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A b str a c t— O n a sm ooth closed surface, we consider integrals of the Cauchy type w ith ker­
nel depending on the  difference of argum ents. They cover bo th  double-layer potentials for 
second-order elliptic equations and generalized integrals of the Cauchy type for first-order ellip­
tic systems. For the  functions described by such integrals, we find sufficient conditions providing 
their continuity  up to  the boundary  surface. We ob tain  the corresponding formulas for their 
lim it values.

Let D  C R3 be a given finite dom ain bounded by a sm ooth surface T = dD,  and let Q(x, y; £) be 
a continuous function of the variables x  G D, y  e  T, and £ e  M3, £ /  0, homogeneous of degree —2 
and odd with respect to  £; i.e., Q (r£) =  r~ 2Q(£), r > 0, and Q {—£) =  — Q(£). In the dom ain D, 
consider the integral

<j>(x) = /  Q(x,  y~,y — x)ip(y) dsy x  G D, (1)

where dsy is the surface area element on T. Such integrals arise as double layer potentials for 
second-order elliptic equations [1, Chap. II]. For example, the double layer potential

«<*) =  /
d

d n ( y )
1

_ \ y - x \ _
<p(y) dsy

for the Laplace equation, where n(y),  y  G T, is the unit outward normal, can be represented in the 
form (1) with

Q ( y , 0  = [My)Ci + n 2{y)i2 +«3(y)£3] |£ r 3-

Another example is provided by Cauchy type integrals corresponding to  the M oisil-Theodoresco 
system [2]

^ 0 £i £2 £3 ^
£1  0 - £ 3  £2

£2 £3 0 -£ 1

V £ 3  - £ 2  £1 0 j
for a four-component vector function u = (u1, u 2 , u s , u 4). By [3, p. 243], the function

D  ( ) u = 0 ,
ox m  =

u(x)  = J  M[y — x, n(y)]<p(t) dst 
r

w ith m atrix  kernel

Q ( y , 0  = M[Z,n(y)],

is a solution of this system.
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In the above-represented examples, under the assum ption of certain smoothness of the density 
cp and the surface L, the function u(x)  can be extended by continuity to  L, and the corresponding 
formula holds for its limit values. In the present paper, we consider a similar problem for general 
integrals of the form (1). The relation for the limit values </>+ (yo) of the function (1) a t the boundary 
points y 0 will contain the singular integral

4>*(Vo) =  J  Q ( y o , V , y - y 0)<p(y)dsy , 2/o e  T, (2)

r

which is understood in the sense of principal value as the limit of integrals over L n  {\y — y0| >  £} 
as e —> 0 .

Note th a t the problem on the continuity of the function <fi up to  the boundary for the case in 
which the kernel Q depends only on £ was considered in [4], where the following assertion was 
proved.

L em m a 1. Let Q(£), £ /  0, be a continuously differentiable odd funct ion homogeneous of de­
gree —2; next , let P  be a given plane with unit  normal n, and let G be the half-space with boundary 
dG = P  for  which n  is the inward normal. Then the singular integral

Q = J  Q(y - x ) d s y, x e G ,  (3)
p

treated in the sense of principal value at infinity as the limit of integrals over P  n  {\y\ < R}  as 
R  —> oo exists and is independent of x  £ G. One also has the relation

Q= J  Q(y — yo — n) dsy +  J  [Q(y — y0 — n) — Q(y  — y0)} dsy, (3')

-Pn{|y —yol < 1} -Pnjly —yo|>l}

where y0 £ P  and integrals exist in the ordinary sense.

All forthcoming considerations will be carried out in the framework of the Holder classes C v.
Note th a t, in this class, the norm of a function ip defined on a set E  is given by the relation

=  \p \o,e +  [p\v,E, where

\<p\o,E = s u p \p{x)\, [<p\,,tE = sup 0 < V < 1 .
xeE x^y \x y  I

If [<p \ i ,e < oo, then one says th a t the function tp satisfies the Lipschitz condition. If the set E  is 
a closed domain, then  one can introduce the class C 1,l,(E)  of continuously differentiable functions 
<p by the conditions <p, <p' G C l/(E),  where <p' stands for any of the first partial derivatives of <p.

