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The process of transition radiation of relativistic electrons in non-uniform
media is considered. The method of description of this process based on the
equivalent photons method and the eikonal approximation of the wave
mechanics is proposed. The formulae for the spectral-angular density of the
transition radiation that permit to examine the radiation in the case when the
dielectric permittivity depends on more than one coordinate are obtained in
this approximation. The comparison of the basic results obtained in Born and
eikonal approximations of the transition radiation theory is carried out. The
ranges of validity of these results are determined. The formulae obtained are
applied to the analysis of the transition radiation process on the uniform plate
and on the fiber-like target.
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INTRODUCTION

Transition radiation (TR) arises when a charged particle crosses the
boundary between two media with different dielectric properties [1-3].
Commonly the description of this process is carried out via “sewing” the
fields generated by the particle in substances on their boundary. However,
such approach to TR description could be developed only for the media with
the simplest shape of the boundary between them (plane, spherical or
cylindrical boundary [1-4]). In addition, it is assumed commonly that the
dielectric permittivity of each medium is constant. For the cases of



complicated boundary configuration and fuzzy boundaries another
approaches to the TR process description are to develop.

One of such approaches to description of TR of ultrarelativistic particles
in the range of high frequencies is method based on the expansion of the
radiation amplitude by small deviation of the dielectric permittivity from the
unit, analogous to Born expansion in quantum theory of scattering [2,3].
However, the condition of validity of that expansion rapidly violates with the
radiated photon frequency decrease. So, the development of methods that
permit to work out of the frames of Born perturbation theory in the problem
under consideration is necessary.

In the present paper the possibility of use of the eikonal approximation to
description of the process of transition radiation by relativistic electrons in
the medium with non-uniform dielectric permittivity is studied. The
approximated method of TR description is based on the presentation of the
particle’s field in the form of the packet of free electromagnetic waves and
application of the eikonal approximation for the description of the scattering
of this wave packet on non-uniformities of the dielectric permittivity of the
medium.

2. SPECTRAL-ANGULAR DENSITY OF TR

Consider the particle with electric charge e moving with the constant
velocity v in non-uniform medium with dielectric permittivity £, (7). In
this case Fourier component of the electric field

E,(F)= jE(?, 1) e’ dt
created in the target under passage of the particle satisfies the equations [2]
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For g, =1 the solution of Egs. (2.1), (2.2) is Coulomb field of the particle
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where K,(x) is the modified Bessel function of the third kind,

7y =(1-v*)""* is Lorentz-factor of the particle. Using (2.2) and (2.3) we
can transform Eq. (2.1) to the form

(A +0?)E, -EO)=0(-¢,)E, + graddiv]i-,)E, ] @)
The last equation could be written in the integral form:
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where G(7 —7") is Green function for Eq. (2.4),
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where k=7 /r. To find the field of radiation, we need to use the
asymptotic of (2.6) on large distances from the region where ¢, (7) is not
equal to unit:
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Substituting it into (2.5) we obtain the following expression for the radiation
field:
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7= J-d3re’”;7 (-, (FNE, (7). (2.9)

Computing the flux of Pointing vector into the solid angle element do far
from the target (see [6], Eq. (66.9)) we find that the radiated wave intensity
is equal to
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Substituting (2.7) into the last formula we obtain the following expression
for the spectral-angular density of TR:

, (2.10)
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where @ and k are the frequency and wave vector of the radiated wave.
Consider TR in the range of high frequencies, where the dielectric
permittivity of the target is determined by the formula
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where @, =4/47e"n(r)/m is the plasma frequency, m and e are the charge
and mass of an electron, n(7) is the electron density in the target. In this

case the solution of Egs. (2.1), (2.2) could be found as an expansion by the
small value (1—-¢,). In the first order of such expansion (that corresponds

to Born approximation) the solution of Egs. (2.1), (2.2) is Coulomb field of
the particle (2.3). So the substitution Ew () = EH(JC) (7) into (2.9) corresponds
to Born approximation in TR theory. It is easy to see that characteristic
values of the transverse (perpendicular to v) component of the Coulomb
field of relativistic particle exceed the characteristic values of the
longitudinal component in y times. So, neglecting the terms of the order of

7%, we can hold on in (2.10) only transverse component of the vector I
(I ~ TL). In this case
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Keeping in mind the following comparison of the results of Born and
eikonal approximations in TR theory and their ranges of validity, consider
the simplest problem on TR under normal incidence of the particle to the
uniform plate of the thickness . Born approximation leads us to the
following result in this case:
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3. TR ON A FIBER-LIKE TARGET IN BORN
APPROXIMATION

Born approximation in TR theory permits to consider the radiation on the
targets of rather complicated configuration. Particularly, TR on fiber-like
targets and nanotubes was considered [7,8] using Born approximation. Let us
briefly remember that results.

