ = —2m, which is in accordance with the classical result in
6, p. 416].
For the Moisil-Theodoresco system, the kernel is given by the formula

Q&) — D" (a%) D)L

In this case,

> Qi - I,

Since DT(£)D(¢) = |€[, it follows that ¢ = —27, which is in accordance with the well-known result
in [3, p. 248 as well.
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