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On homogenized equations of filtration
in two domains with common boundary

A. M. Meirmanov, O. V. Galtsev, and S. A. Gritsenko

Abstract. We consider an initial-boundary value problem describing the
process of filtration of a weakly viscous fluid in two distinct porous media
with common boundary. We prove, at the microscopic level, the existence
and uniqueness of a generalized solution of the problem on the joint motion
of two incompressible elastic porous (poroelastic) bodies with distinct Lamé
constants and different microstructures, and of a viscous incompressible
porous fluid. Under various assumptions on the data of the problem, we
derive homogenized models of filtration of an incompressible weakly viscous
fluid in two distinct elastic or absolutely rigid porous media with common
boundary.

Keywords: heterogeneous media, periodic structure, Lamé equations,
Stokes equations, homogenization, two-scale convergence.

§ 1. Introduction

This paper is devoted to the homogenization of systems of differential equations
describing the process of filtration in heterogeneous media, that is, in media con-
sisting of two or more distinct components that occur in every sufficiently small
volume of the medium. Our approach to the description of heterogeneous media
is based on constructing a maximally precise mathematical model, which is then
simplified using the methods of calculus. As a rule, the differential equations of
precise mathematical models contain a small parameter. Hence, to simplify these
models, we mainly use the methods of linearization and homogenization as the
small parameter tends to zero.

Homogenization theory began with the papers by Burridge and Keller [1] and
Sanchez–Palencia [2] and then developed extensively in [3]–[9]. The authors sug-
gested different methods of solution, and each problem required a separate approach
and many efforts.

The publication of Nguetseng’s paper [8] in 1989 basically defined the theory of
homogenization as a separate branch of calculus. Therefore mainstream research
in homogenization theory moved from theoretical investigations to applications in
mechanics, physics, biology and so on (see [10]–[16]).

In particular, Jäger and Mikelić [16] studied the problem of planar filtration
(that is, on domains in R2) for a fluid in two distinct porous media filling domains
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Ω and Ω0 with common boundary S0 provided that the porous space in each domain
has a special geometry. At the microscopic level, the rigid skeleton in each medium
was assumed to be disconnected (isolated inclusions) and absolutely rigid (the veloc-
ity of the medium in an absolutely rigid body is identically equal to zero).

It is known [2], [1] that Darcy’s system of filtration equations is a homogenization
in dimensionless variables (a limit as ε → 0) of the Stokes system of equations
for a weakly viscous incompressible fluid with dimensionless viscosity µ = ε2µ1 in
a perforated domain (filled by the liquid) with ε-periodic structure.

Distinct domains Ω and Ω0 obviously have distinct permeability matrices in
Darcy’s law. The resulting differential equations are equivalent to distinct Poisson
equations in each domain, and each equation requires a single boundary condition
on the common boundary S0. The first condition, continuity of the normal com-
ponents of the velocity vector, holds for any geometry of the porous spaces in Ω
and Ω0. This condition follows from the continuity equation.

The second boundary condition on S0 depends on the geometry of the porous
spaces in Ω and Ω0. We shall prove that there are not many options to choose
from. Either the normal component of the velocity vector vanishes (impenetrable
boundary), or the pressure is continuous (penetrable boundary).

Jäger and Mikelić studied the case of a disconnected rigid skeleton in the domains

Ω = {x : 0 < x1 < L, 0 < x2 <∞} and Ω0 = {x : 0 < x1 < L, −∞ < x2 < 0}.

The rigid skeleton in Ω is the periodic replication of a domain εYs completely
contained in εY , Ys ⊂ Y = (0, 1)2 ⊂ R2. The rigid skeleton in Ω0 is the periodic
replication of a domain εY 0

s completely contained in εY , Y 0
s ⊂ Y = (0, 1)2 ⊂ R2.

For this geometry of porous spaces, we always have S0 = ∂Ωε
f ∩ ∂Ωε

f (penetrable
boundary) and the only possible version of the second boundary condition on S0 is
continuity of the pressure.

We study the filtration of a weakly viscous fluid in two poroelastic domains Ω
and Ω0 in R3 with common boundary S0 and with different properties of the rigid
skeleton. For simplicity we assume that

Ω = {x : 0 < x1, x2, x3 < 1}, Ω0 = {x : 0 < x1, x2 < 1, −1 < x3 < 0}.

The pores of each domain are assumed to be filled with the same viscous liquid
of dimensionless viscosity αµ, and the rigid skeleton in each domain is regarded
as an incompressible elastic body described by the Lamé equations with Lamé
constants λ and λ0 in Ω and Ω0 respectively. The conditions of continuity for the
displacements and for the normal stress hold on the common boundary S0. The
problem is closed by boundary conditions on the exterior boundaries of Ω and Ω0

and by initial conditions.
For every ε > 0 we prove the existence and uniqueness of a generalized solution

and study its limit (homogenization) as ε → 0. For fixed constants λ and λ0, the
limiting problem (the homogenized system) depends on the function αµ = αµ(ε)
or, more precisely, on the following limits µ0 and µ1 as ε→ 0:

µ0 = lim
ε→0

αµ(ε), µ1 = lim
ε→0

αµ(ε)
ε2

.
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We restrict ourselves to the case when µ0 = 0 and the common rigid skeleton is
connected (see § 2). When 0 < µ1 < ∞ and 0 < λ, λ0 < ∞, the displacements of
the elastic skeleton in Ω and Ω0 satisfy the homogenized Lamé equations and the
continuity conditions for the limiting displacements and for the normal stress on
the common boundary S0, while the motions of the liquid in Ω and Ω0 are described
by separate Darcy’s laws. Moreover, the conditions of continuity for the normal
components of the velocity of the liquid hold on the common boundary. As already
mentioned, another scalar boundary condition is lacking and this condition will
depend on the structure of the common porous space. Namely, the pressure is con-
tinuous for a connected common porous space (see § 2) and the normal component
of the velocity vector will vanish for a disconnected common porous space (there is
no flux of the liquid from Ω to Ω0 and back).

If we put λ = λ0 = k in the homogenized equations, then the limit of the
corresponding displacements of the rigid skeletons as k →∞ will be equal to zero
(absolutely rigid body) and the limit *of the velocities and pressures of the liquid
as k → ∞ is a solution of the system of filtration equations in Ω and Ω0 along
with the condition of continuity of the normal component of the velocity on S0.
Moreover, the pressure will be continuous for a connected common porous space, and
the normal component of the velocity vector will vanish for a disconnected common
porous space.

§ 2. Notation

The dimensionless parameter αµ characterizes the viscosity of the liquid:

αµ =
2µ

τLgρ0
, ε0 =

l

L
, ε0 � 1,

where L is the characteristic size of the physical domain under consideration, τ is
the time of the physical process, ρ0 is the density of water, g is the acceleration
due to gravity, and µ is the dynamical coefficient of viscosity of the fluid.

Consider a function αµ(ε) such that αµ(ε0) = αµ and there are finite or infinite
limits

lim
ε→0

αµ(ε) = µ0, lim
ε→0

αµ(ε)
ε2

= µ1.

Let Ω and Ω0 be bounded domains with Lipschitz boundaries ∂Ω and ∂Ω0 such
that

Ω∩Ω0 = ∅, Ω0 ∩Ω 6= ∅, S0 = ∂Ω0 ∩ ∂Ω, Q = Int
(
Ω0 ∪Ω

)
, S = ∂Q.

We now define domainsQε
f andQε

s to be the common liquid and rigid components
of the medium for Ω0 and Ω. Namely, we put

Qε
s = Ω0,ε

s ∪ S0,ε
s ∪ Ωε

s, S0,ε
s = ∂Ω0,ε

s ∩ ∂Ωε
s,

where Qε
s is the common rigid skeleton, which we assume to be a connected set,

Ω0,ε
s is the rigid skeleton of Ω0, and Ωε

s is the rigid skeleton of Ω.
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Figure 1. A connected common porous space

By Qε
f we mean the common porous space:

Qε
f = Ω0,ε

f ∪ S0,ε
f ∪ Ωε

f , S0,ε
f = ∂Ω0,ε

f ∩ ∂Ωε
f , Qε

f = Q \Qε
s,

where Ω0,ε
f is the porous space in Ω0 and Ωε

f is the porous space in Ω. The common
porous space may be connected or disconnected.

We also introduce the following restrictions:

Γε = ∂Qε
s ∩ ∂Qε

f , Sε
s = ∂Qε

s ∩ S, Sε
f = ∂Qε

f ∩ S,

Y ε,k = {x : x = εk + εy, y ∈ Y, k = (k1, k2, k3), k1, k2, k3 ∈ N},

Y ε,k
f = {x : x = εk + εy, y ∈ Yf , k = (k1, k2, k3), k1, k2, k3 ∈ N},

Y ε,k
s = {x : x = εk + εy, y ∈ Ys, k = (k1, k2, k3), k1, k2, k3 ∈ N},

Qε,k =Q ∩ Y ε,k, Qε,k
f =Q ∩ Y ε,k

f , Qε,k
s =Q ∩ Y ε,k

s , Γε,k =Γε ∩ Y ε,k.

Moreover, let λ0 and λ be the dimensionless Lamé constants of the rigid components
in Ω0 and Ω respectively, and let %0

s and %s be the dimensionless densities of the
rigid components in Ω0 and Ω.

