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Abstract: The microstructural changes leading to nanocrystalline structure development 

and the respective tensile properties were studied in a 304L stainless steel subjected to 

large strain cold rolling at ambient temperature. The cold rolling was accompanied by the 

development of deformation twinning and martensitic transformation. The latter readily 

occurred at deformation microshear bands, leading the martensite fraction to approach 0.75 

at a total strain of 3. The deformation twinning followed by microshear banding and 

martensitic transformation promoted the development of nanocrystalline structure consisting 

of a uniform mixture of austenite and martensite grains with their transverse sizes of  

120–150 nm. The developed nanocrystallites were characterized by high dislocation 

density in their interiors of about 3 × 1015 m−2 and 2 × 1015 m−2 in austenite and martensite, 

respectively. The development of nanocrystalline structures with high internal stresses led 

to significant strengthening. The yield strength increased from 220 MPa in the original hot 

forged state to 1600 MPa after cold rolling to a strain of 3. 

Keywords: austenitic stainless steel; severe plastic deformation; deformation twinning; 

strain-induced martensite; grain refinement; nanocrystalline structure; strengthening 
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1. Introduction 

The large strain deformations are considered as promising methods for development of advanced 

structural steels and alloys with enhanced mechanical properties [1,2]. The significant improvement of 

mechanical properties of metallic materials subjected to severe plastic deformations is commonly 

attributed to the strain-induced ultrafine-grained or, even, nanocrystalline structures [3–5]. The 

ultrafine-grained materials have been shown to possess a unique combination of high strength and 

surprisingly large ductility [6]. The efficiency of cold working for processing the high-strength 

ultrafine-grained/nanocrystalline products depends remarkably on the kinetics of grain refinement 

during plastic deformation. Austenitic stainless steels are typical representative of metallic materials 

exhibiting rapid grain refinement upon cold working [7–10]. The grain refinement in these steels is 

promoted by an intensive grain subdivision, which is associated with deformation twinning followed 

by strain-induced martensitic transformation [9–13]. Therefore, the austenitic stainless steels can be 

easily produced in high-strength ultrafine-grained/nanocrystalline state by conventional cold working 

technique like plate rolling [10]. In spite of a number of research works dealing with nanocrystalline 

stainless steels processed by large strain cold working, however, the mechanisms of microstructure 

evolution, i.e., a role of deformation twinning and strain-induced martensite, and their contribution to 

strengthening are still unclear.  

The strengthening of metallic materials processed by large strain deformation is generally discussed 

in terms of either grain boundary strengthening [14] or dislocation strengthening [15,16]. The former is 

commonly evaluated as σGB = KεD−0.5, where D is the grain size and K is a constant; and the latter is 

related to a square root of dislocation density as σDISL = αGbρ0.5, where α, G, and b are a constant, the 

shear modulus, and the Burgers vector, respectively. Assuming that the grain boundary strengthening 

and the dislocation strengthening contribute independently to overall strength, a modified Hall-Petch-type 

relationship has been recently introduced to relate the yield strength of ultrafine-grained/nanocrystalline 

materials processed by severe plastic deformation to their microstructural parameters, i.e., the grain 

size and dislocation density, in the following form [17–19]: 

σ0.2 = 0 + KεD−0.5 + αGbρ0.5 (1)  

Here, σ0 is the strength of dislocation-free single crystal. Recent studies on severely deformed 

quasi-single phase ultrafine-grained/nanocrystalline materials have shown that the contribution from 

dislocation strengthening exceeds remarkably that from grain boundaries [20,21]. However, the 

strengthening mechanisms for ultrafine-grained/nanocrystalline materials such as metastable austenitic 

stainless steels, which experience martensitic phase transformation during cold working, have not  

been studied.  