Let H™2 be the class of functions Q(£) £ C n , £ /  0 , homogeneous of degree —2 . One can readily 
see [4] th a t the functions Q £ H ^ 2 satisfy the Lipschitz condition outside a neighborhood of the 
point £ =  0. More precisely, they adm it the estim ate

| Q ( £ ) - Q ( r ? ) | < C ( | r 3 +  M - 3) l £ - ? ? l ,  (4 )

where C > 0 is a constant independent of Q. In particular, this estim ate implies th a t the second 
integral on the right-hand side in (3') exists in the ordinary sense.

Just as in (I), functions Q(£) = Q(u,  £) depending on the param eter u £ E  are most interesting.
By C U( E ; H™2) we denote the class of functions Q(u; £) th a t belong to  H™2 for each u  and, treated
as functions of the first variable, belong to  C l/(E)  together w ith their partial derivatives w ith respect 
to  £; moreover, the following norm is finite:

|Q |("> =  sup | Q W \ UtE, (5)
|£| = 1 k<n



where stands for the set of all partial derivatives of Q(u,£)  of order k  w ith respect to  the 
variables £1, £2) and £3.

We introduce the class L 1 of continuously differentiable homeomorphic mappings of the space 
R 3 into itself th a t, together w ith their inverses, satisfy the Lipschitz condition. Such mappings 
a  are referred to  as Lipschitz mappings; by definition, for some constant M  > 0, they adm it the 
two-sided estim ate

M _1\x — y\ < \a(x)  — a{y)\ <  M \ x  — y\, x,y<EM.3. (6 )

Consider the Jacobi m atrix  Da,  whose columns are the partial derivatives d a / d x i .  Obviously,

TH REE-D IM EN SIO N A L ANALOG OF TH E CAUCHY T Y P E  IN TEG RA L

a ( x ) - a ( y )  = [ A ( x , y ) ] ( x - y ) ,  A(x ,  y) = j  (Da)[x( l  -  r )  +  yr\ dr, (7)
0

where the m atrix  A  in brackets acts on the vector x  — y  in the standard  way. By substitu ting this 
expression into (6) and by setting x  = y  +  r£, r > 0, w ith a fixed vector £, we obtain the similar
pQtimafp

M-'lt l  < \[{Da){x№ < M\£\ (8)
uniformly with respect to  x  and £ in the limit as r —> 0. In particular, the inverse m apping 
a is continuously differentiable as well, and the Jacobi m atrices D ( a ±1) are uniformly bounded. 
The converse is also true: if the m appings a ±1 are continuously differentiable and their Jacobi 
m atrices are uniformly bounded, then  a  G L 1. In w hat follows, we consider Lipschitz mappings 
a  w ith the property D a  e  C I/(R3); the class of such m appings is denoted by L 1'1'. Obviously, 
the inverse m apping [3 = a ^ 1 belongs to  th a t class together w ith a.

Consider the relationship between Lipschitz transform ations and the above-introduced functions
Q G H I, .

L em m a 2. Let Q ( x , y , £) G C U( E 1 x 2), vjhere Ej  C R3, and let a  G L 1’1' be a given
Lipschitz transformation. Then there exists a funct ion Q ( x , y ; ( )  G C u(Ei  x E 2, H ^ 2), where Ej  =  
a ~ 1(Ej),  such that

k(x,  y) = Q[a{x) ,a{y) ;a{y)  -  a(x)} -  Q(x,  y, y -  x)  G C v{El x E 2); (9)

moreover,
Q (x ,x \£ )  =Q[a(x) ,a (x)- , (Da)(x)£ \ .  (10)

P roof. If x  =  y, then the m atrix  A ( x , y ) occurring in (7) coincides w ith the Jacobi m atrix  
(D a ) { x ), which, by assum ption, belongs to  the class C I/(R3). Therefore, we have the estim ate

|A(x,  y) -  A(x,  x)\ < C\x  -  y\v,

where the operator norm  in R3x3 =  £ (R 3) is taken on the left-hand side. Consequently, this, 
together with (8 ), implies the two-sided inequality

(2M )_1|£| <  \A(x,y)£\ < 2M |£| if \x -  y\ < 5, (11)

where 5, 0 <  5 < 1, is chosen from the condition 2M C 5  < 1.
Take a sm ooth cutoff function \ { x ) identically equal to  unity for \x\ < 5/2 and identically zero 

for |a;| > 5,  and set
Q(%,y,0 = x { x  ~  y)Q[oi{x),a{y)-, A {x ,y ) i \ .  (12)