We write Y = (0, 1)3 for the periodicity cell, and 〈 · 〉Y for the integral over Y .
Let χ(y) be a 1-periodic function of y ∈ R3 (that is, χ(y + k) = χ(y) for all

k=(k1, k2, k3), k1, k2, k3 ∈ N) such that χ(y) = 1 when y ∈ Yf ⊂ Y and χ(y) = 0
when y ∈ Ys ⊂ Y , where Yf ∪ γ ∪ Ys = Y , Yf ∩ Ys = ∅, ∂Yf ∩ ∂Ys = γ, γ ∈ C∞.

We call χ(y) the characteristic function of the domain Yf .
We similarly define the characteristic function χ0(y) of the domain Y 0

f ⊂ Y ,
that is, χ0(y + k) =χ0(y) for all k=(k1, k2, k3), k1, k2, k3 ∈ N, χ0(y) = 1 when
y ∈ Y 0

f ⊂ Y and χ0(y) = 0 when y ∈ Y 0
s ⊂ Y , where Y 0

f ∪ γ0 ∪ Y 0
s = Y ,

Y 0
f ∩ Y 0

s = ∅, ∂Y 0
f ∩ ∂Y 0

s = γ0, γ0 ∈ C∞.
We now define the characteristic function ζ(x) of the domain Ω0 in Q: ζ(x) = 1

when x ∈ Ω0 and ζ(x) = 0 when x ∈ Ω. Then

χε(x) = χ

(
x

ε

)(
1− ζ(x)

)
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is the characteristic function of the porous space Ωε
f and

χ0,ε(x) = χ0

(
x

ε

)
ζ(x)

is the characteristic function of the porous space Ω0,ε
f , while

χ̂

(
x,
x

ε

)
= χ̂ ε(x) = χε(x) + χ0,ε(x) = χ

(
x

ε

)(
1− ζ(x)

)
+ χ0

(
x

ε

)
ζ(x)

is the characteristic function of the common porous space Qε
f .

Figure 2. A disconnected common porous space

Figure 3. A disconnected common porous space

For a connected common porous space, the elementary domains Y 0
f and Yf

have non-empty intersection in Y : Y 0
f ∩Yf 6= ∅. For a disconnected common

porous space, they are disjoint in Y : Y 0
f ∩ Yf = ∅.

Finally, we define the common elementary porous space Ŷf (x) as the set

Ŷf (x) = {y ∈ Y : y ∈ Yf if x ∈ Ω; y ∈ Y 0
f if x ∈ Ω0}.
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The function χ̂(x,y) is the characteristic function of the set Ŷf (x) in Ŷ (x) =
{y ∈ Y : y ∈ Y if x ∈ Ω; y ∈ Y if x ∈ Ω0}.

We put Ŷs = Ŷ \ Ŷf , γ = ∂Yf , γ0 = ∂Y 0
f and γ̂ = ∂Ŷf ,

%ε(x) =
(
1− ζ(x)

)(
%fχ

ε(x) + %s

(
1− χε(x)

)
,

%0,ε(x) = ζ(x)
(
%fχ

0,ε(x) + %0
s

(
1− χ0,ε(x)

))
,

%̂ ε(x) = %ε(x) + %0,ε(x),

m =
∫

Y

χ(y) dy ≡ 〈χ〉Y , m0 =
∫

Y

χ0(y) dy = 〈χ0〉Y ,

m̂(x) = ζ(x)m0 +
(
1− ζ(x)

)
m,

λ̂(x) = λ0 ζ(x) + λ
(
1− ζ(x)

)
.

We shall generally write Â for a quantity which is different in Ω and in Ω0: Â = A
in Ω and Â = A0 in Ω0, or Â = A

(
1− ζ(x)

)
+A0ζ(x).

Here is some more notation:
I is the identity matrix;
the operator ∇ without subscripts stands for differentiation with respect to x,

and ∇y is differentiation with respect to y;
D(x,u) = (1/2)(∇u+∇uT );
B : C = tr(B · CT ), where B, C are tensors of rank two;
a⊗ b is a dyad: we have (a⊗ b) · c = a(b · c) for all vectors a, b, c:
Jij = (1/2)(ei⊗ej +ej ⊗ei), where {e1, e2, e3} is the standard Cartesian basis

of R3;
A⊗ B is a tensor of rank four;
(A⊗ B) : C = A(B : C) for all tensors A, B, C of rank two.

§ 3. Statement of the problem

Consider the joint motion in Q of two distinct poroelastic media filling the
domains Ω0 and Ω and having common boundary S0.

The motion of the medium in Ω0 for t > 0 is described by the equations

∇ ·wε = 0, (3.1)

∇ · P0 + %0,εF ε = 0, (3.2)

where

P0 = χ0,εαµD
(
x,
∂wε

∂t

)
+ (1− χ0,ε)λ0D(x,wε)− pεI = P0,f + P0,s,

P0,f = χ0,ε

(
αµ D

(
x,
∂wε

∂t

)
− pεI

)
, P0,s = (1− χ0,ε)

(
λ0D(x,wε)− pεI

)
.

The motion of the medium in Ω for t > 0 is described by a system consisting of the
continuity equation (3.1) and the momentum balance equation

∇ · P + %εF ε = 0, (3.3)
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where

P = χεαµD
(
x,
∂wε

∂t

)
+ (1− χε)λD(x,wε)− pεI = Pf + Ps,

Pf = χε

(
αµD

(
x,
∂wε

∂t

)
− pεI

)
, Ps = (1− χε)

(
λD(x,wε)− pεI

)
.

Continuity conditions hold for the displacements and for the normal stress on the
common boundary S0 for t > 0:

lim
x→x0

x∈Ω0

wε(x, t) = lim
x→x0

x∈Ω

wε(x, t), (3.4)

lim
x→x0

x∈Ω0

P0(x, t) · n(x0) = lim
x→x0

x∈Ω

P(x, t) · n(x0). (3.5)

Here n(x0) is the exterior unit normal vector (with respect to Ω) to the boundary
S0 at a point x0 ∈ S0.

We put

P̂ = ζP0 + (1− ζ)P, P̂f = ζP0,f + (1− ζ)Pf , P̂s = ζP0,s + (1− ζ)Ps.

Then the continuity conditions for the normal stress follow from (3.1)–(3.3):

lim
x→x0

x∈Qε
f

P̂(x, t) · n(x0) = lim
x→x0

x∈Qε
s

P̂(x, t) · n(x0), (3.6)

where n(x0) is the exterior (to Qε
f ) unit normal vector to the boundary Γε at

a point x0 ∈ Γε.
The problem is closed by the Dirichlet boundary condition

wε(x, t) = 0, x ∈ S = ∂Q, t > 0, (3.7)

on the exterior boundary S for t > 0, by the initial condition

χ̂ ε(x)wε(x, 0) = 0, x ∈ Q, (3.8)

and by the normalization condition∫ T

0

∫
Q

pε(x, t) dx dt = 0. (3.9)

The function F ε in (3.2) and (3.3) is a given density of distribution of the massive
forces.

Assumption 3.1. The following assertions hold.
1) The boundaries γ = ∂Yf ∩ ∂Ys and γ0 = ∂Y 0

f ∩ ∂Y 0
s are connected infinitely

differentiable surfaces.
2) Ys, Yf , Y 0

s and Y 0
f are connected sets.
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Assumption 3.2. ε = 1/n, n ∈ N is a positive integer.

Assumption 3.3. The sets Ωε
s, Ω0,ε

s , Ωε
f , Ω0,ε

f and Qε
s are connected.

Assumption 3.4. We have F ε(x, 0) = 0.

By Assumption 3.1, the boundary Γε = ∂Ωε
s ∩ ∂Ωε

f which separates the domains
Ωε

f and Ωε
s is an infinitely differentiable surface, and so is the boundary Γ0,ε =

∂Ω0,ε
s ∩ ∂Ω0,ε

f which separates the domains Ωε
f and Ω0,ε

s .
For function spaces and their norms, we use the notation adopted in [17].

§ 4. Main results

Definition 4.1. A pair of functions {wε, p ε} with

wε ∈ W̊1,0
2

(
Q× (0, T )

)
,

∂wε

∂t
∈ W1,0

2

(
Qε

f × (0, T )
)
, p ε ∈ L2

(
Q× (0, T )

)
,

is called a generalized solution of the problem (3.1)–(3.8) if they satisfy the condi-
tion (3.8) and the following integral identities hold:∫ t0

0

∫
Q

wε · ∇ψ dx dt = 0 (4.1)

and∫ t0

0

∫
Q

(
αµχ̂

εD
(
x,
∂wε

∂t

)
: D(x,ϕ) + (1− χ̂ ε)λ̂(x)D(x,wε) : D(x,ϕ)

)
dx dt

=
∫ t0

0

∫
Q

(
p ε∇ ·ϕ+ %̂ εF ε ·ϕ

)
dx dt (4.2)

for all t0, 0 < t0 < T , all functions ψ vanishing on the boundary of Q, and all
functions ϕ ∈ W̊1,0

2

(
Q× (0, T )

)
.

Lemma 4.1. Suppose that wε ∈ W̊1,0
2

(
Q× (0, T )

)
and Assumptions 3.1–3.3 hold.