The aim of this study is to clarify the microstructural operating mechanisms, which are mainly 

responsible to the development of nanocrystalline structure in a typical chromium-nickel stainless steel 

during large strain cold rolling, and to investigate the strengthening mechanisms of the cold rolled 

steel, namely, the relationship between the microstructural parameters and strength contributions.  
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2. Experimental Section 

A 304L-type austenitic steel (Fe-0.05%C-18.2%Cr-8.8%Ni-1.65%Mn-0.43%Si-0.05%P-0.04%S, 

all in wt%) with an initial grain size of 21 µm was hot forged and annealed at 1100 °C followed by air 

cooling. The plate rolling was carried out on samples with an initial cross section of 30 × 30 mm2 at 

room temperature to various total true strains up to 3. In order to clarify the conventional Hall-Petch 

relationship for the present steel, several rolled samples were annealed to various recrystallized grain 

sizes at temperatures of 900–1150 °C. The strain hardening was studied by Vickers hardness tests with 

a load of 3 N. The microstructural characterization was performed using a JEM-2100 transmission 

electron microscope (TEM, JEOL Ltd., Tokyo, Japan) and a Nova Nanosem 450 scanning electron 

microscope equipped with an electron back-scatter diffraction (EBSD) analyzer (FEI, Hillsboro, OR, 

USA) on the sample sections normal to the transverse direction. The volume fractions of the ferrite 

were averaged through X-ray analysis, magnetic induction method and EBSD technique. The transverse 

grain size was measured on EBSD micrographs by a linear intercept method along the normal 

direction. The dislocation density was estimated by counting individual dislocations revealed by TEM 

in the grain/subgrain interiors. The tensile tests were carried out at room temperature by using specimens 

with a gage length of 6 mm and width of 3 mm. The equilibrium phase content was calculated with 

ThermoCalc software using TCFE6 database (ThermoCalc Software, Stockholm, Sweden). 

3. Results and Discussion 

3.1. Strain Hardening and Phase Transformation  

The effects of cold rolling on the hardness and strain-induced martensite fraction are shown in 

Figure 1. The hardness drastically increases from about 1360 MPa to 4000 MPa during cold rolling to 

a total strain of 0.5. Then, the rate of strain hardening gradually slows down leading to a progressive 

increase in the hardness to above 5200 MPa as the total strain increases to 3. In contrast to strain 

hardening, the fraction of strain-induced martensite almost linearly increases with strain in the strain 

range of 0 < ε < 2. Upon further rolling, the kinetics of the phase transformation becomes sluggish 

leading the strain-induced martensite fraction to approach 0.75, which is close to its saturation value of 

about 0.85 as predicted by ThermoCalc. It should be noted in Figure 1 that there is no direct 

correlation between the strain hardening and the martensite transformation. In other words, the change 

in hardening rate during the rolling does not provide similar change in the martensite fraction. 

Remarkable increase in the martensite fraction from 0.2 to 0.65 occurs in the strain range from 0.5 to 2, 

while the hardness increase does not exceed 20%. 

3.2. Microstructure Evolution  

Typical deformation microstructures that developed during cold rolling to different total strains are 

shown in Figure 2. The deformation microstructures combined with the inverse pole figures for the 

normal direction (vertical in Figure 2) are shown in left-hand figures, whereas the right-hand figures 

represent the austenite/martensite phase distribution. An early deformation is accompanied by the 

frequent development of deformation twinning, which is typical feature of austenitic steels with low 
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stacking fault energy [9,10,13,20], followed by the martensitic transformation. Further deformation 

results in a flattening of the original grains and the development of microshear bands. The latter ones 

serve as preferential nucleation sites for the strain-induced martensite [11,22,23], resulting in 

significant increase in the martensite fraction at intermediate strains of around 1 as mentioned before in 

Figure 1. The grain flattening and the microshearing result in the wavy microstructure at large rolling 

strains. This microstructure is mainly composed by the strain-induced martensite, since its fraction 

comprises 0.75 at a large strain of 3. Therefore, the largely strained microstructure consists of highly 

elongated wavy martensite grains interleaved with chains of fine austenite grains.  

 

Figure 1. The effect of cold rolling strain on the hardness and strain-induced martensite 

fraction in a 304L stainless steel. 