Obviously, this function satisfies condition (10). Let us show th a t it belongs to  the class
C u(Ei  x E 2] H ^ 2). By the choice of the function %, it suffices to  verify this assertion for the
set E  C Ei  x E 2 distinguished by the condition \x — y\ <5 .
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By (4), the  function Q[a(x),a(y);rj\  satisfies the Lipschitz condition in the spherical layer 
(2M ) _1 <  \r]\ < 2M  uniformly w ith respect to  x  and y. By (11), the vector A (x ,y )£  varies in 
this layer for |£| =  1 and (x ,y)  G E.  Therefore, in view of the condition A  G C I/(R3 x R 3), from 
this we find th a t Q[a(x ) ,a (y ) ;A (x ,y ) ( ]  G C l/(E)  uniformly with respect to  |£| =  1. In a similar 
way, one can also prove this fact for the partial derivatives,

wr- = x(% ~  V) A ki(x > y)?^-[a(%),  a (x ) ]A(x ,  y)£\,OQi k=l OT]k

where the A ki are the entries of the m atrix  A.
By (7) and (12), for the function k{x ,y )  in (9), we have the expression

H%, y) = I1 “  x(% ~  y)]Q[ot{x),a{y)-,ot{y) -  a(x)].

Since 1 — x ( x  ~  y) =  0 for \x — y\ < 5/2, it suffices to  show th a t k{x ,y )  G C U(F)  on the set 
F  =  { (x ,y )  G E\  x E 2, \x — y\ > 5/2}.  By (6), we have the estim ate |a(x)  — a(y)\ > 5/{2M)  for 
(x, y) G F.  Therefore, by virtue of (4), the function Q[a(x), a(y); rj] satisfies the Lipschitz condition 
in the dom ain \r]\ > 5/{2M)  uniformly with respect to  ( x ,y )  G E.  It follows th a t the function k 
belongs to  the class C I/(F ), which completes the  proof of the lemma.

Throughout the following, we assume th a t T is a Lyapunov surface and belongs to  the class C 1,v. 
The la tter means the following: for each a G T, there exists a homeomorphic m apping y = 7 (t) = 
( j i ( t ) , j 2( t ) , j 3(t)) of class of the unit disk B  =  {t  G R 2, \t\ < 1} onto some neighborhood
of the point a on the surface T such th a t the rank of the Jacobi m atrix  is equal to  2 at
each point; i.e., the tangent vectors

Ci(t) =  ^ ,  i =  1,2, (13)

are linearly independent.
Note th a t the surface area element on T is given by the formula

dsy = |[ci(t), 02(f)]| dti dt2,

where [•, •] stands for the vector product. In other words, the integral of a function Lp <e C(T)  over 
the  surface 7 (B)  C T is given by the formula

f <p(x)dsx = f p[j(t)]\[ci(t) ,c2(t)]\dt. (14)

7(B) B

We denote the  tangent plane to  the sm ooth surface T at a point a by (dT)(a). The surface T is flat 
in a neighborhood of th a t point if there exists a ball B  centered at a such th a t B  n T  =  B  n  (dT)(a). 
By definition, a Lipschitz transform ation f3 rectifies the surface T i n  a neighborhood of a if the 
image /?(T) is flat in a neighborhood of the point (3{a).

L em m a 3. (a) Let T G C 1,l/ and a G T. Then there exists a Lipschitz transformation /3 G L 1'1' 
rectifying T in a neighborhood of  a.

(b) Let a Lipschitz transformation y = a(x)  G L 1’" take a smooth surface T G C 1,l/ to T. Then 
the following change-of-variables formula holds:

J  <p(y)dsy = J  <p[a(x)]J(x)dsx , J (x )  = \[(Da)ei(x),  (Da)e2(x)}\, (15)

r f

where ei and e2 are unit mutually orthogonal vectors lying in the tangent plane (dT)(x).  In addition, 
the coefficient J{x)  belongs to
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(c) Let T £ C 1'1', and let a funct ion Q(yo, y, 0  belong to C V{T x T; H 22) and be odd with respect 
to £ for  y = y 0. Then there exists a singular integral

J  Q ( V o , v , v - V o ) d s y = lim J  Q(y0, y , y  -  2/0) dsv, (16)
r r\ B E

where B E is the ball centered at y0 £ T with radius e.