Then there is an extension operator

EQε
s

: W̊1,0
2

(
Q× (0, T )

)
→ W̊1,0

2

(
Q× (0, T )

)
, wε

s = EQε
s
(wε),

such that (
1− χ̂ ε(x)

)(
wε

s(x, t)−wε(x, t)
)

= 0

and∫
Q

|wε
s|2 dx 6 C0

∫
Qε

s

|wε|2 dx,
∫

Q

|D(x,wε
s)|2 dx 6 C0

∫
Qε

s

|D(x,wε)|2 dx,

(4.3)
where C is independent of ε and t ∈ (0, T ).

Proof. See [18], [19]. �



338 A. M. Meirmanov, O. V. Galtsev, and S. A. Gritsenko

Lemma 4.2. Under the hypotheses of Lemma 4.1, put wε
s = EQε

s
(wε). Then∫

Q

|wε
s|2 dx 6 C

∫
Q

|D(x,wε
s)|2 dx (4.4)

with a constant C independent of ε.

The proof of this lemma follows directly from the Friedrichs–Poincaré inequality∫
Q

|u|2 dx 6 C

∫
Q

|D(x,u)|2 dx (4.5)

for functions u ∈ W̊1
2(Ω).

Theorem 4.1. Suppose that Assumptions 3.1–3.4 hold, µ0 =0, 0 < µ1, λ, λ
0 <∞,

max
0<t<T

∫
Q

|F ε(x, t)|2 dx 6 F 2 <∞,∫ t

0

∫
Q

∣∣∣∣∂F ε

∂t
(x, t)

∣∣∣∣2 dx dt 6 F 2
ε <∞, F ε → F in L2

(
Q× (0, T )

)
,

and

uε(x, t) =
∫ t

0

wε(x, τ) dτ, πε(x, t) =
∫ t

0

pε(x, τ) dτ.

Then for every ε > 0 and an arbitrary time interval [0, T ] there is a unique gener-
alized solution of the problem (3.1)–(3.8) and∫ T

0

∫
Q

αµχ̂
ε

∣∣∣∣D(
x,
∂wε

∂t

)∣∣∣∣2 dx dt 6 Cε F
2
ε ,

max
0<t<T

ε2
(∫

Q

χ̂ ε

∣∣∣∣D(
x,
∂uε

∂t
(x, t)

)∣∣∣∣2 dx+
∫

Q

χ̂ ε
∣∣D(

x,wε(x, t)
)∣∣2 dx) 6 CF 2,

∫ T

0

∫
Q

λ̂(x)
(
|wε

s|2 + |D(x,wε
s)|2

)
dx dt 6 CF 2,

∫ T

0

∫
Q

(
|uε|2 + |wε|2 +

∣∣∣∣∂uε

∂t

∣∣∣∣2) dx dt 6 CF 2,∫ t

0

∫
Q

|π ε|2 dx dt 6 CF 2, (4.6)

where wε
s = EQε

s
(wε), and C is independent of ε.

Theorem 4.2. Under the hypotheses of Theorem 4.1, let {wε, p ε} be the gener-
alized solution of the problem (3.1)–(3.8), and let wε

s = EQε
s
(wε) be the extension

of wε from Qε
s to Q. Define functions π ε and uε as in Theorem 4.1.

Then, up to choosing a subsequence, the sequences {χ̂ επε}, {χ̂ εuε} and {χ̂ εwε}
converge weakly in L2(Q × (0, T )) as ε → 0 to certain functions πf , uf and wf
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respectively, and the sequence {wε
s} converges weakly in W̊1,0

2 (Q× (0, T )) as ε→ 0
to a function ws.

These limiting functions are a solution of the compound system consisting of the
integral identities ∫ T

0

∫
Q

(wf + m̂ws) · ∇ψ dx dt = 0,∫ T

0

∫
Q

(
λ̂(x)

(
N̂s : D(x,ws)

)
: D(x,ϕ)

)
dx dt =

∫ T

0

∫
Q

(
p(∇ ·ϕ) + %̂F ·ϕ

)
dx dt,

which hold for all functions ψ vanishing on the boundary of Q and all functions
ϕ ∈ W̊1,0

2 (Q× (0, T )), and of the Darcy law

uf = m̂

∫ t

0

ws(x, τ) dτ +
1
µ1

B̂(x) ·
(
−∇πf + %fΦ

)
(4.7)

in the domain Q× (0, T ).
In terms of differential equations in the corresponding domains and boundary

conditions on the common boundary S0 for t > 0, the limiting functions wf , ws

and πf in the domain Q for t > 0, where ∇πf , ∂πf/∂t ∈ L2(Q × (0, T )), are
a generalized solution (in the sense of distributions) of the homogenized system of
differential equations which consists of the continuity equation

∇ ·
(
wf + (1− m̂)ws

)
= 0, (4.8)

the momentum balance equation

∇ · P̂s + %̂F = 0, P̂s = λ̂ N̂s : D(x,ws)− pf I (4.9)

for the rigid component, and the Darcy law (4.7) for the liquid component.
The problem is closed by the normalization condition (3.9), the boundary condi-

tion (3.7) for the displacements of the rigid skeleton ws on the exterior boundary S
for t > 0, the boundary condition

wf (x, t) · n(x) = 0 (4.10)

for the displacements of the liquid on the exterior boundary S for t > 0, and the
continuity conditions

lim
x→x0

x∈Ω

ws(x, t) = lim
x→x0

x∈Ω0

ws(x, t), x0 ∈ S0, (4.11)

lim
x→x0

x∈Ω

Ps(x, t) · n(x0) = lim
x→x0

x∈Ω0

Ps,0(x, t) · n(x0), x0 ∈ S0, (4.12)

lim
x→x0

x∈Ω

n(x0) ·
(
wf + (1−m)ws

)
(x, t)

= lim
x→x0

x∈Ω0

n(x0) ·
(
wf + (1−m0)ws

)
(x, t), x0 ∈ S0, (4.13)

on the common boundary S0 for t > 0.
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Finally, the last missing continuity condition on S0 depends on the structure of
the common porous space. If it is connected, then

lim
x→x0

x∈Ω

π(x, t) = lim
x→x0

x∈Ω0

π(x, t), x0 ∈ S0. (4.14)

But if not, then

lim
x→x0

x∈Ω

n(x0) ·
(
wf −mws

)
(x, t) = 0, x0 ∈ S0. (4.15)

In (4.7)–(4.15) we have put Φ =
∫ t

0
F (x, τ) dτ , the symmetric strictly positive

definite matrix B̂(x) is given by (7.18), and the symmetric strictly positive tensor
N̂s(x) of rank four is given by (7.28).

Theorem 4.3. Under the hypotheses of Theorem 4.1, let {wk
s ,w

k
f ,u

k
f , π

k
f} be the

generalized solution of the problem (4.7)–(4.15) with λ0 = λ = k.
Then, up to choosing a subsequence, the sequences {πk

f}, {uk
f}, {wk

f} converge
weakly in L2(Q × (0, T )) as k → ∞ to certain functions πf , uf , wf respectively,
and the sequence {wk

s} converges to zero strongly in L2(Q× (0, T )).
The limiting functions in the domain Q for t > 0 are a solution of the homoge-

nized system consisting of the continuity equation

∇ · uf = 0 (4.16)

and the Darcy law

uf =
1
µ1

B̂ · (−∇πf + %fΦ). (4.17)

The problem is closed by the boundary condition (4.10) for the displacements of the
liquid on the exterior boundary S for t > 0, the normalization condition (3.9) for
the pressure, and the continuity condition

lim
x→x0

x∈Ω

n(x0) ·wf (x, t) = lim
x→x0

x∈Ω0

n(x0) ·wf (x, t), x0 ∈ S0, (4.18)

on the common boundary S0 for t > 0.
If the common porous space is connected, then the boundary condition (4.14)

holds on the common boundary S0 for t > 0. But if not, then the boundary condi-
tion (4.15) holds on S0 for t > 0.

The symmetric strictly positive definite matrix B̂(x) is defined in Theorem 4.2.

§ 5. Auxiliary assertions

5.1. Two-scale convergence.

Definition 5.1. A sequence {wε} ⊂ L2(ΩT ), ΩT = Ω × (0, T ), is said to be
two-scale convergent to a 1-periodic function W (x, t,y) ∈ L2(ΩT × Y ) of y ∈ Y

(wε t.-s.−−→ W (x, t,y)) if for every 1-periodic function σ = σ(x, t,y) of y we have

lim
ε→0

∫
ΩT

wε(x, t)σ
(
x, t,

x

ε

)
dx dt =

∫
ΩT

(∫
Y

W (x, t,y)σ(x, t,y) dy
)
dx dt,

where Y = (0, 1)3 is the periodicity cell.
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The following theorem establishes the existence and basic properties of two-scale
convergent sequences.

Theorem 5.1 (Nguetseng’s theorem). 1) Every bounded sequence {wε} in L2(ΩT )
contains a subsequence two-scale convergent to a function W (x, t,y), where W ∈
L2(ΩT × Y ) is 1-periodic with respect to y.

