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Abstract—A problem with free (unknown) boundary for a one-dimensional diffusion-convection
equation is considered. The unknown boundary is found from an additional condition on the free
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an initial boundary-value problem for a strictly parabolic equation with unknown coefficients in a
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1. INTRODUCTION

Problems with free (unknown) boundary for differential equations belong to the most complicated
problems in the theory of partial differential equations. In these problems, it is necessary to not only solve
a differential equation but also determine a domain in which the solution is sought. As a rule, this domain
(the boundary) is determined from an additional boundary condition on the free boundary. In the theory
of free boundary problems, the following two problems are well known: the Stefan problem [1], [2] and
Hele–Show problem [3] for the heat equation and the Laplace equations, respectively. These problems
are fairly easy to formulate, but, up to now, the existence of a classical solution has only been proved
for small times (except in certain simple cases). As to systems of differential equations, we note the
papers of Solonnikov and his colleagues on free-boundary problems for the system of Navier–Stokes
equations [4]–[6], as well as those of Friedman [7]. But, just as in the case of scalar equations, only the
existence of a classical solution for small times has been proved.

There is also a separate large class of free-boundary problems for equations of gas dynamics and
the hydrodynamics of an ideal incompressible liquid. These problems are well studied and have a long
history [8]–[10]. A typical problem of this class is the Cauchy–Poisson problem for waves on the surface
of an ideal incompressible liquid. In these problems, either approximate solutions (in “shallow water”)
or approximately exact solutions are studied.

We consider the mathematical model formulated in [3] and describing the underground leaching of
uranium by an acid solution. In the corresponding initial free boundary-value problem, the dynamics of
the carrier liquid in an unknown domain Ωf (t) obeys the linear Stokes equations

αμΔv −∇p = �ff , ∇ · v = 0. (1.1)

Here v is the velocity of the liquid, p is the pressure in the liquid, �f is the dimensionless density of
the liquid relateive to that of water in natural conditions, f is the dimensionless vector of given mass
forces, αμ = μ/(TLgρ0) = μ1ε

2 is the dimensionless viscosity of the liquid, μ is the viscosity of the
liquid, μ1 = const, μ1 > 0, T is the characteristic time of the physical process, L is the characteristic
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size of the physical domain, g is the acceleration of gravity, and ρ0 is the density of water in natural
conditions.

The diffusion and convection of the acid concentration c in Ωf (t) is described by the diffusion-
convection equations

∂c

∂t
+ v · ∇c = αcΔc, (1.2)

where αc = DT/L2 is the dimensionless diffusion coefficient of the acid and D is the diffusion coefficient
of the acid.

Equations (1.1) and (1.2) are conventional, as well as the mass conservation law

vn = −dnσ, σ =
(�s − �f )

�f
, (1.3)

on the free boundary Γ(t) [8].
Here vn is the normal velocity of the liquid in the direction of the outer unit normal n to the domain

Ωf (t), dn is the normal velocity of the free boundary, and �s is the dimensionless density of the solid
skeleton.

The condition of the equality to zero of the tangential component of the velocity on the free boundary
is also quite natural.

In addition, on the free boundary,

(dn − vn)c+ α
∂c

∂n
= −βc, (1.4)

dn = βγc. (1.5)

Problem (1.1)–(1.5) is closed by boundary conditions on the given boundary of the domain Ωf (t) and by
initial conditions.

The resulting mathematical model is strongly nonlinear; in our view, its well-posedness can be proved
(if at all) only either for small times or in the case of one spatial variable. The latter case will be the subject
of our consideration.

The scheme of proof is standard; it is based on the Schauder fixed-point theorem [11]. First, we fix a
set M of functions X(t) defining the free boundary and then solve the linear problem of finding a solution
c(x, t) of problem (1.1)–(1.4) with corresponding initial conditions and boundary conditions on a given
boundary. Further, from the boundary condition (1.5), we recover a function

Y (t) = X0 + βγ

ˆ t

0
c(X(τ), τ) dτ, Y = Φ(X).