Consider transition radiation of a relativistic particle incident on a thin
dielectric fiber at small angle y <<1 with its axis. An atomic string in a
crystal or a nanotube could be treated as such fiber.

If the particle interacts with large number of atoms within the length of
radiation formation (the coherence length)
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where @ is the angle between the wave vector of the radiated wave and the
particle velocity, the non-uniformity of the electron density along the fiber
axis is not essential for the radiation process. In this case one can use the
electron density distribution in the fiber averaged along its axis:

A 1 1 e}
n(ph= [de' nG). (3.2)
where L is the length of the fiber, the z” axis is parallel to the fiber axis,
p'=(x', y") are the coordinates in the transverse plane.
If, in addition, the conditions

Leon >>2—R , ylo>R, (3.3)
v



where R is the transverse size of the fiber, are satisfied then the target can be
treated as an uniform infinitely thin fiber. The electron density distribution in
this case can be written using delta-function

n(F') =n,5(x)6(y"),

where 7, is the electron density per unit length of the fiber.

When the electron is incident under small angle  to the fiber axis, it is
convenient for calculating the spectral-angular density of radiation to
transform the system of coordinates (x', y', z') connected with the fiber to
the system of coordinates (x, y,z)in which the z axis is parallel to the
particle velocity v. In the new system of coordinates the electron density
distribution can be written in the form

n(7) =n,6(x = zy)o(y = ¥o) 3.4

taking into account that the electron moves at distance y, to the fiber axis
(see Fig.1). The coordinate y here is perpendicular to the fiber axis z* and the
particle velocity vector v .

Figure 1. Target position.

Substitution (3.4) into (2.12) gives us the spectral-angular density of TR
by the electron incident on the fiber with the given impact parameter y, . It
is convenient to describe the radiation by uniform flux of the particles using
the radiation efficiency [6]
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where x, and y, are the coordinates of the incident particles in the plane

orthogonal to v. In the problem under consideration when the beam is
incident under small angle to the long fiber the value dE/dwdo do not

depend on x,. In this case the radiation efficiency (3.5) could be written in
the form

dK
dwdo

=Ly [dv, (3.6)
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Here we have used the fact that only the particles with the coordinate x, in
the frames Ax, = Ly participate in the radiation process.
In our case the radiation efficiency could be written in the form
dk LeSn’y
dawdo m 2(() /4

F@,p), (3.7)

where F'(0, @) is the function that determines the angular distribution of
radiation,
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Here ¢ is the azimuth angle (the angle between x axis and the projection
of wave vector k£ to the plane (x, y)). The surface plot of the function (3.8)
for y =2-107 rad, » =2000 is presented on Fig. 1 (the upper plot). It is
casy to see that the angular distribution of radiation intensity possesses the
axial symmetry relatively to the fiber axis (0=, @=0), that can be
demonstrated analytically from (3.8). Near the axis of symmetry the intensity
of radiation is rather high. For large angles of incidence, w >10y ', the
angular distribution of intensity takes the shape of a narrow double ring of
the radius . Note in connection with this, that the radiation on the fiber can
be interpreted as the radiation produced by the perturbation created in the
fiber by the relativistically compressed Coulomb field of the incident
particle. Such perturbation moves along the fiber with the velocity exceeding
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where / is the length on which the interaction of the particle with the non-
uniformity of the dielectric permittivity happens. This inequality violates
under / increase or @ decrease, and the consideration of TR process out of
the range of validity of Born approximation become necessary. One of the
methods that permit to work out of the frames of Born perturbation theory is
the eikonal approximation.

However, direct application of eikonal approximation to TR theory leads
to a number of difficulties connected with the fact that Eq. (2.1) for the
electric field contains the particle’s current (the last term in (2.1)) with the
fact that for complex geometry of the target the problem becomes
multidimensional (for instance, the problem of TR on the fiber-like target is
two-dimensional problem).

The attempts to overcome these difficulties based on the construction of
Green function for the equation (2.1) have been made [2,9]. The quasi
classical Green function for (2.1) was built [2] in the case of one-
dimensional problem on TR of relativistic particles in the medium with non-
uniform dielectric permittivity. However, that method substantially uses the
one-dimensional character of the problem,

The method of construction of Green function for the equation (2.1) with
the particle’s current that is valid under the number of conditions, which are
analogous to the conditions of applicability of the eikonal approximation in
quantum mechanics, was proposed [9]. Although that method permits to
work out of the frames of Born perturbation theory, its application to
particular problems is rather complete and awkward. Only the energy losses
of the particle crossing the plate, and in random medium, were calculated on
the basis of that method.