2) Let {wε} and {εD(x,wε)} be uniformly bounded sequences in L2(ΩT ).
Then there are a 1-periodic function W = W (x, t,y) of y and a subsequence

of {wε} such that W ,∇yW ∈ L2(ΩT × Y ), and the subsequences of {wε} and
{εD(x,wε)} are two-scale convergent in L2(ΩT ) to W and D(y,W ) respectively.

3) Let {wε} and {D(x,wε)} be bounded sequences in L2(ΩT ). Then there are
functions w(x, t), w∈W1,0

2 (ΩT ), W (x, t,y), W ∈L2(ΩT ×Y ) ∩ W1,0
2 (Y ) and

a subsequence of {D(x,wε)} such that W is 1-periodic with respect to y, D(x,w) ∈
L2(ΩT ), D(y,W ) ∈ L2(ΩT × Y ), and the subsequence of {D(x,wε)} is two-scale
convergent to D(x,w) +D(y,W ).

Note that weak convergence and two-scale convergence are related as follows:

if wε t.-s.−−→W (x,y) (two-scale),

then wε(x) ⇀
∫

Y

W (x,y)dy (weakly).

Lemma 5.1. Suppose that the geometry of periodic structures satisfies Assump-
tions 3.1–3.3 and the sequence {wε

s} converges weakly in W̊1,0
2 (Q × (0, T )) to

ws(x, t). Then ws ∈ W̊1,0
2 (Q× (0, T )).

Proof. The proof is obvious. By construction, the solenoidal function wε
s vanishes

on S. Therefore, ∫ T

0

∫
Q

wε
s · ∇ϕdx dt = 0

for an arbitrary function ϕ ∈ W1,0
2

(
Q× (0, T )

)
. Letting ε → 0 in this identity, we

obtain that ∫ T

0

∫
Q

ws · ∇ϕdx dt = 0.

Since ϕ ∈ W1,0
2

(
Q× (0, T )

)
is arbitrary, this is equivalent to the conclusion of the

lemma. �

Lemma 5.2. For every unit vector e there is a solenoidal vector-valued function
u(y) with suppu ⊂ Yf such that

〈u〉Y =
∫

Y

u(y) dy = e. (5.1)

Proof. Take a ball B ⊂ Yf and let v(y) be a solution of the problem

4v −∇p = λf , y ∈ B, (5.2)

∇ · v = 0, y ∈ B, (5.3)∫
B

p dy = 0, v(y) = 0, y ∈ ∂B, (5.4)

with a fixed function f(y) and an arbitrary constant λ.



342 A. M. Meirmanov, O. V. Galtsev, and S. A. Gritsenko

We choose the constant λ in such a way that

|e0| = 1, where e0 =
∫

B

v dy.

In what follows, let T be an orthogonal matrix such that T · e0 = e.
In the new variables z = T · y, the function u(z) = T · v(y) is a solution of the

problem

4zu−∇zq = F (z), ∇z · u = 0, z ∈ B,∫
B

q dy = 0, u(z) = 0, z ∈ ∂B,

where F = T · f and q(z) = p(y). By construction,

e = T · e0 =
∫

B

T · v dy =
∫

B

u dz. �

§ 6. Proof of Theorem 4.1

For convenience, we split the proof of the theorem into several lemmas.

Lemma 6.1. For every ε > 0 the problem (3.1)–(3.8) has a unique generalized
solution such that

wε ∈ W̊1,0
2

(
Q× (0, T )

)
,

∂wε

∂t
∈ W1,0

2

(
Qε

f × (0, T )
)
, p ε ∈ L2(Q× (0, T ))

and the first bound in (4.6) holds.

Proof. The proof is standard. It uses a derivation of the a priori bounds (4.6) and
Galerkin’s method. Putting t0 = T and ϕ(x, τ) = ζt(τ)∂wε

∂τ (x, τ) in (4.2), where
ζt(τ) = 1 for 0 < τ < t and ζt(τ) = 0 for τ > t, we obtain that∫ t

0

∫
Q

αµχ̂
ε

∣∣∣∣D(
x,
∂wε

∂τ

)∣∣∣∣2 dx dτ +
1
2

∫
Q

(1− χ̂ ε)λ̂(x)|D(x,wε)|2(x, t) dx

= −
∫ t

0

∫
Q

%̂ ε ∂F
ε

∂τ
(x, τ) ·wε dx dτ 6 CF 2

ε

∫ T

0

∫
Q

|D(x,wε)|2 dx dt.

This yields the desired bound∫ T

0

∫
Q

αµχ̂
ε

∣∣∣∣D(
x,
∂wε

∂t

)∣∣∣∣2 dx dt
+ max

0<t<T

∫
Q

(1− χ̂ ε)λ̂(x)|D(x,wε)|2(x, t) dx 6 CF 2
ε . (6.1)

The main integral identity in the construction of approximate solutions is obtained
from (4.2) with t0 = t by integrating the resulting expression with respect to
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time and choosing test functions in the special class S̊1
2(Q) of solenoidal functions

in W̊1
2(Q): ϕ ∈ S̊1

2(Q) ⊂ W̊1
2(Q):∫

Q

αµχ̂
εD

(
x,
∂wε

∂t
(x)

)
: D

(
x,ϕ(x, t)

)
dx

+
∫

Q

(1− χ̂ ε)λ̂(x)D
(
x,wε(x, t)

)
: D

(
x,ϕ(x, t)

)
dx

=
∫

Q

%̂ εF ε(x, t) ·ϕ(x, t) dx. (6.2)

Here we have used Assumption 3.4.
Let {ϕk}, k = 1, 2, . . . , be an orthonormal basis in S̊1

2(Q). We put

wε
N (x, t) =

N∑
k=1

dckN
dt

(t)ϕk(x), (6.3)

where the functions ckN are determined using the following system of linear differ-
ential equations with constant coefficients:

N∑
k=1

ak,l dc
k
N

dt
+

N∑
k=1

bk,lckN = F l, l = 1, 2, . . . , N ;

ak,l =
∫

Q

αµχ̂
εD(x,ϕk) : D(x,ϕl) dx,

bk,l =
∫

Q

(1− χ̂ ε)λ̂(x)D(x,ϕk) : D(x,ϕl) dx, k, l = 1, 2, . . . , N ;

F l =
∫

Q

%̂ εF ε ·ϕl dx, l = 1, 2, . . . , N.

(6.4)

Since
N∑

k,l=1

ak,lξkξl =
∫

Q

αµχ̂
ε|D(x,e)|2 dx > 0

for all e =
∑N

k=1 ξ
kϕk with

∑N
k=1 |ξk|2 = 1, the system (6.4) has a unique solution.

Thus we have constructed approximate solutions for all N = 1, 2, . . . .
Consider also the function

uε
N (x, t) =

N∑
k=1

ckN (t)ϕk(x), l = 1, 2, . . . , N, wε
N =

∂uε
N

∂t
. (6.5)

We easily see that wε
N and uε

N satisfy the integral identities∫ t0

0

∫
Q

(
αµχ̂

εD
(
x,
∂wε

N

∂t

)
+ (1− χ̂ ε)λ̂(x)D(x,wε

N )
)

: D(x,ϕN ) dx dt

=
∫ t0

0

∫
Q

%̂ εF ε ·ϕN dx dt, (6.6)
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0

∫
Q

(
αµχ̂

εD
(
x,
∂uε

N

∂t

)
+ (1− χ̂ ε)λ̂(x)D(x,uε

N )
)

: D(x,ϕN ) dx dt

=
∫ t0

0

∫
Q

%̂ εΦε ·ϕN dx dt, (6.7)

where

Φε(x, t) =
∫ t

0

F ε(x, τ) dτ, ϕN =
N∑

k=1

ξk(t)ϕk(x),

with arbitrary functions ξk(t), and the following estimates hold:∫ T

0

∫
Q

αµχ̂
ε

∣∣∣∣D(
x,
∂wε

N

∂t

)∣∣∣∣2 dx dt
+ max

0<t<T

∫
Q

(1− χ̂ ε)λ̂(x)
∣∣D(

x,wε
N (x, t)

)∣∣2 dx 6 CεF
2
ε , (6.8)

∫ T

0

∫
Q

αµχ̂
ε

∣∣∣∣D(
x,
∂uε

N

∂t

)∣∣∣∣2 dx dt
+ max

0<t<T

∫
Q

(1− χ̂ ε)λ̂(x)
∣∣D(

x,uε
N (x, t)

)∣∣2 dx 6 CεF
2, (6.9)

where the constant Cε, generally speaking, depends on ε.
Passing to the limit as N → ∞, we obtain the desired generalized solution

of (3.1)–(3.8). It satisfies the integral identities∫ t0

0

∫
Q

(
αµχ̂

εD
(
x,
∂wε

∂t

)
+ (1− χ̂ ε)λ̂(x)D(x,wε)

)
: D(x,ϕ) dx dt

=
∫ t0

0

∫
Q

%̂ εF ε ·ϕ dx dt, (6.10)

∫ t0

0

∫
Q

(
αµχ̂

εD
(
x,
∂uε

∂t

)
+ (1− χ̂ ε)λ̂(x)D(x,uε)

)
: D(x,ϕ) dx dt

=
∫ t0

0

∫
Q

%̂ εΦε ·ϕ dx dt (6.11)

and the equality

wε(x, t) =
∂u

∂t

ε

(x, t). (6.12)

Note that we passed to the limit in the integral identity (4.2) with test functions
of class S̊1

2(Q), where the pressure is absent because the functions of this class
are orthogonal in L2

(
Q× (0, T )

)
to the gradients of scalar-valued functions.