We show that the operator Φ is completely continuous and takes the set M to itself. The application of
the Schauder fixed-point theorem concludes the proof of the theorem.

2. MAIN RESULTS

In the dimensionless variables

x → x

L
, t → t

T
, v → T

L
v, p → p∗p,

the behavior of an incompressible liquid in the domain

QX(t) =
t⋃

τ=0

ΩX(τ), ΩX(t) = {x : 0 < x < X(t) < 1},

is described by the system of differential equations

∂p

∂x
= 0, (2.1)
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∂v

∂x
= 0, (2.2)

∂c

∂t
=

∂

∂x

(
α
∂c

∂x
− vc

)
(2.3)

for the pressure p, the velocity v of the liquid, and the concentration c of the acid. The differential
equations are supplemented with the initial and boundary conditions

c = c0(t), x = 0, 0 < t < 1, (2.4)

α
∂c

∂x
+

(
dX

dt
− v

)
c = −βc, x = X(t), 0 < t < 1, (2.5)

dX

dt
= βγc, x = X(t), 0 < t < 1, (2.6)

v(t) = −σ
dX

dt
(t), 0 < t < 1, (2.7)

c(x, 0) = c0(x), 0 < x < X0, X(0) = X0. (2.8)

In (2.1)–(2.8),

α =
DT

L2
, σ =

(ρs − ρf )

ρf
,

where L is the characteristic size of the domain, T is the characteristic time of the process, ρf is the
density of the liquid, ρs is of the density of the rocks, D is the diffusion coefficient of the acid, and β and
γ are given positive constants.

For simplicity, we assume that c0(t) ≡ 0.

To determine a generalized solution of problem (2.1)–(2.8), it is necessary to rewrite the original
problem in the form of differential equations in the equivalent form of integral identities supplemented
with the corresponding boundary and initial conditions.

First, using equalities (2.6) and (2.7), we change the boundary condition (2.5):

α
∂c

∂x
+

(
dX

dt
− v

)
c = −βc = −1

γ

dX

dt
=

1

γσ
v.

By their physical meaning, the concentration c(x, t) of the acid and the velocity (dX/dt)(t) of the
variation of the boundary x = X(t) are nonnegative. Unfortunately, this does not follow directly from
the auxiliary linear problem (i.e., from the original problem without the boundary condition (2.6)), even
if we assume that (dX/dt)(t) ≥ 0.

To prove the nonnegativity of the acid concentration, instead of the last condition, we consider the
modified condition

α
∂c

∂x
− v

(
c+

sgn c

γσ

)
= −dX

dt
c, x = X(t), 0 < t < 1. (2.9)

The boundary condition (2.9) will coincide with the boundary condition (2.5) if we show that the
solution c(x, t) of the linear problem (2.4), (2.7)–(2.9) in the domain QX(1) with a given boundary
x = X(t) such that (dX/dt)(t) ≥ 0 is nonnegative.

To do this, let us rewrite Eq. (2.3) in the equivalent form

∂c

∂t
=

∂

∂x

(
α
∂c

∂x
− v

(
c+

sgn c

γσ

))
, 0 < x < X(t), 0 < t < 1. (2.10)

We now multiply the diffusion-convection equation (2.10) by an arbitrary smooth function ξ equal
to zero at x = 0 and then integrate the resulting equality by parts over the domain QX(t), using the
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boundary condition (2.9):ˆ
ΩX(t)

c(x, t)ξ(x, t) dx +

ˆ t

0

ˆ
ΩX(τ)

(
−c

∂ξ

∂τ
+

(
α
∂c

∂x
− v

(
c+

sgn c

γ σ

))
∂ξ

∂x

)
dx dτ

=

ˆ
ΩX(0)

c0(x) ξ(x, 0) dx. (2.11)

Identity (2.11) with sufficiently smooth functions contains the differential equation (2.10) and the
boundary condition (2.9).