In the present article the TR theory based on the method of equivalent
photons'® is developed. In the frames of this theory the transition radiation
process is considered as the process of scattering of the particle’s
electromagnetic field on non-uniformities of the dielectric permittivity of the
medium. The field of the particle in this case is presented as the packet of
free electromagnetic waves. Such approach permits to consider the equation
that determine the evolution of the wave packet in non-uniform medium

(A+a)2)ém =V(VE,)+o*(1-¢,)E, (4.2)

instead of the equation (2.1) with the particle’s current. The initial state of
the wave packet (before entering the medium) is the expansion of the
particle’s eigenfield into the set of free electromagnetic waves that permits to



build the solution of Eq. (4.2) for multidimensional problem in a simple way.
So, let us find the solution of Eq. (4.2) in a form

E (F) = (7). (4.3)

Let the function Cf)(?) changes itself in space slow enough to neglect its
second derivations in (4.2). In this approximation the equation for ®(#)
takes the form
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Separating longitudinal and transverse components in (4.4) we obtain
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Substitution @ from (4.5) into (4.6) gives us

0 _ L
28 L —wl-¢,), -V, L [00, P 4.7
0z we, | Ox oy

The second term in the right side of (4.7) could be neglected with the
same precision as neglecting of the second derivations of the function ®(7)
in (4.4) under condition

1
Pefp >>— (4.8)
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where p,, is the characteristic distance in transverse direction on which the

value |Cf) L| changes itself substantially (it is assumed also that &, (¥)
changes itself in transverse direction slow enough to neglect the derivation
A (1 /g, ) ). Under this condition Eq. (4.7) takes the form
oD |
0z

Substituting the solution of the last equation into (4.3) we obtain

:—i%(l—gm)éj_. (49)
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where E©(7), is the field of the incident wave packet
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It is necessary for fulfillment of the condition (4.8) that the characteristic
transverse distances on which the function &, (#) changes substantially

would be not less than the value p,, . In other words, our solution is valid

only for the target with fuzzy boundaries.
Substituting (4.10) into (2.9) we obtain
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The characteristic values p,, making the main contribution into the integral
(4.12) have the order

Pefy ~min(;//a),1/kl),

where k, =0 and @ is the angle on which the radiation is observed
(@ <<1). So, according to (4.8), Eq. (4.12) is valid in the range of
frequencies @ and radiation angles determined by the following
inequalities:

w w
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The order of value of the argument of the first exponent in (4.12) could
be estimated as @ @?1/2, where  is the target thickness along the direction
of the particle velocity. So under the condition
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the first exponent in (4.12) could be replaced by unit. Then after integrating
over z we get the following expression for 7, :
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Substituting it into (2.10) we obtain the spectral-angular density of the
transition radiation in the eikonal approximation
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This formula is valid in the range of frequencies and radiation angles
determined by (4.13) and (4.14).
The argument of the last exponent in (4.12) could be estimated as
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If this value is small comparing to unit (that corresponds to (4.1)) then the
expansion over the parameter a)f, [/ @ could be made in (4.15). In the first

order of that expansion the value ! @) coincides with the corresponding

result of Born approximation ! ®

The inequality (4.1) violates with / increase and @ decrease. Eq. (4.16)
permits to describe TR also out of the range of wvalidity of Born

approximation. Indeed, the inequality a); [/@w>1 do not contradict with the
conditions (4.13) and (4.14), which determine the conditions of validity of

the formula (4.15). Note that (4.13) and (4.14) always could be fulfilled
under the particle energy large enough in the range of characteristic

transition radiation angles @ ~ y '

Eq. (4.15) could be used for consideration of TR on the target of complex
configuration, such as dielectric fiber.



5. TR IN A THIN LAYER OF SUBSTANCE

Consider TR under normal incidence of the ultrarelativistic particle onto
thin uniform plate with the thickness ¢ as the simplest example of
application of eikonal approximation. In this simplest one-dimensional case
the dielectric properties of the target do not depend on p, so the condition
(4.8) is fulfilled automatically. Computation using (4.15) leads to

- 2
o p w
[ie,k):&ze L 51 exp —iﬁ—ga -1¢, (5.1
v ) C() 2 w
ki +|—

vy

and for the spectral-angular density of the radiation on small angles we
obtain
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Compare the results obtained in Born (2.13), (2.14) and eikonal (5.1),
(5.2) approximations with the precise formula for the spectral-angular
density of TR on the thin plate. The last one in the range of small radiation
angles has the form'
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One could obtain this result by substitution into (2.9) the precise
expression for the electric field inside the plate, which could be found via
“sewing” of the solutions of Egs. (2.1), (2.2) on the boundaries of the plate.
It happens that one could satisfy the boundary conditions only adding to the
solutions of Egs. (2.1), (2.2) with the particle’s charge and current the
solutions of free equations that correspond to the radiation field. The
procedure described leads to the following formula for the total electric field
in the medium:



-

E, (7)), =% jd%ce"'?ﬁ,z x (5.4)

&
’72 iz,’gma)z—z?z iz1’gma)2—z?2
e [ e
2 2 a 5
2 w ~2 - w _ 2 2 @ -7
Epn C()Em_—z_l(' 5 Epn C()Em_v—z_l('

Substituting this formula into (2.9) we obtain
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For the dielectric permittivity in the form (2.11) and for small radiation
angles Eq. (5.5) takes the form
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Substituting the last result into (2.10) we obtain (5.3).
Under conditions
2
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the precise result for the TR intensity (5.3) transforms into (2.14) that
corresponds to Born approximation.
Under conditions
>
(02, ;/’2)<< —<<1 (5.9)
@

the precise result (5.3) transforms into the formula (5.2) corresponding to
eikonal approximation.

6. TR ON THE FIBER-LIKE TARGET IN EIKONAL
APPROXIMATION

Consider now TR arising under incidence of fast charged particles on
dielectric fiber-like target under small angle i to the fiber axis. Let the fiber
has the cylindrical shape with radius R and uniform distribution of the
electron density, as an example. The effective target thickness along the
particle’s motion direction in this case is / ~ 2R /y , so the condition (4.14)
takes the form

®0*R
7

<<1. (6.1)

The formula (4.15) in this case gives us
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where the z axis is parallel to the particle velocity v, the fiber axis is parallel
to the plane (x, z), y, is the impact parameter of the incident particle in
relation to the fiber axis. Consider some limitation cases of the formula
obtained.

At first, let us find the conditions under which the results of Born and
eikonal approximations coincide to each other. As it was mentioned at the
end of part 3, the necessary condition of such coincidence is the smallness of



the effective target thickness along the particle’s motion direction / ~ 2R/,
that gives the possibility to make an expansion of the last exponent in (6.2)
over the parameter
2
@
—’2’ 2R 1. (6.3)
oY

In other words, it is necessary to outspread the condition of validity of Born
approximation (5.8) to the result obtained in the eikonal approximation.

On the other hand, it is necessary to outspread the condition of smallness
of radiation angles (6.1) to the corresponding Born result
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It is easy to see that in the first order of the expansion over the small
parameters (6.1) and (6.3), under additional condition

wy>>1, (6.5)

the expressions for the value I | that describe the properties of TR on the
fiber in Born and eikonal approximation will coincide:
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So, when the conditions (6.1), (6.3) and (6.5) are satisfied, the formulae
that describe TR on the fiber in Born approximation are justified not only in
the range of frequencies determined by (5.7), but also in more soft range of
the radiation spectrum, where the eikonal approximation is applicable (see
the condition (5.9)).

Substitution of the value [ . into (2.10) gives us the spectral-angular

density of TR by the electron incident on the fiber with the given impact
parameter y,. After integration over impact parameters we obtain the
radiation efficiency in the form (3.7). The surface plot of the function F' in
the case when the conditions (6.1), (6.3) and (6.5) are satisfied is presented
on Fig. 4. The distinct between the results of calculations using the “precise”
formula (3.10) and approximated (6.6) is not more than 10 %.

Consider now the limitation case of thick fiber, when its radius R is large
comparing to the characteristic transverse size of the Coulomb field of the
incident particle ~ /@, where the Fourier components of the Coulomb field
with the frequency @ are concentrated:

R>y/w. (6.7)

Note that the characteristic values of y making the main contribution into
the integral (6.2) are of the order of value y/@ whereas the characteristic
values of y, have the order of value R. In the limitation case of thick fiber

(6.7) one could neglect the dependence of the last exponent in (6.2) on y. In
this case
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eikonal approximation is proposed. The general formulae for TR spectral-
angular density for the arbitrary form of the dielectric function of the
medium are obtained. That formulae permit to consider TR in the range of
small radiation angles in the case when the dielectric permittivity depends on
more than one coordinate. It is demonstrated that application of eikonal
approximation for that problem makes possible the work out of the frames of
Born approximation, which uses the expansion of the radiation fields by the
small deviation of the dielectric permittivity from unit. The conditions of
validity of Born and eikonal approximations in the problem under
consideration are obtained.

TR under the incidence of the particles on the fiber-like target was
considered as an example of usage of our formulae in multidimensional
problems. Spectral-angular densities calculated for this case using Born and
eikonal approximations are compared. The conditions under which the work
out of the frames of Born approximation is necessary are obtained.
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