Therefore the pressure p ε does not occur in the integral identity (6.10). This
identity will take the form (4.2) with pressure p ε ∈ L2

(
Q × (0, T )

)
if we are con-

sidering non-solenoidal test functions.
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In a similar way, the identity (6.11) in the case of non-solenoidal test functions
ψ ∈ W̊1

2(Q) will take the form∫ t0

0

∫
Q

(
αµχ̂

εD
(
x,
∂uε

∂t

)
+ (1− χ̂ ε)λ̂(x)D(x,uε)

)
: D(x,ψ) dx dt

=
∫ t0

0

∫
Q

(πε∇ ·ψ + %̂ εΦε ·ψ) dx dt, (6.13)

where

πε(x, t) =
∫ t

0

p ε(x, τ) dτ ∈ L2

(
Q× (0, T )

)
. (6.14)

The proof of (6.14) is standard (see [17]): choose ψ = ∂ϕ/∂t in (6.13), integrate
by parts and compare with (4.2).

Finally, the function πε belongs to L2

(
Q×(0, T )

)
because this space is the direct

sum of the closure of the space of solenoidal functions and the closure of the space
of gradients of scalar functions [20]. �

Lemma 6.2. The bounds (4.6) hold under the hypotheses of Theorem 4.1.

Proof. Put

βε(t) =
∫

Q

(
αµχ̂

εD
(
x,
∂wε

∂t

)
: D(x,ϕ)

+ (1− χ̂ ε)λ̂(x)D(x,wε) : D(x,ϕ)− %̂ εF ε ·ϕ
)
dx.

Then (6.5) takes the form∫ t0

0

βε(t) dt = 0 for all t0 < T,

or
βε(t0) = 0 for almost all t0 < T

or ∫
Q

(
αµχ̂

εD
(
x,
∂wε

∂t
(x, t0)

)
: D

(
x,ϕ(x, t0)

)
+ (1− χ̂ ε)λ̂(x)D

(
x,wε(x, t0)

)
: D

(
x,ϕ(x, t0)

)
− %̂ εF ε ·ϕ(x, t0)

)
dx = 0

for almost all t0 < T . The last identity also holds for all functions ϕ(x, t) that are
solenoidal with respect to the spatial variable and vanish for x ∈ S.

Putting ϕ = wε in this identity, we obtain that

1
2

∫
Q

αµχ̂
ε
∣∣D(

x,wε(x, t0)
)∣∣2 dx+

∫ t0

0

∫
Q

(1− χ̂ ε)λ̂(x)
∣∣D(

x,wε(x, t)
)∣∣2 dx dt

=
∫ t0

0

∫
Q

%̂ εF ε ·wε(x, t) dx dt,
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or ∫
Q

αµχ̂
ε
∣∣D(

x,wε(x, t0)
)∣∣2 dx+

∫ t0

0

∫
Q

(1− χ̂ ε)λ̂(x)
∣∣D(

x,wε(x, t)
)∣∣2 dx dt

6
F 2

δ
+ δ

∫ t0

0

∫
Q

|wε(x, t)|2 dx dt.

Put wε
s = EQε

s
(wε). Then∫

Q

αµχ̂
ε
∣∣D(

x,wε(x, t0)
)∣∣2 dx+

∫ t0

0

∫
Q

λ̂(x)
∣∣D(

x,wε
s(x, t)

)∣∣2 dx dt
6
F 2

δ
+ δ

∫ t0

0

∫
Q

|wε(x, t)|2 dx dt. (6.15)

Consider the function uε,k =wε−wε
s onQε,k

f , wherewε
s =EQε

s
(wε) (see Lemma4.1).

By construction, uε,k(x, t) = 0 for x ∈ Qε,k
s . Therefore,∫

Qε,k
f

|uε,k|2 dx 6 Cε2
∫

Qε,k
f

|D(x,uε,k)|2 dx, (6.16)

where C is independent of ε.
Indeed, put û ε,k(y, t) = uε,k(εk+ εy, t). Then D(y, û ε,k) = εD(x,uε,k). Using

the Poincaré–Friedrichs inequality (4.5), we see that∫
Qε,k

f

|uε,k(x, t)|2 dx =
∫

Y ε,k

|û ε,k(y, t)|2 dy

6 C

∫
Y ε,k

∣∣D(
y, û ε,k(y, t)

)∣∣2 dy = Cε2
∫

Qε,k
f

∣∣D(
x,uε,k(x, t)

∣∣2 dx,
∫

Q

|wε(x, t)−wε
s(x, t)|2 dx =

∑
k

∫
Qε,k

f

|uε,k(x, t)|2 dx

=
∑

k

∫
Y ε,k

|û ε,k(y, t)|2 dy 6 C
∑

k

∫
Y ε,k

∣∣D(
y, û ε,k(y, t)

)∣∣2 dy
= Cε2

∑
k

∫
Qε,k

f

∣∣D(
x,uε,k(x, t)

)∣∣2 dx = Cε2
∫

Q

∣∣D(
x, (wε −wε

s)(x, t)
)∣∣2 dx

6 Cε2
∫

Q

∣∣D(
x,wε

s(x, t)
)∣∣2 dx+ C

ε2

αµ

∫
Q

χ̂ εαµ

∣∣D(
x,wε(x, t)

)∣∣2 dx.
Thus,∫ t0

0

∫
Q

|wε(x, t)−wε
s(x, t)|2 dx dt

6 Cε2
∫

Q

∣∣D(
x,wε

s(x, t)
)∣∣2 dx+ C

ε2

αµ

∫
Q

χ̂ εαµ

∣∣D(
x,wε(x, t)

)∣∣2 dx, (6.17)
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Q

|wε(x, t)|2 dx 6
∫

Q

|wε
s(x, t)|2 dx+

∫
Q

|(wε −wε
s)(x, t)|2 dx

6 C

∫
Q

∣∣D(
x,wε

s(x, t)
)∣∣2 dx+ C

ε2

αµ

∫
Q

χ̂ εαµ

∣∣D(
x,wε(x, t)

)∣∣2 dx, (6.18)

where the constant C is independent of ε.
Again taking (6.15) and choosing a sufficiently small δ, we obtain that∫

Q

αµχ̂
ε
∣∣D(

x,wε(x, t0)
)∣∣2 dx+

∫ t0

0

∫
Q

λ̂(x)
∣∣D(

x,wε
s(x, t)

)∣∣2 dx dt
6 CF 2 + C

ε2

αµ

∫ t0

0

∫
Q

αµχ̂
ε
∣∣D(

x,wε(x, t)
)∣∣2 dx dt,

or ∫
Q

αµχ̂
ε
∣∣D(

x,wε(x, t0)
)∣∣2 dx

6 CF 2 + C
ε2

αµ

∫ t0

0

∫
Q

αµχ̂
ε
∣∣D(

x,wε(x, t)
)∣∣2 dx dt,∫ t0

0

∫
Q

λ̂(x)
∣∣D(

x,wε
s(x, t)

)∣∣2 dx dt
6 CF 2 + C

∫ t0

0

∫
Q

ε2χ̂ ε
∣∣D(

x,wε(x, t)
)∣∣2 dx dt.

(6.19)

Putting

y(t) =
∫

Q

αµχ̂
ε
∣∣D(

x,wε(x, t)
)∣∣2 dx,

the first relation in (6.19) takes the form

dy

dt
(t) 6 CF 2 + C

ε2

αµ
y(t), y(0) = 0.

We can now use Gronwall’s inequality [17]

y(t) 6
αµ

ε2
CF 2

or
max

0<t<T
ε2

∫
Q

χ̂ ε
∣∣D(

x,wε(x, t)
)∣∣2 dx 6 CF 2. (6.20)

Along with the representation ∂uε/∂t = wε, this proves the second bound in (4.6).
The third bound follows from (6.19), the second bound and the Friedrichs–

Poincaré inequality (4.5). The fourth bound follows from (6.18) and the first three.
We again stress that the constants C in our calculations are distinct (generally

speaking) but independent of the small parameter ε. Since there are finitely many
bounds in our paper, we do not distinguish these constants and denote them all
by C.
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To prove the bound (4.6) for πε, we write the identity (6.13) in the form

Π(ψ) ≡
∫ T

0

∫
Q

πε∇ ·ψ dx dt =
∫ T

0

∫
Q

(
A : D(x,ψ) + a ·ψ

)
dx dt, (6.21)

where

A = αµχ̂
εD

(
x,
∂uε

∂t

)
+ (1− χ̂ ε)λ̂(x)D(x,uε), a = %̂ εΦε,∫ T

0

∫
Q

(A : A + |a|2) dx dt 6
ε2

αµ
CF 2 6 µ1CF

2

by the bounds (4.6) and the hypotheses.
Since∣∣∣∣∫ T

0

∫
Q

πε∇ ·ψ dx dt
∣∣∣∣ 6

∫ T

0

∫
Q

(A : A + |a|2) dx dt ‖ψ‖1,0
2,Q×(0,T ) 6 µ1CF

2,

the linear functional Π(ψ), Π: W̊1,0
2

(
Q× (0, T )

))
→ R is bounded. By the theorem

on the representation of continuous linear functionals on a Hilbert space [21], we
conclude that∫ T

0

∫
Q

|πε(x, t)|2 dx dt 6
∫ T

0

∫
Q

(A : A + |a|2) dx dt 6 µ1CF
2. (6.22)

This completes the proof of Theorem 4.1. �

§ 7. Proof of Theorem 4.2

Suppose that {wε, πε} is a solution of the problem (3.1)–(3.8),

wε
s = EQε

s

(
wε

)
, wε

s =
∂uε

s

∂t
and wε =

∂uε

∂t
.

