ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ» (НИУ «БЕЛГУ»)

ИНСТИТУТ ИНЖЕНЕРНЫХ ТЕХНОЛОГИЙ И ЕСТЕСТВЕННЫХ НАУК КАФЕДРА ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ КЛИНИЧЕСКИХ ИССЛЕДОВАНИЙ

Выпускная квалификационная работа

студентки <u>очной</u> формы обучения направления подготовки 03.04.02 Физика магистерская программа Медицинская физика

группы 07001638 Гордеевой Марины Васильевны

Научный руководитель профессор, д.ф.-м.н. Внуков И. Е.

Рецензенты профессор, д.ф.-м.н. Захвалинский В.С.,

заместитель генерального директора по качеству и сервису АО «Медтехника» г.Белгород Павленко А.И.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

Хорошо известно, что без тщательного анализа полученных данных и оценки их ошибок любой эксперимент становится совершенно бесполезным или, в крайнем случае, неинформативным. В ещё большей степени эти слова справедливы для клинических медицинских исследований, где практически нельзя воспроизвести условия предыдущих исследований, так как пациенты постоянно меняются. Именно поэтому для принятия решения по результатам таких исследований должны использоваться адекватные задаче методы статистической обработки.

Статистика в медицине является одним из инструментов анализа экспериментальных и клинических данных, с помощью которого обобщаются полученные результаты [4]. Это не единственная задача статистики в медицине. Этот математический аппарат широко применяется в диагностических целях, решении классификационных задач и поиске новых закономерностей, для постановки новых научных гипотез.

Одной из основных особенностей статистической обработки результатов в медицине, и, в частности, анализе результатов клинических исследований состоит в том, что в первую очередь необходимо убедиться в закономерности полученных результатов, то есть невозможности получить аналогичные результаты за счет случайных флуктуаций и процессов. Все остальные выводы по результатам исследований можно делать лишь только после успешного прохождения этого этапа.

Статистическая обработка результатов медицинских исследований базируется на постулате, что все, что верно для случайной выборки верно и для генеральной совокупности, из которой эта выборка получена. Однако выбрать или набрать истинно случайную выборку из генеральной совокупности практически очень сложно. Поэтому следует стремиться к тому, чтобы выборка была репрезентативной по отношению к изучаемой популяции, т.е. адекватно отражающей все возможные аспекты изучаемого состояния или заболевания в популяции, чему способствует чёткое формулирование цели и строгое соблюдение критериев отбора выборки [7].

В последние годы появилось большое количество программ и программных комплексов для статистического анализа данных, в том числе медицинских. Однако для их корректного применения необходимо знание основ математической статистики, позволяющее осуществить выбор необходимых статистических процедур, правильно применить их и осуществить корректную интерпретацию результатов. Иначе, выводы об эффективности изучаемых методов лечения могут оказаться ложными.

В настоящее время участие статистика в проведении клинических исследований широко распространенная практика. Применение статистических методов не просто формальная процедура, а творческая деятельность. И, как и любое творчество, планирование исследований и интерпретация полученных результатов требуют глубоких знаний и опыта в области математической статистике [14]. Причем, данная деятельность имеет очень большое значение, так как часто именно статистическое оценивание результатов определяет решение в пользу того или иного метода лечения. Медицинские институты готовят в первую очередь практикующих врачей, а не ученых в области биологии и медицины. Их знание математики и методов статистики близко к нулю. Поэтому большинство ошибок в медицинских научных исследованиях связано c некорректным переводом исследования из медицинской плоскости в математическую и, наоборот [9].

Несмотря на отсутствие клинического мышления, представителям точных наук легче освоить биологические дисциплины в требуемом для решения поставленной задачи объеме, чем врачам — понять математику, теорию вероятности статистику. Тесное взаимодействие И врачей. организующих и проводящих исследование, с представителями других областей знаний способно обеспечить необходимый баланс специалистов профилей, позволяющий получить разных достоверные результаты. Существует немало литературных источников, как общеметодологического характера [5;12;15], так и с описанием работы в среде определенных статистических пакетов [1;13]. С их помощью можно понять идеологии различных методов анализа данных, их возможности и ограничения.