To verify identities (2.11), it suffices to return to the original differential equation (2.10), using the
Stokes theorem in the form¨

QX(t)
ξ

(
∂A

∂τ
+

∂B

∂x

)
dx dτ

=

ˆ
ΩX(τ)

ξ A|τ=t
τ=0 dx−

¨
QX(t)

(
A
∂ξ

∂τ
+B

∂ξ

∂x

)
dx dτ +

ˆ t

0
ξ̃

(
B̃ − Ã

dX

dτ

)
dτ

=

ˆ
ΩX(t)

ξ(x, t)A(x, t) dx −
ˆ
ΩX(0)

ξ(x, 0)A(x, 0) dx −
¨

QX(t)

(
A
∂ξ

∂τ
+B

∂ξ

∂x

)
dx dτ (2.12)

and the corresponding boundary condition on the free boundary x = X(t).
In (2.12), we take

A = −c, B = α
∂c

∂x
− v

(
c+

sgn c

γσ

)
, ϕ̃(t) = ϕ(X(t), t).

Definition 1. The functions {c(x, t),X(t)} are called a generalized solution of problem (2.1)–(2.7)
if

c ∈ W
1,0
2 (QX(1)), X ∈ W

1
∞(0, 1),

dX

dt
(t) ≥ 0 a.e. for 0 < t < 1

and the integral identity (2.11), Eqs. (2.6) and (2.7), and the boundary condition (2.4) hold.

Definition 2. A function c(x, t) ∈ W
1,0
2 (QX(1)) is called a generalized solution of problem (2.4),

(2.7)–(2.10) for a given function

X ∈ W
1,0
∞ (0, 1),

dX

dt
(t) ≥ 0

if the integral identity (2.11), Eq. (2.7), the boundary condition (2.4), and the initial condition (2.8) hold.

In the present paper, we use the notation of [1] for function spaces and norms on these spaces.

Lemma 1. Let c0 ∈ L∞(ΩX(0)), and let 0 ≤ c0(x) ≤ M1 almost everywhere in ΩX(0). Then, for
any function X ∈ W

1
∞(0, 1) such that dX/dt ≥ 0, there exists a unique generalized solution of

problem (2.4), (2.7)–(2.10).

Lemma 2. Under the assumptions of Lemma 1, the following estimate holds:

vrai min
(x,t)∈QX(1)

c(x, t) ≥ 0. (2.13)

Lemma 3. Under the assumptions of Lemma 1, the following estimate holds:

vrai max
(x,t)∈QX(1)

c(x, t) ≤ vrai max
x∈ΩX(0)

c0(x) = M1. (2.14)

Theorem 1. Under the assumptions of Lemma 1, let c0 ∈ W
1
2(ΩX(0)). Then problem (2.1)–(2.8)

has at least one generalized solution.
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3. PROOF OF LEMMA 1

The proof of this lemma is standard, because the problem possesses the following a priori estimate:

sup
0<t<1

ˆ
ΩX(t)

c2(x, t) dx ≤ M2
0 =

ˆ
ΩX(0)

c20(x) dx (3.1)

with constant M0 depending only on the data of the problem; this estimate follows from the equality

1

2

d

dt

ˆ
ΩX(t)

c2(x, t) dx + α

ˆ
ΩX(t)

∣∣∣∣
∂c

∂x
(x, t)

∣∣∣∣
2

dx+
dX

dt
(t)

((
1

2
+ σ

)
c̃ 2(t) +

1

γ
|c̃(t)|

)
= 0. (3.2)

It will be shown in Sec. 5 how to obtain equalities similar to equality (3.2).