The bounds (4.6) enable us to choose subsequences (we preserve the same subscripts
here and in what follows)

{wε}, {χ̂ εwε}, {uε}, {χ̂ εuε}, πε, {χ̂ επε}, {(1− χ̂ ε)πε},
{uε

s}, {wε
s}, {D(x,uε

s)} and {D(x,wε
s)},

converging weakly in L2

(
Q× (0, T )

)
to functions

w, wf , u, uf , π, πf , πs, us, ws, D(x,us) and D(x,ws)

respectively.
By Theorem 5.1, there are functions 1-periodic (with respect to y)

Ŵ = (1− ζ)W + ζW 0, Ŵ f = Ŵ χ̂, Û = (1− ζ)U + ζU0,

Ûf = Û χ̂, Π̂ = (1− ζ)Π + ζΠ0, Π̂f = Π̂χ̂ and Π̂s = Π̂(1− χ̂)
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such that the subsequences chosen are two-scale convergent in L2

(
Q × (0, T )

)
to

the functions (respectively)

Ŵ , Ŵ f , Û , Ûf , Π̂, Π̂f , Π̂s,

us, ws, D(x,us) + D(y, Û s) and D(x,ws) + D(y, Ŵ s).

Moreover, Ŵ = Ŵ f + Ŵ s, Û = Ûf + Û s, Π̂ = Π̂f + Π̂s, and the sequences
{εχ̂ εD(x,uε)} and {εχ̂ εD(x,wε)} are two-scale convergent in L2

(
Q × (0, T )

)
to

the functions D(y, Ûf ) and D(y, Ŵ f ), where

Ŵ f =
∂Ûf

∂t
, % = lim

ε→0
%ε = m%f + (1−m)%s,

%0 = lim
ε→0

%0,ε = m0%f + (1−m0)%s, %̂ = (1− ζ)%+ ζ %0.

Finally, the sequences {D(x,uε
s)} and {D(x,wε

s)} are two-scale convergent in
L2

(
Q× (0, T )

)
to D(x,us) + D(y, Û s) and D(x,ws) + D(y, Ŵ s) respectively.

Lemma 7.1. Under the hypotheses of Theorem 4.2 we have

∇y · Ŵ = 0, y ∈ Ŷ . (7.1)

Proof. Letting ε → 0 in the identity (4.1) with t0 = T and with test functions
ψ = εψ0(x, t)ϕ(x/ε), we obtain

0 =
∫ T

0

∫
Q

wε · ∇ψ dx dt =
∫ T

0

∫
Q

wε · (ε∇ψ0ϕ+ ψ0∇y ϕ
)
dx dt

→
∫ T

0

∫
Q

ψ0(x, t)
(∫

bY Ŵ · ∇yϕ(y) dy
)
dx dt = 0.

This is equivalent to (7.1). �

Lemma 7.2. Under the hypotheses of Theorem 4.2 we have

Πf (x, t,y) = πf (x, t)χ̂(x,y), y ∈ Y. (7.2)

Proof. Letting ε → 0 in the identity (6.13) with t0 = T and with test functions
ψ = εψ0(x, t)ψ1(x/ε), where the functions ψ0(x, t) and ψ1(y) are smooth and
compactly supported in Q and Ŷf respectively, we arrive at the identity∫ T

0

∫
Q

ψ0(x, t)
(∫

bYf

Πf∇y ·ψ1(y) dy
)
dx dt = 0,

whence (7.2) follows. �

Lemma 7.3. Under the hypotheses of Theorem 4.2,

∇πf ∈ L2

(
Q× (0, T )

)
. (7.3)
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Proof. To prove (7.3), we consider the identity (6.13) and put

ψ = ψ0(x, t)ϕ
(
x

ε

)
, ψ0 ∈ C̊∞

(
Q× (0, T )

)
, ϕ ∈ C̊1(Ŷf ),

∇y ·ϕ(y) = 0, y ∈ Ŷf .

Letting ε→ 0, we obtain that∫ T

0

∫
Q

(Âψ0 + B̂∇ψ0) dx dt = 0 (7.4)

for arbitrary functions ψ0 ∈ C̊∞
(
Q× (0, T )

)
. In (7.4) we use the notation

Â =
∫

bYf

µ1D(y, Ŵ f ) : D(y,ϕ) dy − %̂Φ ·
∫

bYf

ϕ dy, B̂ = −πf

∫
bYf

ϕ dy.

We now use Lemma 5.2 to find, for every unit vector of the basis ei, i = 1, 2, 3,
a solenoidal function ψi such that∫

bYf

ψi(y) dy = ei, i = 1, 2, 3. (7.5)

Substituting these functions for the test function ϕ in (7.4), we obtain∫ T

0

∫
Q

(
Âiψ0 − πf

∂ψ0

∂xi

)
dx dt = 0, i = 1, 2, 3, (7.6)

where

Âi = µ1D(y, Ŵ f ) : D(y,ψi) dy − %̂Φ ·
∫

bYf

ψi dy ∈ L2

(
Q× (0, T )

)
.

The identity (7.6) means that

−∂πf

∂xi
= Âi ∈ L2

(
Q× (0, T )

)
or ∇π ∈ L2

(
Q× (0, T )

)
. �

Lemma 7.4. Under the hypotheses of Theorem 4.2, the limiting functions Ŵ f ,
πf , ws satisfy the following boundary-value problem in the domain Ŷf :

µ1∇y ·
(
D(y, Ŵ f ))−∇yΠf −∇πf = %̂Φ, ∇y · Ŵ f = 0, y ∈ Ŷf ,

lim
x→x0

x∈Ω0

Ŵ f (x, t,y) = lim
x→x0

x∈Ω

Ŵ f (x, t,y),

lim
x→x0

x∈Ω0

D
(
x, Ŵ f (x, t,y)

)
= lim

x→x0

x∈Ω

Ŵ f (x, t,y),

Ŵ f (x, t,y) = ws(x, t), y ∈ γ̂

(7.7)

(understood in the generalized sense as a solution of the appropriate integral iden-
tities).
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Proof. The first (dynamical) equation in (7.7) follows from the analogue of (7.4)
with arbitrary (non-solenoidal) test functions, and from (7.3). The term ∇yΠf

arises because the test functions are not solenoidal.
The continuity equation for Ŵ on Ŷ was deduced in Lemma 7.1. Also, the

equation (7.1) obviously holds for Ŵ f on Ŷf .
To prove the boundary condition on the boundary γ̂, consider the equality

wε = χ̂ εwε + (1− χ̂ ε)wε
s

and perform two-scale convergence:

wε t.-s.−−→W ,

χ̂ εwε + (1− χ̂ ε)wε
s

t.-s.−−→ χ̂(y)W +
(
1− χ̂(x,y)

)
ws,

W = W f +
(
1− χ̂(x,y)

)
ws.

(7.8)

Since
Ŵ , Ŵ f +

(
1− χ̂(x,y)

)
ws ∈ W1,0

2

(
Y × (0, T )

)
,

the equality in (7.8) yields the boundary condition on γ̂. �

Lemma 7.5. Under the hypotheses of Theorem 4.2, the limiting functions wf and
ws satisfy the following continuity equation in Q for t > 0:

wf + (1− m̂)ws = 0. (7.9)

Proof. To prove this continuity equation, we write the integral identity (4.1) in the
form ∫ T

0

∫
Q

(
χ̂ εwε + (1− χ̂ ε)wε

s

)
· ∇ψ dx dt = 0

with test functions ψ = ψ(x, t) and let ε→ 0:∫ T

0

∫
Q

(
wf + (1− m̂)ws

)
· ∇ψ dx dt = 0.