P roof, (a) Let a = ( a i ,a 2, a 3) £ T, and let a homeomorphic m apping y = 7 (t) of the disk 
^  =  {|t| <  1} C M2 onto a neighborhood of the point a on the surface T belong to  the class 

moreover, the 3 x 2  Jacobi m atrix  D j  has rank 2 a t each point t  £ B ,  and a = 7 (0 ). 
Then one of its second-order minors, for example, th a t in the first and second rows, is nonzero. 
Therefore, by the inverse function theorem , there exists a m apping t  = co(yi, y2) of a neighborhood 
G of the point (a1,a 2) onto some disk |i| <  e of the class C 1,l,(G) th a t is the inverse of yt = 7 j(i), 
* =  1,2. By setting /  =  73 o w, we obtain a real function /  £ C 1'l/(G) whose graph coincides with 
T in a neighborhood of a.

Let a sm ooth function % be identically equal to  unity in a neighborhood of the point (a1,a 2) and 
identically zero outside some compact set lying in G. Then the function <7(2/1, 2/2) =  / ( 2/1 j 2/2)x(?/i? 2/2) 
belongs to  the class C'1,I'(R 2), and its graph coincides with T in a neighborhood of a. Therefore, 
the  transform ation y = (3{y) given by the relations

2/i = 2 / i ,  2/2 = y 2, 2/3 =  2/3 — <7(2/ i )  2/2))

satisfies all assum ptions of the lemma.
(b) Consider a neighborhood T0 of some point a of the surface T represented param etrically by 

the  equation y = 7 (t), |i| <  1, of the class C 1’" occurring in the proof of (a). Then 7  =  o r 1 o 7  is 
a param etrization of T0 =  a _ 1( r 0) of the same type. Let c* be defined by analogy with (13) on the 
basis of 7 j. Then, by virtue of (14), relation (15) w ritten out for T0 and r 0 acquires the form

j  <Ph(t)]\[c1(t) ,c2(t)]\dt = j  ̂ [7 (t)]J[7 (t)]|[c !(t),c2(t)]|d t,
B  B

where B  stands for the unit disk on the plane R 2. Therefore, the coefficient J  is given by the 
formula J [7 (i)]|[c i(i),c2(i)]| =  |[c i(i) ,c2(i)]|. At the point y = 7 (t), the  vectors c* =  d j / d t i  are 
linear combinations c* =  pi t + P ij2e2, i =  1 , 2 , of the vectors e\ and e2 w ith determ inant d e tp  /  0 . 
Obviously, [ci,c2] =  [pi^ei + pi,2e2,p2yle1 + p 2j2e2] =  (detp)[ei, e2\. Since c* =  d ^ / d t i  is related to  
Cj by the formula c* =  (D a ) ( y ) ci} where the Jacobi m atrix  D a  is evaluated at the point y = 7 (i), 
we have

[ci,c2] =  \pi}i (D a)e  1 + Pi,2(Da)e2,p2A(D a )a 1 +  p2}2{Da)a2] = (detp)[(Da)e!,  (Da)e2\.

Since |[e i,e2]| =  1, it follows th a t relation (15) holds for J .
It remains to  show th a t J  £ C V(Y). To this end, it suffices to  choose the unit vectors e*(x) 

occurring in (15) from the class C'I/(T0)- By using orthogonalization, one can s ta rt from a pair 
of linearly independent vectors. By virtue of assertion (a) of the lemma, such a choice is always 
possible.

(c) F irst, suppose th a t the surface T is flat in a neighborhood of y0; i.e., B r n T  =  B r n  (dT)(y0) 
for some r > 0 . Next, since Q(yo,yo' ,0  is an odd function of £, it follows th a t the integral of 
Q (2/o, 2/0; y — 2/o) over the circular annulus T n  (B r\ B E), 0 <  e < r, is zero. Consequently,
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By the definition of the norm  (5), we have the estim ate

\Q(vo,viQ -Q (v o ,v o ’,Q\  < IQIi0)ICr2|y - 2/oT;

thus, the bracketed expression in the preceding relation is integrable over T. Therefore, the 
limit (16) exists.