 

Figure 2. Cont. 
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Figure 2. Deformation microstructures evolved in a 304L stainless steel during cold 

rolling various strains (ε). The black and white lines indicate the high-angle boundaries and 

twin boundaries, respectively. The inverse pole figures are shown for the normal direction.  

Some details of the development of nanocrystalline structure in the present steel during cold rolling 

are shown in Figure 3. The microshear bands play an important role in the evolution of nanocrystalline 

structure. At intermediate strains, the strain-induced martensite readily develops at microshear bands. 

Hence, the microshear bands consist of alternating nanocrystallites of austenite and martensite  

(s. enlarged portion at ε = 1 in Figure 3). At large strains, the microshear bands cross over the flattened 

martensite crystallites. It should be noted that the martensite nanocrystallites evolved at large total 

strains are subdivided by high-angle grain boundaries (s. enlarged portion at ε = 3 in Figure 3). 

The mechanisms of microstructure evolution during cold rolling are clearly reflected on the 

grain/phase boundary misorientation distributions evolved at different strain levels (Figure 4).  

The grain boundary misorientation distribution evolved at low to moderate stains of around 1 is 

characterized by three distinctive peaks against small angles below 10°, large angles around 45°, and 

large angles about 60°. The first of them is clearly associated with a number of low-angle deformation 

subboundaries that are commonly brought out by plastic deformation [2]. The second one around 45° 

results from martensitic transformation. The orientation relationships between austenite and martensite 

in stainless steels are close to those predicted by Kurdjumov-Sachs and Nishiyama-Wasserman, which 

result in misorientations of 42.9° and 46°, respectively, between austenite and martensite [9]. The third 

peak against 60° is, evidently, produced by deformation twinning, because the twin boundary 

misorientation in austenite is 60° around <111>. The misorientations of deformation subboundaries 

progressively increase during deformation [2]. Therefore, the fraction of low-angle subboundaries 

gradually decreases with increase in total strain. The pronounced deformation twinning at low to 

moderate strains seems to be exhausted at large strains. The corresponding 60° peak disappears at large 

strains. On the other hand, the strain-induced martensite continuously develops during the present cold 

rolling to a total strain of 3. It should be noted that grain boundaries in largely strained metals and 

alloys tend to exhibit random misorientation [2,24–26]. Therefore, the boundary misorientation 

distribution evolved in the stainless steel at large rolling strains looks like random distribution, which 

is superimposed with two peaks against small angles (deformation subboundaries are continuously 

developed) and large angles of 45° (resulting from martensitic orientation relationship). 
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Figure 3. Fine structures evolved in a 304L stainless steel subjected to cold rolling to total 

strains of ε =1 and ε = 3. The RD indicates the rolling direction. The numbers indicate the 

boundary misorientations in degrees.  

 

Figure 4. Grain boundary misorientation distributions evolved in a 304L stainless steel 

subjected to cold rolling to total strains of ε =1 and ε = 3.  

The strain effect on the transverse grain size and the dislocation density during cold rolling of the 

stainless steel (Figure 5) correlates with the strain hardening (Figure 1). The austenite grain size 

rapidly reduces to about 700 nm upon cold rolling to a strain of 1. Then, the strain effect on the grain 
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refinement becomes less pronounced as strain increases. The transverse grain size of austenite 

gradually decreases to about 150 nm during cold rolling to a strain of 3. The transverse grain size of 

strain-induced martensite is characterized by similar strain dependence, although the martensite grains 

are finer than the austenite ones, especially, at relatively small strains. The martensite grain size finally 

attains about 120 nm at a total strain of 3. The dislocation density rapidly increases above 1015 m−2 at 

early deformation. Further cold rolling is accompanied by gradual increase in the dislocation density, 

which finally attains about 3 × 1015 m−2 in austenite and 2 × 1015 m−2 in martensite. A relatively low 

dislocation density in martensite may result from enhanced recovery in bcc-lattice.  