Since ψ may be chosen arbitrarily, this identity is equivalent to (7.9). �

Lemma 7.6. Under the hypotheses of Theorem 4.2, the limiting functions us(x, t),
Û s(x, t,y) and Π̂(x, t,y) satisfy the boundary-value problem in the domain Ŷ for
the following system of microscopic equations :

∇y ·
(
λ̂(x)

(
1− χ̂(x,y)

)(
D(x,us) + D(y, Û s)− Π̂ I

))
= 0,

(1− χ̂(x,y)
)
(∇ · us +∇y · Û s) = 0,

(7.10)

〈Û s〉bYs
= 0, 〈Π̂〉bYs

= 0, (7.11)

where

Û s(x, t,y) =
∫ t

0

Ŵ s(x, τ,y) dτ.
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Proof. The equality (7.10) follows from (6.13) if we put

ψ = h(x, t)ψ0

(
x

ε

)
, h ∈ W̊1

2(Q),

and pass to a limit as ε→ 0.
The equality (7.11) is obtained from the continuity equation (4.1) in the form∫ T

0

∫
Q

∇ · uε ψ dx dt = 0

if we choose

ψ = h(x, t)
(

1− χ̂

(
x,
x

ε

))
for the test functions and let ε→ 0. �

Lemma 7.7. Under the hypotheses of Theorem 4.2, the limiting functions us(x, t),
Û s(x, t,y) and π satisfy the following dynamical macroscopic equation in Ŷ :

∇x ·
(
λ
(
x)

(
(1− m̂)D(x,us) + 〈D(y, Û s)〉Ys

)
− π I

)
+ %̂Φ = 0. (7.12)

Proof. The equality (7.12) follows from (6.13) if we let ε → 0 with test functions
of the form ψ = ψ(x, t). �

Lemma 7.8. Under the hypotheses of Theorem 4.2, the limiting functions wf (x, t)
and πf satisfy the Darcy law

wf = m̂

∫ t

0

ws(x, τ) dτ +
1
µ1

B̂(−∇πf + %̂Φ) (7.13)

in Q for t > 0, where the symmetric matrix B̂ is strictly positive definite.

Proof. To derive the Darcy law, we consider a boundary-value problem consisting
of the differential equation, the boundary condition in (7.7) and the continuity
equation (7.1):

µ1∇y ·
(
D(y, Ŵ f )

)
−∇yΠ̂f −∇πf + %̂Φf = 0, y ∈ Ŷf ,

∇y · Ŵ f = 0, y ∈ Ŷf ,

Ŵ f (x, t,y) = ws(x, t), y ∈ γ̂.

(7.14)

Put

1
µ1

(−∇πf + %̂Φ) =
3∑

i=1

zie
i,

Ŵ f (x, t,y) = ws(x, t) +
3∑

i=1

zi(x, t)Ŵ
i

f (y),

Πf (x, t,y) =
3∑

i=1

zi(x, t)Πi
f (y).

(7.15)



Homogenized equations of filtration 353

Substituting the expression (7.15) into the system of equations (7.14), we obtain

∇y ·
(
D(y, Ŵ

i

f )
)
−∇yΠi

f + ei = 0, y ∈ Ŷf ,

∇y · Ŵ
i

f = 0, y ∈ Ŷf ,

Ŵ
i

f (x, t,y) = 0, y ∈ γ̂.

(7.16)

The proof of the existence and uniqueness of a generalized solution of (7.16) is
standard [20]. Moreover, since the boundary γ̂ is infinitely smooth, this solution
will be infinitely differentiable.

Thus,

wf = 〈Ŵ f 〉bYf
= m̂ws +

1
µ1

( 3∑
i=1

〈Ŵ
i

f 〉bYf
⊗ ei

)
(−∇πf + %̂Φ)

= m̂ws +
1
µ1

B̂(−∇πf + %̂Φ), (7.17)

B̂ =
3∑

i=1

〈Ŵ
i

f 〉bYf
⊗ ei. (7.18)

We claim that the matrix B̂ = (B̂ij) is symmetric and strictly positive definite:

3∑
i,j=1

B̂ijξiξj > b0

3∑
i=1

|ξi|2, (7.19)

where b0 = const > 0.
First, we multiply the first equation in (7.16) by Ŵ

o

f and integrate the resulting
equality by parts over the domain Ŷf :∫

bYf

D(y, Ŵ
i

f ) : D(y, Ŵ
j

f ) dy =
∫

bYf

Ŵ
j

f · ei dy. (7.20)

For arbitrary (ζ1, ζ2, ζ3) = ζ and (η1, η2, η3) = η ∈ R3 we put

ẑζ =
3∑

i=1

Ŵ
i

fζ
i, ẑη =

3∑
i=1

Ŵ
i

fη
i, Q̂ζ =

3∑
i=1

Πi
fζ

i, Q̂η =
3∑

i=1

Πi
fη

i.

Then the following relations hold in accordance with (7.16):

∇y ·
(
D(y, ẑζ)

)
−∇yQ̂ζ + ζ = 0, y ∈ Ŷf ,

∇y · ẑζ = 0, y ∈ Ŷf ,

ẑζ(x, t,y) = 0, y ∈ γ̂,
∫

bYf

Q̂ζ dy = 0.

(7.21)

Multiplying the first equation in (7.21) by ẑη and integrating by parts, we obtain
the identity

〈D(y, ẑζ) : D(y, ẑη)〉bYf
= 〈ζ · ẑη〉bYf

(7.22)

for all ζ,η ∈ R3.



354 A. M. Meirmanov, O. V. Galtsev, and S. A. Gritsenko

On the other hand, multiplying (7.20) by ζi ηj and summing over i and j, we
obtain the identity

η ·
(
B̂(ζ)

)
= 〈D(y, ẑζ) : D(y, ẑη)〉bYf

for arbitrary ζ and η. In particular, it follows that the matrix B̂ is symmetric.
Moreover,

η ·
(
B̂(ζ)

)
= 〈D(y, ẑζ) : D(y, ẑη)〉bYf

> α0 (7.23)

for arbitrary ζ with |ζ| = 1 and some constant α0 > 0.
Indeed, assuming the opposite, we arrive at the equality D(y, ẑζ) = 0, which is

possible only when ẑζ is a linear function of y. However, a linear function which
is infinitely differentiable and periodic with respect to y and satisfies the homoge-
neous boundary condition in (7.21), must necessarily be identically equal to zero.

Again considering (7.21), we see that ∇yQ̂ζ = −ζ, or Q̂ζ = −ζ · y+ const. This
is impossible because Q̂ζ is a periodic function of y. �

Lemma 7.9. Under the hypotheses of Theorem 4.2, the limiting functions ws(x, t),
wf (x, t) and πf satisfy the Lamé system of equations

∇x ·
(
λ
(
x)

(
N̂s : D(x,us)− πf I

))
+ %̂Φ = 0 (7.24)

in the domain Q, where the tensor N̂s(x) of rank four is defined by (7.28).

Proof. The system of equations (7.24) can be deduced from the system of equa-
tions (7.12) once we have calculated the functions 〈D(y, Û s)〉Ys

and π.
To do this, we rewrite the system of equations (7.10) in the form

∇y ·
(
λ̂(x)

(
1− χ̂(x,y)

)(
D(x,us) + D(y, Û s)−

1

λ̂(x)
(Π̂s − πf )I

))
= 0,

(
1− χ̂(x,y)

)
(∇ · us +∇y · Û s) = 0

(7.25)

and put

us = (u1
s, u

2
s, u

3
s), Dij(x, t) =

1
2

(
∂ui

s

∂xj
(x, t) +

∂uj
s

∂xi
(x, t)

)
,

D0(x, t) = ∇ · us(x, t).

We seek a solution of the system (7.10), (7.11) in the form

Û s(x, t,y) =
3∑

i,j=1

Dij(x, t)Û
ij

s (x,y) +D0(x, t)Û
0

s(x,y),

Π̂s − πf = λ̂(x)
( 3∑

i,j=1

Dij(x, t)Π̂ij
s (x,y) +D0(x, t)Π̂0

s(x,y)
)
.

We have
∇y ·

((
1− χ̂(x,y)

)(
D(y, Û

ij

s ) + Jij − Π̂ij
s I

))
= 0,

(1− χ̂(x,y))(∇y · Û
ij

s ) = 0, y ∈ Ŷ ,

〈Û
ij

s 〉bYs
= 0, 〈Π̂ij

s 〉bYs
= 0,

(7.26)
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∇y ·
((

1− χ̂(x,y)
)(

D(y, Û
0

s)− Π̂0
sI

))
= 0,

(1− χ̂(x,y))
(
∇y · (Û

0

s + 1)
)

= 0, y ∈ Ŷ ,

〈Û
0

s〉bYs
= 0, 〈Π̂0

s〉bYs
= 0.

(7.27)

The proof of the existence and uniqueness of periodic generalized solutions of the
linear systems (7.26) and (7.27) of differential equations is standard (Galerkin’s
method and a priori bounds).

The equation (7.24) follows from (7.12) after calculating the expressions

P̂s = λ̂(1− m̂)D(x,us) + S, S = λ̂〈D(y, Û s)〉bYs
− πI,

〈D(y, Û s)〉bYs
=

3∑
i,j=1

〈D(y, Û
ij

s )〉bYs
Dij + 〈D(y, Û

0

s)〉bYs
D0

=
( 3∑

i,j=1

〈D(y, Û
ij

s )⊗ Jij + D(y, Û
0

s)⊗ I〉bYs

)
: D(x,us),

π = 〈Π〉bY = 〈χ̂πf + (1− χ̂)Π̂s〉bY = 〈πf + (1− χ̂)(Π̂s − πf )〉bY
= πf + λ̂

〈 3∑
i,j=1

Π̂ij
s

〉
bYs

Dij + λ̂〈Π̂0
s〉bYs

D0

= πf + λ̂

( 3∑
i,j=1

〈(Π̂ij
s )I⊗ Jij + (Π̂0

s)I⊗ I〉bYs

)
: D(x,us),

P̂s = λ̂N̂s : D(x,us)− πf I,

N̂s = λ̂

(
(1− m̂)D(x,us) +

3∑
i,j=1

〈D(y, Û
ij

s )〉bYs
⊗ Jij + 〈D(y, Û

0

s)〉bYs
⊗ I

−
3∑

i,j=1

〈Π̂ij
s 〉bYs

I⊗ Jij − 〈Π̂0
s〉bYs

I⊗ I
)
. � (7.28)

Lemma 7.10. Under the hypotheses of Theorem 4.2, the tensor N̂s of rank four
is symmetric and strictly positive definite.