Наш интерес к этому исследованию возник в связи с предложением специалистов Медицинского института БелГУ сопоставить результаты исследования микроэлементного состава сердечной ткани лиц, страдающих заболеваниями сердечнососудистой системы, и здоровых людей и найти связь особенностей микроэлементного состава сердечной ткани пациентов с функциональными показателями, полученными в процессе прижизненных исследований.

Другой поставленной перед нами задачей было сравнение эффективности применения двух лекарственных препаратов для лечения заболеваний сердечнососудистой системы.

Исходя из вышесказанного, цель исследований, результаты которых приведены в выпускной квалификационной работе, можно сформулировать следующим образом.

Использование методов статистического анализа для верификации результатов клинических исследований заболеваний сердечнососудистой системы, включающее:

- а) Определение взаимосвязи микроэлементного состава ткани сердца с функциональными показателями у больных, страдающих заболеваниями сердечнососудистой системы;
- б) Сравнение эффективности двух препаратов для лечения заболеваний сердечнососудистой системы

Для достижения поставленных целей в процессе исследования для каждой из них были решены следующие задачи:

- 1. Определение характера данных результатов клинических исследований
- 2. Нахождение описательной статистики для этих данных
- 3. Выбор оптимальных методов статистической обработки для данной выборки
- 4. Применение выбранных методов для обработки предоставленных данных
- 5. Проведение анализа полученных результатов.

Материалы, полученные в процессе исследования, частично опубликованы в работе [16; 17] и представлены в ряде статей, направленных в печать.

ГЛАВА 1 ОБЗОР МЕТОДОВ СТАТИСТИЧЕСКОГО АНАЛИЗА МЕДИЦИНСКИХ ДАННЫХ

1.1 Основные определения статистики, встречающиеся в клинических исследованиях

Любой статистический анализ данных начинается с нахождения описательной статистики, главная задача которой сжатая характеристика изучаемого явления в числовом и графическом виде с помощью структурных показателей.

Выборкой объема п называется последовательность п независимых одинаково распределенных случайных величин $x_1, x_2, ..., x_n$, распределение каждой из которых совпадает с распределением исследуемой случайной величины x. Выборка — это результат п независимых последовательных наблюдений за случайной величиной x из рассматриваемой генеральной совокупности. Результат наблюдений $x_1, x_2, ..., x_n$ — одна из многих реализаций многомерной случайной величины $x_1, x_2, ..., x_n$ [2].

Основными характеристиками выборки являются: мода, медиана, среднее, стандартное отклонение, квантили, перцентили, размах вариации и другие.

Математическое ожидание (выборочное среднее) - это величина, характеризующая «центральное положение» количественной переменной, вычисляется по формуле (1.1):

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{n},$$

$$(1.1)$$

где x_i – i- значение оцениваемого признака, n - объем выборки, Σ - знак суммирования по всем элементам выборки i=1, ..., n.

Выборочное среднее квадратичное (стандартное отклонение) — величина, характеризующая рассеяние наблюдений в выборке. Оно может

применятся для описания любого распределения, но, как правило, используется для описания выборок с нормальным распределением:

$$S_{x} = \sqrt{\frac{\sum (x_{i} - \bar{x})^{2}}{n-1}},$$
 (1.2)

Выборочная дисперсия:

$$D_{x} = (S_{x})^{2},$$
 (1.3)

Медиана – число, занимающее среднее положение среди в наборе данных, разбивая выборку на две равные части, причем, в обе стороны от медианы располагается одинаковое число вариант. При небольшом числе вариант для определения медианы данные ранжируют: при нечетном числе членов n=21+1 ряда центральная варианта сама является медианой (1.4), при четном n=21 – медиана равна полусумме двух соседних (1.5)[2]. расположенных в центре ранжированного ряда Медиана используется ДЛЯ представления дискретных переменных ИЛИ количественных непрерывных переменных с распределением, отличным от нормального.