 

Figure 5. The effect of cold rolling strain on the transverse grain size and dislocation 

density in austenite and strain-induced martensite in a 304L stainless steel.  

3.3. Tensile Behavior  

The tensile stress-elongation curves for the 304L stainless steel subjected to cold rolling to different 

total strains are shown in Figure 6. The tensile behavior is characterized by a peak stress at relatively small 

strain followed by a decrease of the flow stress until fracture. The tensile strength increases, while the total 

elongation decreases with an increase in the previous rolling strain. The rolling to a strain of 3 results 

in significant increase in the yield strength from 220 MPa in the initial annealed state to 1600 MPa. 

The total elongation decreases correspondingly from 100% to 4%. Some microstructural parameters 

and mechanical properties of the steel samples cold rolled to different strains are listed in Table 1. 

 

Figure 6. Engineering stress vs. plastic elongation curves for a 304L stainless steel 

subjected to cold rolling. 
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Table 1. The strain-induced martensite fraction (FM), the grain size (D), the dislocation 

density (ρ), the yield strength (σ0.2), the ultimate tensile strength (UTS), and the total 

elongation () of a 304L stainless steel subjected to cold rolling to different strains (ε).  

The indexes of A and M indicate the austenite and martensite, respectively.  

ε FM DA, µm DM, µm ρA, 1014 m−2 ρM, 1014 m−2 σ0.2, MPa UTS, MPa δ, % 

0 0 21 - 0.02 - 220 600 100 

0.5 0.20 2.85 1.33 25 16 950 1090 10 

1 0.35 0.6 0.29 28 17 1160 1295 8 

2 0.65 0.22 0.2 30 18 1485 1600 5 

3 0.75 0.145 0.115 32 22 1595 1785 4 

3.4. Strengthening Mechanisms  

The yield strength of the present 304L steel subjected to large strain cold rolling can be expressed 

by the modified Hall-Petch relationship (Equation (1)), taking into account separate contributions of 

austenite and martensite to overall strength: 

σ0.2 = FA(σ0A + KεADA
−0.5 + αAGAbAρA

0.5) + FM(σ0M + KεMDM
−0.5 + αMGMbMρM

0.5) (2)  

where indexes of A and M indicate austenite and martensite, respectively, FA and FM are the austenite 

and martensite fractions, i.e., FA + FM = 1. The values of 0 and K can be obtained from conventional 

Hall-Petch relationship. To clarify the Hall-Petch relationship for the present steel, several annealed 

samples with statically recrystallized microstructures were subjected to tensile tests. The corresponding 

relationship between the austenite grain size and the yield strength is shown in Figure 7. Note here that 

the grain sizes were evaluated as the mean grain boundary spacing, counting all high-angle boundaries 

including twin boundaries. It is clearly seen in Figure 7 that the yield strength can be related to the 

austenite grain size as follows: 

σ0.2A = 180 + 240DA
−0.5 (3)  

 

Figure 7. Hall-Petch relationship for a 304L stainless steel with annealed recrystallized 

microstructure and the effect of dislocation density (ρ) on the strength increment (∆σρ). 
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The σ0A = 180 MPa is quite close to those about 200 MPa reported for various austenitic  

steels [9,19,27]. The grain size strengthening in martensite can be evaluated by the following 

relationship, which has been obtained for recrystallized Fe–15%Cr steel [28]: 

σ0.2M = 180 + 240DM
−0.5 (4)  

Then, the dislocation strengthening can be estimated using the obtained data. The strength 

increment associated with dislocation strengthening from Equation (2) reads: 

∆σρ = σ0.2 − FAσ0.2A − FMσ0.2M = FAαAGAbAρA
0.5 + FMαMGMbMρM

0.5 (5)  

Note here that the shear modulus, G = 81 GPa, and Burgers vector, b = 0.25 nm, are almost the 

same for austenite and martensite (ferrite) [29]. Assuming that αA = αM, Equation (5) can be simplified 

as follows: 