Proof. All the properties of N̂s follow from the equalities

〈D(y, Û
ij

s ) : D(y, Û
kl

s )〉bYs
+ 〈Jij : D(y, Û

kl

s )〉bYs
= 0, (7.29)

〈D(y, Û
ij

s ) : D(y, Û
0

s)〉bYs
= 0, (7.30)

〈Π̂ij
s 〉bYs

= −Jij : 〈D(y, Û
0

s)〉bYs
, (7.31)

〈Π̂0
s〉bYs

= −〈D(y, Û
0

s) : D(y, Û
0

s)〉bYs
(7.32)

for i, j, k, l = 1, 2, 3.
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These equalities can be obtained from (7.26) and (7.27) if we multiply (7.26)

(resp. (7.27)) by Û
kl

s and Û
0

s (resp. Û
0

s and Û
ij

s ) and integrate by parts over the
domain Ŷs.

Indeed, multiplying (7.26) by Û
kl

s and integrating by parts over Ŷs, we obtain

(7.29) since ∇ · Û
kl

s = 0. Multiplying (7.27) by Û
ij

s and integrating by parts

over Ŷs, we obtain (7.30) by the previous argument. Multiplying (7.26) by Û
0

s and
integrating by parts over Ŷs , we obtain (7.31) in view of (7.30). Finally, multiplying

(7.27) by Û
0

s and integrating by parts over Ŷs, we obtain (7.32).
Let ζ = (ζij) and η = (ηij) be arbitrary symmetric matrices. We put

Ẑζ =
3∑

i,j=1

Û
ij

s ζij , Ẑη =
3∑

i,j=1

Û
ij

s ηij , Ẑ
0

ζ = Û
0

s tr(ζ), Ẑ
0

η = Û
0

s tr(η),

where tr(ζ) =
∑3

i=1 ζii.
Then the expressions (7.29)–(7.32) take the form

〈D(y, Ẑζ) : D(y, Ẑη)〉bYs
+ ζ : 〈D(y, Ẑη)〉bYs

= 0, (7.33)

〈D(y, Ẑη) : D(y, Ẑ
0

ζ)〉bYs
= 0, (7.34)

〈D(y, Ẑ
0

η)〉bYs
: ζ = −

(
(〈Π̂ij

s 〉bYs
I : Jij) : ζ

)
: η, (7.35)

〈D(y, Ẑ
0

ζ) : D(y, Ẑ
0

η)〉bYs
= −〈Π̂0

s〉bYs

(
(I⊗ I) : ζ

)
: η. (7.36)

Thus,

(N̂s : ζ) : η = (1− m̂)ζ : η + 〈D(y, Ẑζ)〉bYs
: η + 〈D(y, Ẑ

0

ζ)〉bYs
: η

+ 〈D(y, Ẑ
0

η)〉bYs
: ζ + 〈D(y, Ẑ

0

ζ) : D(y, Ẑ
0

η)〉bYs
.

Using (7.33) and (7.34), we finally obtain

(N̂s : ζ) : η = 〈
(
D(y, Ẑζ + Ẑ

0

ζ) + ζ
)

:
(
D(y, Ẑη + Ẑ

0

η) + η
)
〉bYs
. (7.37)

This expression shows that the tensor N̂s is symmetric. In particular,

(N̂s : η) : η =
〈(

D(y, Ẑη + Ẑ
0

η) + η
)

:
(
D(y, Ẑη + Ẑ

0

η) + η
)〉bYs

> a0 = const > 0

for all η with
∑3

i,j=1 |ηij |2 = 1.
Indeed, assume the opposite: there is a constant matrix η̃ with

∑3
i,j=1 |η̃ij |2 = 1

such that
D(y, V̂ eη) + η̃ = 0, V̂ eη = Ẑeη + Ẑ

0eη, (7.38)

that is, the function V̂ eη is linear. By (7.26) and (7.27) we have

∇y ·
((

1− χ̂(x,y)
)(

D(y, V̂ eη) + η̃ − Q̂eηI
))

= 0,

(1− χ̂(x,y))
(
∇y · (V̂ eη + 1)

)
= 0, y ∈ Ŷ ,

〈V̂ eη〉bYs
= 0, 〈Q̂eη〉bYs

= 0.

(7.39)
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Since this system has a unique periodic solution V̂ eη ∈C∞(Ŷ ) and every periodic
linear infinitely differentiable function is constant, we obtain that V̂ eη ∈ C∞(Ŷ ) = 0
and η = 0. Thus the symmetric tensor N̂s is strictly positive definite. �

Lemma 7.11. Under the hypotheses of Theorem 4.2, if the common porous space
is connected, then the boundary condition (4.14) holds on the common boundary S0.
In the opposite case, the boundary condition (4.15) holds on the common bound-
ary S0.

Proof. When the common porous space is disconnected, we consider a ball Bδ with
centre x0 ∈S0 and radius δ and put Γ0

δ = ∂Bδ

⋂
S0 and B+

δ = {x∈Bδ(x0) : x3> 0}.
We define w̃ε = wε −wε

s. Then w̃ε = 0 in Qε
s. By assumption, S0 ⊂ Qε

s (the
common porous space is disconnected). Hence, w̃ε = 0 on S0.

We now use the continuity equation (3.1). For an arbitrary smooth compactly
supported function ξ(x, t) on Bδ, we have∫ T

0

∫
B+

δ

ξ∇ ·wε
s dx dt = −

∫ T

0

∫
B+

δ

ξ∇ · w̃ε dx dt

=
∫ T

0

∫
B+

δ

∇ξ · w̃ε dx dt =
∫ T

0

∫
B+

δ

χε∇ξ · w̃ε dx dt

=
∫ T

0

∫
B+

δ

χε∇ξ · (wε −wε
s) dx dt =

∫ T

0

∫
B+

δ

∇ξ · (wε
f − χεwε

s) dx dt

or ∫ T

0

∫
B+

δ

ξ∇ ·wε
s dx dt =

∫ T

0

∫
B+

δ

∇ξ · (wε
f − χεwε

s) dx dt.

Letting ε→ 0 in the last identity, we obtain that∫ T

0

∫
B+

δ

ξ
(
m∇ ·wε

s + 〈D(y, Ŵ s)〉bYf
dx dt =

∫ T

0

∫
B+

δ

∇ξ · (wf −mws) dx dt.

Integrating by parts once again, we arrive at the equality∫ T

0

∫
B+

δ

ξ
(
m∇ ·wε

s + 〈D(y, Ŵ s)〉bYf
+∇ · (wf −mws)

)
dx dt

=
∫ T

0

∫
Γ0

δ

ξn · (wf −mws) dσ dt. (7.40)

For compactly supported functions ξ on B+
δ , (7.40) yields that

m∇ ·wε
s + 〈D(y, Ŵ s)〉bYf

+∇ · (wf −mws) = 0.

In view of this equality, the identity (7.40) takes the following form for arbitrary
functions ξ: ∫ T

0

∫
Γ0

δ

ξn · (wf −mws) dσ dt = 0.

This identity is equivalent to the boundary condition (4.15).
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We now assume that the common porous space is connected. By definition of
a connected porous space, Y 0

f ∩ Yf 6= ∅. Consider the identity (6.13) with

t0 = T, ψ = h(x, t)ψi

(
x

ε

)
,

where

supp(h) ⊂ Bδ, supp(ψi) ⊂ Y 0
f ∩ Yf , 〈ψi〉Y = ei, i = 1, 2, 3,

and {e1, e2, e3} is the Cartesian orthogonal basis, and pass to a limit as ε→ 0.
We have

0 =
∫ T

0

∫
Q

((
µ1 ε

2χ̂ εD(x,wε) + (1− χ̂ ε)λ̂(x)D(x,uε)
)

: D(x, hψi)

− πε∇ ·ψ − %̂ εΦε ·ψi

)
dx dt

=
∫ T

0

∫
Q

(
h(x)χ̂ ε

(
µ1 εD(x,wε) : D(x,ψi)− πε∇h(x) ·ψi

))
dx dt+ o(ε)

→
∫ T

0

∫
Q

(
h(x)Ai − πf 〈ψi〉bYf

)
dx dt = 0.

Here

Ai =
∫

bYf

µ1D(y, Ŵ ) : D(y,ψi) dy ∈ L2

(
Q× (0, T )

)
, πf ∈ L2

(
Q× (0, T )

)
.

Therefore,

∂πf

∂xi
= −Ai ∈ L2

(
Q× (0, T )

)
and πf ∈ W1,0

2

(
Q× (0, T )

)
.

This guarantees the continuity (in the sense of L2

(
Q × (0, T )

)
) of the function

πf (x, t) on Q and, in particular, on S0. �

§ 8. Proof of Theorem 4.3

The proof of this theorem follows from Theorem 4.2 as k → ∞ and from the
bounds (4.6), which still hold for the solutions of the problem (4.7)–(4.15) after
passage to the limit as ε→ 0.
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