$$Me_x = x^{(l+1)},$$
 (1.4)

$$Me_x = (x^{(l+1)} + x^{(l+1)},$$
 (1.5)

Мода — элемент выборки, встречающийся в распределении с наибольшей частотой. Для вычисления моды применяется следующая формула:

$$Mo = x_n + \lambda \left(\frac{f_2 - f_1}{2f_2 - f_1 + f_3} \right), \tag{1.6}$$

где x_n - нижняя граница модального класса частоты f_2 ; λ - ширина классового интервала; f_1 - частота класса, которая предшествует модальному классу; f_3 - частота класса, которая следует за модальным классом [8].

Квантили — величина совокупности, которая отделяет определенную долю вариационного ряда членов совокупности. К ним относятся квартили, децили и перцентили. Квартили — это три значения признака, делящие ранжированный вариационный ряд на четыре равные части. Девять децилей делят ряд на 10 равных частей, а 99 перцентилей — на 100 равных частей.

Любой перцентиль определяется по следующей формуле:

$$P_{i} = x_{n} + \lambda \left(\frac{K - \sum f_{i}}{f_{p}} \right), \tag{1.7}$$

где P_i — выбранный перцентиль; x_n - нижняя граница класса, содержащего перцентиль P_i ; она определяется по величине $K = L_i n/100$, превосходящей или равной $\sum f_i$ в ряду накопленных частот; λ - ширина классового интервала; n — общее число наблюдений; L_i - порядок перцентиля, показывающий, показывающий какой процент наблюдений имеет меньшую величину; f_p - частота класса, содержащего искомый перцентиль [8].

Основные структурные показатели произвольного распределения приведены на рис. 1.1 для примера.

Рис. 1.1 Структурные показатели произвольного распределения

Однако подобная форма представления данных малоинформативной, так как объектами наблюдения в медицине выступают сложные системы, для которых определяется диапазон величин, содержащий большинство значений исследуемого признака. Поэтому для описания ширины распределения В медицинских исследованиях принимается представление 95% доверительного интервала с указанием нижней (5%) и (95%) границы. Доверительный интервал представляет собой диапазон значений, который служит для оценки параметра с определённой вероятностью. В медицине доверительный исследователем устанавливается на уровне 95% или α=0,05. Где величина α часто называется уровнем значимости.

1.2 Формирование статистических гипотез и их проверка

При проведении статистического анализа результатов клинических исследований главная задача исследователя заключается в правильном формировании статистической гипотезы — утверждении, которое можно подтвердить или опровергнуть в ходе обработки результатов исследования.

правило, принято формулировать две взаимоисключающих гипотезы, первая из них нулевая гипотеза Но - это утверждение, которое желательно было бы отвергнуть в ходе исследования и проще всего проверить. В нулевой гипотезе выдвигаются различные предположения относительно значений одного или нескольких параметров исходной eë В совокупности И распределения, если ЭТО необходимо. нулевой формулируется противоположность гипотезе альтернативная гипотеза На - это вывод, к которому хотелось бы прийти в результате исследования. Например, в рамках нулевой гипотезы предполагается, что исследуемые факторы не оказывают никакого влияния на величину, а полученные результаты являются случайными. Затем определяется зарегистрированных различий вероятность получения при условии справедливости нулевой гипотезы. Затем идет проверка гипотез с помощью подходящих к данной задаче методов.

Процедура проверки гипотез связана с понятиями ошибок I и II рода. Под ошибкой I рода понимается ложноположительный результат, то есть возможность ошибочно отклонить нулевую гипотезу. Вероятность ошибки I рода определяется выбранным уровнем значимости α. Ошибка II рода — это ложноотрицательный результат, который возникает, когда принимается нулевая гипотеза, которая на самом деле является неверной. Вероятность ошибки II рода обозначается буквой β.