∆σρ = αGb (FAρA
0.5 + FMρM

0.5) (6)  

Figure 7 shows the relationship between the dislocation density and the corresponding strength 

increment. Thus, the value of α = 0.73 is obtained from Figure 7. It should be noted that almost  

the same values of α have been used for calculation of dislocation strengthening in various  

alloys [19–21,30–32]. Finally, the following expression for the yield strength of the present steel 

subjected to cold rolling can be obtained: 

σ0.2 = FA180 + FM120 + 240(FADA
−0.5 + FMDM

−0.5) + 0.73Gb(FAρA
0.5 + FMρM

0.5) (7)  

The relationship between the experimental yield stress and calculated by Equation (7) is shown in 

Figure 8. It is clearly seen that the yield strengths obtained by the modified Hall-Petch type equation 

are quite coincident with the experimental results. Figure 8 also shows the contributions of different 

strengthening mechanisms, i.e., the austenite dislocation density (∆σρA), the austenite grain size 

(∆σDA), the martensite dislocation density (∆σρM), and the martensite grain size (∆σDA), into overall 

strength, taking into account the change in the austenite/martensite fraction during cold rolling.  

At small to moderate strains, the strengthening of the cold worked austenitic stainless steel is mainly 

provided by drastic increase in the dislocation density in the austenite. The strength contribution from 

austenite grain size becomes comparable with that from austenite dislocation density at rather large 

strains, when the grain size decreases to nano-scale level. The dislocation density and grain size of 

strain-induced martensite contribute to overall strength in similar manner as the austenite does. 

Namely, the strength increment from dislocation density significantly exceeds that from grain size at 

relatively small strains, whereas the strength increments from dislocation density and grain size 

become almost the same at large strains. However, the difference between the strength increments 

from dislocation density and grain size in the strain-induced martensite is much less pronounced than 

that in the austenite in the range of moderate to large strains. After rolling to a large total strain of 3, 

the same strengthening from martensite dislocation density and martensite grain size is observed 

(Figure 8). 
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Figure 8. The relationship between experimental and calculated yield strength (σ0.2) and 

the contribution of grain size strengthening (∆σD) and dislocation strengthening (∆σρ) into 

overall strength on a 304L stainless steel subjected to cold rolling. The indexes of A and M 

indicate the austenite and martensite, respectively. 

4. Conclusions 

The microstructural evolution and corresponding mechanical properties of a 304L austenitic 

stainless steel subjected to large strain cold rolling at room temperature were studied. The main results 

can be summarized as follows: 

1. The cold rolling was accompanied by a rapid increase in the dislocation density, which exceed 

1015 m−2 after straining to 0.5. Features of microstructural changes in the austenitic stainless steel 

during cold deformation were the deformation twinning and the development of strain-induced 

martensitic transformation, which resulted in martensite fraction of 0.75 after rolling to a strain of 3. 

Both the deformation twinning and strain-induced martensite led to the rapid grain refinement.  

The nanocrystalline structure consisting of austenite and martensite grains with transverse grain sizes 

of 145 nm and 115 nm, respectively, was developed at a large total strain of 3.  

2. The development of nanocrystalline structure provided significant strengthening. The yield 

strength increased from about 950 MPa to 1600 MPa with an increase in the total strain from 0.5 to 3. 

Considering the dislocation density (ρ) and grain size (D) as main contributors to overall 

strengthening, the following relationship for yield strength was obtained:  

σ0.2 = FA180 + FM120 + 240(FADA
−0.5 + FMDM

−0.5) + 0.73Gb(FAρA
0.5 + FMρM

0.5) 

 
where FA and FM are volume fractions of austenite and martensite, respectively, G is the shear modulus, 

b is Burgers vector, the indexes of A and M indicate austenite and martensite, respectively.  

The obtained results suggested that the strength increment from dislocation density remarkably 

exceeds that from grain size at small to moderate strains, whereas this difference gradually decreases 

during subsequent deformation to large total strains.  
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