In the general case, we use assertion (a) of the lemma and consider a transform ation f3 £ L 1,lJ 
rectifying T in a neighborhood of y0- W ithout loss of generality, one can assume th a t /3(y0) = yo 
and (D/3)(y0) is the identity m atrix. In particular,

(3(y) ~ y  = \ y - V o \ A ( y ) ,  lim A (y )  = 0. (17)
y^y  o

By (15), in the notation of Lemma 2, we have

J  Q ( V o , y , y - y o ) d s v = j  Q(y0, y , y - y 0) J ( y ) d s y + j  k{y0, y ) J { y ) d s v .

r\ B e f\/3(Be) f\/3 ( B e )

Obviously, the last term  on the right-hand side in this relation has a limit as e —> 0. The assum ptions 
of the above-considered case hold for T =  /?(T) and Q(yo ,y ,QJ(y ) -  Therefore, it suffices to  include 
the image f3(BE) of the ball B E in balls of close radius appropriately. By (17), for \y — y0\ = e, 
we have the estim ates

e{l -  5e) <  |(3(y) - y 0\ < e ( l  + Se),
where

5e = m ax |A(y) | —̂ 0 as e —> 0.
\y — V o \ = £

Consequently,
5 e- C / 3 ( 5 e) C 5 + ,  B t = B e±eSs. (18)

Since the surface T is flat in a neighborhood of the point y 0, it follows th a t, for sufficiently small e, 
its intersection w ith £>+\ B ~  is a circular annulus of area

ire2[(l + 6e)2 -  (I -  6e)2} = 4ire26e.

By virtue of (18), we have

J  Q J  dsx = J  Q J d s x + J  Q J  dsx. (19)

f \/3(Be) f\B+ B + \ P ( B + )

As was shown above, the first term  has a limit as e —> 0 , and the absolute value of the second one 
does not exceed the quantity

J  \Q(yo,y ,y  - y o ) \  \ J{y ) \dsv < C5e
B  + \ B -

with some constant C > 0 independent of e. Therefore, the left-hand side of relation (19) has 
a limit as e —> 0 , which completes the proof of the lemma.

Consider the original integral (1).

T h eorem  1. Let the surface T £ C 1,l/ bound a finite domain D, and let Q ( x , y ; ( )  e  
C U(D x T ] H 2_2) be a given funct ion odd with respect to £ for  x  = y  e  T . Then for  (p e  C M(r) , 
0 < fi < v, the integral (1) defines a funct ion <fi(x) that can be continuously extended to T and 
belongs to the class C^(D ).  Its limit values satisfy the formula

0 +(yo) = q{y0)Lp{y0) +  </>*(y0), y0 e  r ,  (20)

where <p*(yo) is the integral (2) and q(yo) is defined by analogy with Lemma  1 for  Q(yo,yo',0> the
plane P  = (dT)(y0), and the inward (for  D) normal n (y0).



P roof. It suffices to  prove th a t the function (f) belongs to  the class only for boundary points 
a G T. In other words, for each point a, there exists a ball B  centered at a such th a t (f) e  C ^ ( D n B ) .  
In this case, (f) can be continuously extended to  the closure D  n  B  and belongs to  C ^ (D  n  B).

First, suppose th a t the surface T is flat in a neighborhood of a, for example, in the intersection 
w ith the ball B 2r = {\x — a\ < 2r}; for B,  we take the ball B r . In this case, we prove the theorem  
under the less restrictive condition Q e  C l' ( D  x T; H ^ 2) for the kernel. Let us s ta rt from the case 
in which the kernel Q = Q 0 is independent of x; i.e., consider the function

<t>o(x) = J  Qo(y,y  -x )<p(y)dsy, x e D D B .  (21)

r

The fact th a t this function belongs to  the class was proved in [4], and the following estim ate 
was obtained there:

|<Po\c^{DnB) <  C M i / ’M,,.!-. (22)

In the general case, we apply this estim ate to  the function

<f>i(z,x) = J  Q ( z , y , y  -  x)ip(y)dsy, x , z e D n B ,
r

where z is treated  as a param eter. Then, by (22), we have the estim ate

\<pi(z, x r) — 4>i(z, x")\ < C\x'  — x "\M (23)

uniformly w ith respect to  z. The difference quotient

4>o(x) = [<t>i(z',x) -  f a i z " , x)]\z' -  z"

for the function <f>i w ith respect to  the first variable can be represented in the form (21) for the 
kernel