Кроме того, для определения справедливости H_0 важен показатель, который обозначается буквой p, оценивающий вероятность того, что

значение критерия оказывается не меньше критического значения при условии справедливости нулевой гипотезы [14].

В результате проверки статистических гипотез возникают ситуации, представленные в таблице 1.1.

Таблица 1.1 Решения при различных результатах статистического теста и истинной ситуации в генеральной совокупности

		В генеральной совокупности			
		H_0 неверна H_0 верна			
		Истинно-	Ложноположительный		
В	H_0 отклонена	положительный	результат		
статистическом		результат	(ошибка І рода)		
тесте		Ложноотрицательный	Истинно-		
	Н ₀ не отклонена	результат	отрицательный		
		(ошибка II рода)	результат		

Прежде чем применять для проверки гипотезы тот или иной статистический метод, необходимо определить к какому типу относятся переменные, с которыми мы работаем. На рис.1.2 изображена схема с возможными типами переменных [12].

Рис.1.2 Схема с различными типами переменных

1.3 Параметрические и непараметрические критерии для проверки гипотезы о различии (или сходстве) между средними значениями

При использовании критериев для проверки статистических гипотез, кроме типа переменных очень важно учитывать и характер распределения совокупностей, из которых взяты сравниваемые выборки. В зависимости от того, какой вид распределения имеет выборка, применяют параметрические и непараметрические критерии. Параметрические критерии основаны на предположении, что данные или их ошибки имеют нормальное (гауссово) распределение, непараметрические методы не требуют этого предположения.

Немаловажным обстоятельством для определения различий между признаками является понимание, с какой выборками приходиться работать: со связанными или с несвязанными.

Несвязанные (независимые) выборки — это выборки, состоящие из разных людей, у которых по одним и тем же методикам были измерены одни и те же признаки, например, экспериментальная и контрольная группы.

Связанные (зависимыми) выборки — это одна и та же группа людей, у которых были измерены одни и те же признаки в двух (или более) различных ситуациях, например, «до — после».

Исходя из условий эксперимента, при известном типе данных и распределении, важно не ошибиться в выборе метода статистического анализа. Так как для сравнения данных нами были использованы непараметрические критерии, то рассмотрим подробнее суть применения данных критериев.

Известно большое количество непараметрических критериев, среди которых особое место занимают ранговые критерии, основанные на ранжировании членов сравниваемых групп. При этом сравниваются не сами члены ранжированных рядов, а их порядковые номера.

На рис.1.3 представлена схема выбора наиболее часто используемых критериев в зависимости от условий эксперимента [13].

_	Определение различий между признаками							
Признак и вид распределения	Зависимь	іе группы	Независимые группы					
	Одна группа,	Одна группа,	Две группы	Более 2-х групп				
	один вид	несколько						
	лечения	видов лечения						
Количественный	Парный	Дисперсионный						
признак,	критерий	анализ	Критерий	Дисперсионный				
нормальное	Стьюдента	повторных	Стьюдента	анализ				
распределение		измерений						
Количественный	Критерий	Критерий	Критерий	Медианный				
признак,	Уилкоксона,	Фридмана	Манна-Уитни,	критерий,				
ненормальное	Критерий		Вольда-	критерий				
распределение	знаков		Вольфовица	Крускала-				
				Уоллиса				
Качественный	Критерий Мак-	Критерий	Критерий	Критерий χ^2				
признак	Нимара	Кокрена	Фишера					

Рис.1.3 Схема выбора критерия для проверки статистических гипотез

Ниже рассмотрены некоторые непараметрические критерии для сравнения как зависимых, так и независимых групп.