4. PROOF OF LEMMA 2

To prove (2.13), we set w(x, t) = sup{0,−c(x, t)},

w(0, t) = 0, 0 < t < 1, w(x, 0) = 0, 0 < x < 1, (4.1)

w =
∂w

∂x
= 0, if c ≥ 0, w = −c,

∂w

∂x
= − ∂c

∂x
, if c < 0. (4.2)

Besides,

wc = w2, w
∂c

∂x
= w

∂w

∂x
, c

∂w

∂x
= w

∂w

∂x
(4.3)

almost everywhere in QX .
Further, we consider the Steklov averagings

ξ(h)(x, t) =
1

h

ˆ t+h

t
ξ(x, s) ds, ξ(h )(x, t) =

1

h

ˆ t

t−h
ξ(x, s) ds

of the function ξ over the variable t.
We assume that all the functions under consideration are identically zero for t < 0. Thenˆ t

0
ξ(h)(x, t)c(x, t) dt =

ˆ t

0
ξ(x, t)c(h )(x, t) dt,

∂ξ(h)

∂t
=

(
∂ξ

∂t

)

(h)

and, in view of the properties of averagings [1, Lemma 4.7, Sec. 4, Chap. 2], the integrated (over time)
identity (2.11) for the test function ξ = ζ(h)(x, t) with nonpositive functions ξ and ζ will take the form

ˆ 1

0

ˆ
ΩX(t)

c(h)(x, t)ζ(x, t) dx dt

+

ˆ 1

0

ˆ t

0

ˆ
ΩX(τ)

(
−c(h)

∂ζ

∂τ
+

(
α
∂c

∂x
− v

(
c+

sgn c

γσ

))

(h)

∂ζ

∂x

)
dx dτ dt

=

ˆ
ΩX(0)

c0(x)ξ(x, 0) dx ≤ 0. (4.4)

Now, for the test function ζ(x, t) in (4.4) we will choose the function

ζ = w
(0)
h (x, t) = (−c(h))

(0)(x, t) = max{−c(h), 0},
where

u(k)(x, t) = max{u(x, t), k}, w
(0)
(h)(x, 0) = 0, w

(0)
(h)(0, t) = 0.

By analogy with (4.3), we have

c(h)(x, t)
∂w

(0)
(h)

∂t
(x, t) = w

(0)
h (x, t)

∂w
(0)
(h)

∂t
(x, t)
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and, therefore,
ˆ t

0
dτ

ˆ
ΩX(τ)

ch(x, τ)
∂w

(0)
(h)

∂τ
(x, τ) dx =

ˆ t

0
dτ

ˆ
ΩX(τ)

w
(0)
h (x, τ)

∂w
(0)
h

∂τ
(x, τ) dx

=
1

2

ˆ
ΩX(t)

(w
(0)
h (x, t))2 dx− 1

2

ˆ t

0
(w̃

(0)
h (τ))2

dX

dt
(τ) dτ.

Thus, (4.4) can be rewritten asˆ 1

0

ˆ
ΩX(t)

c(x, t)(w
(0)
h )(h )(x, t) dx dt

− 1

2

ˆ 1

0

ˆ
ΩX(t)

(w
(0)
h (x, t))2 dx dt+

1

2

ˆ 1

0

ˆ t

0
(w̃

(0)
h (τ))2

dX

dt
(τ) dτ dt

+

ˆ 1

0

ˆ t

0

ˆ
ΩX(τ)

((
α
∂c

∂x
− v

(
c+

sgn c

γσ

))
∂(w

(0)
h )(h)

∂x

)
dx dτ dt = 0. (4.5)

Passing to the limit as h → 0 in (4.5), we obtain the equalities

0 =
1

2

ˆ 1

0

ˆ
ΩX(t)

(w(0)(x, t))2 dx dt+
1

2

ˆ 1

0

ˆ t

0
(w̃ (0)(τ))2

dX

dt
(τ) dτ dt

+

ˆ 1

0

ˆ t

0

ˆ
ΩX(τ)

((
α
∂c

∂x
− v

(
c+

sgn c

γσ

))
∂w(0)

∂x

)
dx dτ dt

=
1

2

ˆ 1

0

ˆ
ΩX(t)

(w(0)(x, t))2 dx dt+ α

ˆ 1

0

ˆ t

0

ˆ
ΩX(τ)

(
∂w(0)

∂x

)2

dx dτ dt

+

ˆ 1

0

ˆ t

0

dX

dt
(τ)

(
1

2
+ σ(w̃ (0)(τ)