<24>
Next, we use the following well-known property [5, p. 47] of functions satisfying the Holder condi­
tions: if some function f ( x )  belongs to  C (E)  and 0 <  n  < 1, then  the function

9 (x, y)  = [f (x)  -  f ( y ) ] \ x - y \ - ^

defined to  be zero for x  = y  belongs to  the class C l'^^l{E  x E),  and the corresponding estim ate 
\g\v-n,E-x.E <  C\ f \ l/jE holds. By definition (5) applied to  (24), this result perm its one to  claim th a t
Q G i ? i 2) uniformly with respect to  z'  and z " . By (22), where v  and fi < v  should be
replaced by v  =  v — n  and fi <P,  respectively, we obtain the estim ate

I fa iz ' ,x )  -  0 i(z",a;)| <  C\z'  -  z " |M,

which, together w ith (23), implies th a t (f)1 and hence <fi(x) = 4>1(x ,x )  belong to  the class
Let us prove (20 ) at the point y0 = a. By denoting Q(yo,y,Q<p(y)  by Q ( y o , y , 0  again, w ithout

loss of generality, one can assume th a t tp = 1. F irst, suppose th a t Q(a ,a ; ( )  = 0. In this case,
we have

\Q(%,y,0\  = IQ ( % ,y ,0  ~ Q (a ,a - ,0 \  < \Q\{° \ \ ^ - a \  + \ y - a \ y \ £ \ ~ 2. (25)

Let the point x  G D  tend to  a along the inward normal to  T. Then the vectors x  — a and y — a, 
y  G B  fl T, are orthogonal; therefore, \x — y |2 =  \x — a |2 +  |y — a |2 >  (\x — a\ +  \y — a |)2/2 . This, 
together with (25), implies th a t

TH REE-D IM EN SIO N A L ANALOG OF TH E CAUCHY T Y P E  IN TEG RA L
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Therefore, by the Lebesgue dom inated convergence theorem, one can pass to  the limit in the
integral (1) as x  —> a, which provides relation (20) for a = y0 and q(a) =  0.

In the general case, set

Q(v, V, 0  =  [Q(x, y, 0  -  Q(a,  a; £)] +  Q(a, a; £).

The assum ptions of the above-considered case hold for the integral defined by the bracketed expres­
sion. Therefore, w ithout loss of generality, one can assume th a t Q(£) = Q( x , y;£)  is independent 
of x  and y. In this case, q = q(a) is given by relation (3), where P  =  (dT)(a) and the point x  lies
in the half-space defined by the normal n(a).  Since P  P\ B  = T P\ B ,  we have

<j>(x) - q  = J  Q(y — x) dsy — j  Q(y -  x)— x) dsy.
r\ B  P \ B

On the right-hand side of this relation, one can pass to  the limit in the integrands as x  —> a; thus,

4>+(a) - q  = J  Q(y -  a) dsy -  J  Q(y -  a) dsy.
r\ B  P \ B

Since

J  Q(y ~  a) dsy = j  Q(y — a)— a) dsy = 0,
P \ B  B

it follows th a t </>+ (a) =  q +  which completes the proof of formula (20).
Thus, under the assum ption th a t the surface T is flat in a neighborhood of the boundary point 

a, the proof of the theorem  is complete. In the general case, we use assertion (a) of Lemma 3, 
i.e., a Lipschitz transform ation f3 £ L 1,lJ rectifying the surface T in a neighborhood of a. W ithout 
loss of generality, one can assume th a t [3(a) =  a and (D[3){a) =  1. Then, by virtue of Lemma 2, 
formula (1) relating the functions <fi and ip becomes the similar relation

(j){x) = /  Q( x , y ; y  - x ) ( p { y ) d s y +  /  k{x, y)(p{y) dsy = <p0(x) +  (j)i{x), x e D ,

for <fi(x) = (f)[a(x)\ and (p =  Lp[a(x)\J(x) e  C M(r) ,  where a  = /3 1.
Obviously, (/>i G C l/(D), and by virtue of the preceding argum ent, the function <p0 belongs 

to  C^(D) ,  and
0o (“ ) =  g(a)<p(a) +  4>*0(a). (26)