)2

+
1

γ
|w̃(0)(τ)|

)
dτ dt = 0. (4.6)

Therefore,

w(0)(x, t) = max{0,−c(x, t)} = 0 a.e. in QX(1),

c(x, t) ≥ 0 a.e. in QX(1). (4.7)

5. PROOF OF LEMMA 3
The proof of Lemma 3 repeats, except for small changes, the proof of Lemma 2.
Here for the test function ξ in identity (2.11) integrated over time we must take the function

ξ(x, t) = w
(k)
h (x, t) = max{c(k)(h)(x, t)− k, 0}, where w

(k)
h (x, 0) = 0, w

(k)
h (0, t) = 0,

for

k > M1 = vrai max
x∈Ωf (0)

c0(x).

6. PROOF OF THEOREM 1
6.1. Definition of the Domain of the Operator Φ

The estimates (2.13) and (2.14) show that, for any monotonically increasing function X(t),

0 ≤ c(x, t) ≤ M1 a.e. in the domain QX(1). (6.1)

In other words, for any function X(t) from the set

M =

{
X ∈ W

1
∞(0, 1) : 0 ≤ dX

dt
(t) ≤ M1 a.e. for 0 < t < 1

}
, (6.2)
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the following inequalities always hold:

0 ≤ dY

dt
(t) = c̃(t) ≤ M1 a.e. for 0 < t < 1, Y = Φ(X). (6.3)

Thus, the operator Φ takes the set M to itself. The fixed points of this operator define a solution of the
original problem (2.1)–(2.8).

6.2. Continuity of the Operator Φ

The continuity of the operator Φ follows from the continuous dependence of the solutions of the
parabolic equation (2.3) on the coefficient v = −σ dX/dt of this equation and on the position of the
boundary x = X(t) of the domain ΩX(t). This obvious fact is well known, but it is impossible to give
any specific reference, perhaps, because of the simplicity of the result.

Our case is a little more complicated, because the function X(t) not only appears in the coefficients
of the equation and the boundary condition but also defines the domain in which the solution is sought.

To prove this assertion, we consider X(1),X(2) ∈ M, and let c(1) and c(2) be generalized solutions of
problem (2.1)–(2.5), (2.7), (2.8) in the domains QX(1)(1) and QX(2)(1) corresponding to X(1) and X(2).
To estimate the difference c = c(1) − c(2), we must first consider these problems in one of the domains,
for example, in Q = QX(1)(1).

To this end, we change the variables:

x = y, t = t in the domains QX(1)(1),

y = zx, t = t in the domains QX(2)(1),
z =

X1(t)

X2(t)
.

In the domain Q, the functions u(1)(y, t) = c(1)(x, t), u(2)(y, t) = c(2)(x, t) satisfy the differential equa-
tions

∂u(1)

∂t
=

∂

∂y

(
α
∂u(1)

∂y
+ σ

dX(1)

dt
u(1)

)
,

∂u(2)

∂t
=

∂

∂y

(
α
∂u(2)

∂y
+ zσ

dX(2)

dt
u(2) + (1− z2)α

∂u(2)

∂y

)
− y

z

dz

dt

∂u(2)

∂y

and the boundary conditions

α
∂u(1)

∂y
= −(1 + σ)

dX(1)

dt
ũ(1) − 1

γ

dX(1)

dt
,

α
∂u(2)

∂y
= −

(
1 + σ

z

)
dX(2)

dt
ũ(2) − 1

γz

dX(2)

dt

on the boundary y = X(1).
In addition,

u(1)(0, t) = u(2)(0, t) = 0, 0 < t < 1, u(1)(y, 0) = u(2)(y, 0), 0 < y < X0.

Thus, for the difference {u = u(1) − u(2), X = X(1) −X(2)}, we obtain the initial boundary-value
problem consisting of the differential equation

∂u

∂t
− ∂

∂y

(
α
∂u

∂y
++σ

dX(1)

dt
u

)
=

∂F

∂y
+ F0 (6.4)

in the domain Q, the boundary condition

α
∂u

∂y
+ σ

dX(1)

dt
ũ = −dX(1)

dt
ũ+ f (6.5)

on the boundary y = X(1), and the boundary and initial conditions

u(0, t) = 0, 0 < t < 1, u(y, 0) = 0, 0 < y < X0, (6.6)
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respectively, on the boundary y = 0 and at the initial instant of time t = 0.

In (6.4) and (6.5),

F = σu(2)
dX

dt
+ α(z2 − 1)

∂u(2)

∂y
, F0 =

(
σ(z − 1)

dX(2)

dt
+

y

z

dz

dt

)
∂u(2)

∂y
,

f = −
(
1

γ
+ (1 + σ)ũ(2)

)
dX

dt
+

(
1

z
− 1

)
dX(2)

dt

(
1

γ
+ (1 + σ)ũ(2)

)
.

If we now multiply Eq. (6.4) by u(y, t) and integrate by parts over the domain Q, taking into account
the boundary and initial conditions (6.5) and (6.6), then, after a few manipulations, we obtain the
following chain of inequalities:

1

2

d

dt

ˆ
Ω

X(1)(t)
u2(y, t) dy +

ˆ
Ω

X(1) (t)
α

∣∣∣∣
∂u

∂y
(y, t)

∣∣∣∣
2

dy +
1

2
(σ + 1)

dX(1)

dt
ũ 2(t)

≤ ũ(t)f̃(t) +

ˆ
Ω

X(1)(t)

(
−F (y, t)

∂u

∂y
(y, t) + F0(y, t)u(y, t)

)
dy

≤ 1

2
ũ 2(t) +

1

2

ˆ
Ω

X(1) (t)
u2(y, t) dy + ε

ˆ
Ω

X(1)(t)

∣∣∣∣
∂u

∂y
(y, t)

∣∣∣∣
2

dy

+
1

2
f̃ 2(t) +

ˆ
Ω

X(1)(t)

(
1

2
|F0(y, t)|2 +

1

4ε
|F (y, t)|2

)
dy

≤
(
1

2
+

1

ε0

)ˆ
Ω

X(1)(t)
u2(y, t) dy + (ε+ ε0)

ˆ
Ω

X(1)(t)

∣∣∣∣
∂u

∂y
(y, t)

∣∣∣∣
2

dy

+ C2(ε)

(
|X(t)|2 +

∣∣∣∣
dX

dt
(t)

∣∣∣∣
2)

.

Here we have used the simplest interpolation inequality [1, Theorem 2.2, Sec. 2, Chap. 2]

ũ 2(t) = 2

ˆ
Ω

X(1)

u(y, t)
∂u

∂y
(y, t) dy ≤ 1

ε0

ˆ
Ω

X(1)

u2(y, t) dy + ε0

ˆ
Ω

X(1)

∣∣∣∣
∂u

∂y
(y, t)

∣∣∣∣
2

dy

and the properties of the functions F0, F , and f :
ˆ 1

0
f̃ 2(t) dt+

ˆ 1

0
dt

ˆ
Ω

X(1)

(|F0(y, t)|2 + |F (y, t)|2) dy ≤ C

ˆ 1

0

(
|X(t)|2 +

∣∣∣∣
dX

dt
(t)

∣∣∣∣
2)

dt.

Choosing ε0 + ε = α/2 and using Gronwall’s inequality [1, Lemma 5.5, Sec. 2, Chap. 2], we obtain the
necessary estimate

ˆ
Ω

X(1)

u2(y, t) dy +

ˆ t

0

ˆ
Ω

X(1)(τ)

∣∣∣∣
∂u

∂y
(y, τ)

∣∣∣∣
2

dy dτ ≤ C

(
|X(t)|2 +

∣∣∣∣
dX

dt
(t)

∣∣∣∣
2)

, (6.7)

which yields the required statement.