Obviously, this relation also holds for (/>. Relation (10), together w ith the assum ption (Da)(a)  = 1, 
implies th a t the function Q(a ,a ; ( )  coincides w ith Q(a,a;();  therefore, q(a) = q(a). By the same 
argum ent, we find th a t J(a)  = 1 and <p(a) = <p(a). It follows from the proof of assertion (c) 
of Lemma 3 th a t (ft*(a) = (ft+(a)] thus, relation (26) becomes formula (20) for (f). The proof of 
Theorem  1 is complete.

It follows from the expression (3') for the coefficient q in Lemma 1 th a t, under the assum ptions 
of Theorem  1, the function q(yo) occurring in (20) belongs to  the class C M(T). In particular, the 
singular operator tp —> (ft* is bounded in the space C M(T). This fact is well known for general singular 
operators on sm ooth manifolds. In the case of kernels Q(x,  y; £) of special form, the coefficient q(yo) 
can be rew ritten in a more explicit form.

L e m m a  4. Suppose that, under the assumptions of  Theorem 1 for  x  = y, the funct ion Q( x , y , £)  
is given by the relation

Q(v> v \ 0  = Q i ( O M v )  +  Q2 ( i)n2(y) +  Qs(Qn3(y), (27)
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where the rij are the components of  the inward normal on T  ; moreover,

§ i  +  § î  +  § î = ° .  (28)
d£i d& <96

Then the coefficient q = <7(2/0) is independent o f y 0 and is given by the relation

3

I '
1

q
i «i = i

P roof. B y  L e m m a  1, we have

^ Q i i O C i
i= 1

dsç. (29)

q(yo) = j  Q( y o,  2/o; V ~  x 0) dsv = J  Q(y0, y0;y ~  x0) dsv,
P  P r i B R

where P  is the tangent plane dT(y0) and x 0 =  2/0 +  n(y0). Here the integrand is defined by the 
right-hand side of relation (27) with constant coefficients rij(y0) of the inward (for D)  normal n (y 0). 
Let G ± be the  half-spaces for which ± n ( y 0) is the inward normal. Consider the half-ball G~ n  B R, 
whose spherical part of the boundary will be denoted by In this part, one can use the Gauss 
divergence theorem  for Q(yo,yo',y — x 0). By (28), we obtain

J  [Qi(y -  ®o)«i(2/) +  Qliy  -  x 0) n 2{y) +  Q3(y -  X0)n3(y)] dsv = 0,
8 { G - n B R )

where the rii(y) stand for the components of the outward normal (for G~ n  B R). Therefore,

-  J  Q ( 2 / o ,  2 /o ; y ~  x 0) dsv =  IIQiiV ~  x °)yt +  ^ 2 ( 2 /  -  x 0)y2 +  Qs(y ~  x 0)y3} ds£,
p n B R n R

where we have used the fact th a t rii(y) =  y i / R  on After the substitu tion y = R£  and |£| =  1,
the  integral on the right-hand side acquires the form

J  R 2[Q1(R£ -  x 0)£i +  Q 2(RC ~  x 0)& +  Q s i M  ~  * 0 ) 6 ]  dsv.

By virtue of homogeneity, we have R 2Q j ( R (  — x 0) =  Qj ( (  — x 0/R);  thus, the  last integral converges 
as R  —> 00 to  the limit

/ [ Q i ( 0 £ i  +  Q 2 (0 6  +  Q3( 0 6 ]  dse,

which, by virtue of the oddness of Qj(£)> coincides w ith the right-hand side of formula (29).
Let us illustrate the lemma by the integrals considered at the beginning of the present paper. 

In the case of a double layer potential for the Laplace equation, we have

« ! / ; « )  =  !f p

accordingly,
3   1



and formula (29) provides the value q = —2tt, which is in accordance w ith the classical result in 
[6, p. 416].

For the  M oisil-Theodoresco system, the  kernel is given by the formula

Q(y; 0  = ~ D T ( J ^ j ^D [n(y )} .

In this case,

Since D T (( )D( ( )  = |£|2, it follows th a t q = —2tt, which is in accordance with the  well-known result 
in [3, p. 248] as well.
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