6.3. Complete Continuity of the Operator Φ

To use Schauder’s theorem [11] and prove the existence of at least one fixed point of the operator Φ,
we must show that this operator is compact. The simplest way to do this is to make the change of
variables

t = t, y =
x

X(t)
in the domain QX(1),
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which reduces problem (2.4), (2.7)–(2.10) in the domain QX(1) to the integral identityˆ 1

0
u(y, t)η(y, t) dy +

ˆ t

0

ˆ 1

0

(
−u

∂η

∂τ
+

(
α

X2

∂u

∂y
+

1

X

dX

dt
(y + σ)u+

1

γ

))
∂η

∂y

)
dy dτ

=

ˆ 1

0
u(y, t)η(y, t) dy +

ˆ t

0

ˆ 1

0

(
−u

∂η

∂τ
+

(
a11

∂u

∂y
+ a1u+ f1

))
∂η

∂y

)
dy dτ

=

ˆ 1

0
u0(y)ξ(y, 0) dy (6.8)

for the function u(y, t) = X(t)c(x, t) in the square Q0,1, where

Qa,b = Ω× (a, b) = {(y, t) : 0 < y < 1, a < t < b}, Ω = {y : 0 < y < 1};
this integral identity will be valid for any smooth function η(y, t) vanishing at y = 1.

In (6.8), we set

a11 =
α

X2(t)
, a1 =

1

X

dX

dt
(t)(y + σ), f1 =

1

γ
.

By construction,

u(0, t) = 0, 0 < t < 1. (6.9)

Obviously, the complete continuity of the operator Φ will follow from the Hölder continuity of the
function u(y, t). After the corresponding integral identity is obtained, the proof of this fact repeats that
of the estimate of the Hölder constant in [1, Sec. 2, Chap. 3]. Without going into details, we repeat the
scheme of proof.

In identity (6.8), we consider the test function η = η̂(h ), where η̂ vanishes for t ≤ 0 and 1− h ≤ t ≤ 1

and is equal to a function η(y, t) from W
1,1
2 (Q−h,1) that vanishes at y = 0. We have

0 =

ˆ 1−h

0

ˆ 1

0

(
−u(h)

∂η

∂t
+

(
a11

∂u

∂y
+ a1u+ f1

))

(h)

∂η

∂y

)
dy dt

=

ˆ 1−h

0

ˆ 1

0

(
∂u(h)

∂t
η +

(
a11

∂u

∂y
+ a1u+ f1

))

(h)

∂η

∂y

)
dy dt = 0. (6.10)

Let χk(τ) denote the following continuous piecewise linear functions:

χk(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for τ ≤ t0 −
1

k
,

k(τ − t0) + 1 for t0 −
1

k
≤ τ ≤ t0,

1 for t0 ≤ τ ≤ t,

k(t− τ) + 1 for t ≤ τ ≤ t+
1

k
,

0 for τ ≥ t+
1

k
,

0 ≤ t0 < t ≤ 1− h.

For η = χk(τ)ζ(y, τ), in identity (6.10), we shall pass to the limit as k → ∞, obtaining
ˆ t

t0

ˆ
Ω

(
∂u(h)

∂τ
ζ +

(
a11

∂u

∂y
+ a1u+ f1

))

(h)

∂ζ

∂y

)
dy dτ = 0. (6.11)

Further, we take an arbitrary cylinder

Q(�, δ) = K� × (t0, t0 + δ), K� = {y : 1− � < y ≤ 1}
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and, in (6.11), we set

ζ(y, τ) = ξ2(y, τ)u
(k)
(h)(y, τ) = ξ2(y, τ)max{u(h)(y, τ)− k, 0},

where ξ(y, τ) is a nonnegative continuous piecewise smooth function not exceeding 1 and equal to zero
on the lateral surface Q(�, δ) and outside the cylinder.

After standard manipulations and the passage to the limit as h → 0, we obtain the equality

1

2
‖u(k)(y, t)ξ(y, t)(y, t)‖2K�

− 1

2
‖u(k)(y, t0)ξ(y, t0)‖2K�

−
ˆ t

t0

ˆ
Ak,�(t)

(u(k))2ξ
∂ξ

∂τ
dy dτ

+

ˆ t

t0

ˆ
Ak,�(t)

((
a11

∂u(k)

∂y
+ a1u+ f1

)(
ξ2

∂u(k)

∂y
+ 2u(k)ξ

∂ξ

∂y

))
dy dτ = 0, (6.12)

where
u(k)(y, τ) = max{u(y, τ) − k, 0}, t0 < τ < t < τ < t0 + δ,

Ak,�(t) = {y ∈ K� : u(y, t) > k}.
Since the functions u(y, t), a1, and f1 are bounded, it follows that

1

2
‖u(k)(y, t)ξ(y, t)‖2K�

+
α

X2
0

ˆ t

t0

ˆ
K�

(
∂u(k)

∂y

)2

ξ2 dy dτ

≤ 1

2
‖u(k)(y, t0)ξ(y, t0)‖2K�

+ C

ˆ t

t0

ˆ
K�

((
∂ξ

∂y

)2

+ ξ

∣∣∣∣
∂ξ

∂τ

∣∣∣∣

)
(u(k))2 dy dτ

+ C(M2 + 1)

ˆ t

t0

ˆ
K�

ξ2 dy dτ. (6.13)

The last inequality guarantees the boundedness of the Hölder norm of the function u(y, t) with respect
to time on the boundary y = 1 and hence the complete continuity of the operator Φ. Thus, the operator Φ
has at least one fixed point. As already noted, all the fixed points of the operator Φ determine a solution
of the original problem (2.1)–(2.8), which concludes the proof of Theorem 1.

REFERENCES
1. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of

Parabolic Type (Nauka, Moscow, 1967) [in Russian].
2. A. M. Meirmanov, Stefan’s Problem (Nauka, Sibir. Otd., Novosibirsk, 1986) [in Russian].
3. A. M. Meirmanov, O. V. Galtsev, and R. N. Zimin, Free Boundaries in Rock Mechanics (De Gruyter, Berlin,

2017).
4. V. A. Solonnikov, “An initial-boundary value problem for a Stokes system that arises in the study of a

problem with a free boundary,” in Trudy Mat. Inst. Steklova, Vol. 188: Boundary-Value Problems of
Mathematical Physics. 14 (Nauka, Leningrad. Otd., Leningrad, 1990), pp. 150–188 [Proc. Steklov Inst.
Math. 188, 191–239 (1991)].

5. V. A. Solonnikov, “Solvability of a problem on the evolution of a viscous incompressible fluid, bounded by a
free surface, on a finite time interval,” Algebra Anal. 3 (1), 222–257 (1991) [St. Petersburg Math. J. 3 (1),
189–220 (1992)].

6. V. A. Solonnikov, “Lectures on evolution free boundary-value problems: classical solutions,” in Mathe-
matical Aspects of Evolving Interfaces, Lecture We notes in Math. (Springer, Berlin, 2003), Vol. 1812,
pp. 123–175.

7. A. Friedman, “A free boundary-value problem for coupled system of elliptic, hyperbolic and Stokes equations
modeling tumor growth,” Interfaces Free Bound. 8 (2), 247–261 (2006).

8. L. V. Ovsyannikov, N. I. Makarenko, V. I. Nalimov, V. Yu. Lyapidevskii, P. I. Plotnikov, I. V. Sturova,
V. I. Bukreev, and V. A. Vladimirov, Nonlinear Problems in the Theory of Surface and Internal Waves
(Nauka, Sibir. Otd., Novosibirsk, 1985) [in Russian].

9. V. N. Monakhov, Boundary-Value Problems with Free Boundaries for Elliptic Systems of Equations
(Nauka, Sibir. Otd., Novosibirsk, 1977) [in Russian].

10. M. A. Lavrent’ev and B. V. Shabat, Problems of Hydrodynamics and Their Mathematical Models
(Nauka, Moscow, 1973) [in Russian].

11. J. Schauder, “Der Fixpunktsatz in Funktionalraümen,” Studia Math. 2, 171–180 (1930).
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