Статистические критерии, применяемые для сравнения для зависимых выборок:

Парный t — критерий Стьюдента - параметрический критерий для сравнения двух связанных выборок, имеющих нормальное распределение совокупности, причем объемы выборок п должны быть равны [12].

Порядок применения критерия:

- 1) Сформулировать статистические гипотезы: H_0 и H_a ;
- 2) Вычислить величину t статистики критерия, отвечающей H_0 , по формуле (1.8), которая подчиняется t распределению со степенью свободы (n-1):

$$t = -\frac{\overline{d}}{Sd\sqrt{n}},\tag{1.8}$$

где, s_d – оценка стандартного отклонения;

3) Сравнить полученное значение статистики t с критическими значениями на определенном уровне значимости (таблицы с критическими значениями представлены в [10]). Если величина $t > t_{\alpha}$, то нулевая гипотеза отклоняется, если $t < t_{\alpha}$, то различия считаются достоверными.

Критерий Вилкоксона для зависимых выборок - непараметрический критерий, для которого предусмотрен следующий порядок выполнения:

- 1) Нахождение разности между сравниваемыми парными наблюдениями;
- 2) Определение порядкового номера (ранга) абсолютных значений полученных разностей в порядке их возрастания;
- 3) Суммирование рангов для разностей, имеющих одинаковые знаки, выбрав меньшую из этих сумм Т;
- 4) Сравнение полученной суммы T с критическими значениями T_{α} , представленными в [10]. Если величина $T \ge T_{\alpha}$, то принимается нулевая гипотеза. Если $T < T_{\alpha}$, то различия между сравниваемыми группами признаются статистически значимыми [11].

Критерий знаков — непараметрический критерий для оценки статистической значимости различия двух связанных совокупностей. При использовании критерия учитывается только направленность различий сравниваемых выборок, а не их абсолютная величина. Обычно такая направленность обозначается знаками «+» и «-», откуда и произошло название критерия.

Методика применения критерия следующая:

- 1) Определение направленности различий сравниваемых парных наблюдений с обозначением результатов знаками «+» и «-». Причем значения, не имеющие различий в выборках, исключаются из оценки;
- 2) Подсчет общего числа парных наблюдений, имеющих различия;
- 3) Определение числа знаков, реже встречающихся в результатах Z;
- 4) Сравнение полученного числа Z с критическими значениями Z_{α} , содержащимися в приложении [10].

Если величина $Z \ge Z_{\alpha}$, принимается нулевая гипотеза. Если $Z < Z_{\alpha}$, то различия между сравниваемыми группами могут считаться статистически значимыми с соответствующими уровнями значимости (p <0,01, p <0,05) [11].

Статистические критерии, применяемые для сравнения независимых выборок:

Непарный (двухвыборочный) t - критерий Стьюдента - параметрический критерий, используемый для сравнения двух независимых групп по средним числам, исходя из предположения о нормальности распределения данных и равенства дисперсии обеих выборок [12].

Работу с данным критерием следует выполнять в следующем порядке:

- 1) Сформулировать статистические гипотезы: H₀ и H_a;
- 2) Вычислить величину t статистики критерия по формуле (1.9):

$$t = -\frac{(\overline{x_1} - \overline{x_2})}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},$$
 (1.9)

где n_1 , n_2 — объемы выборок, x_1 , x_2 — средние значения выборок, s — оценка стандартного отклонения двух групп;

3) Сравнить полученную величину t с величинами из известного распределения вероятности: если величина $t > t_{\alpha}$, то на уровне значимости $\alpha=5\%$ отбрасывается нулевая гипотеза, если $t < t_{\alpha}$, то различия считаются достоверными.

U - критерий Уилкоксона (Манна - Уитни) — ранговый критерий, с помощью которого можно проверить H_0 гипотезу о принадлежности сравниваемых независимых выборок к одной и той же генеральной совокупности. Данный критерий является альтернативой непарному критерию Стьюдента при условии, что данные распределены не по нормальному закону.

Порядок применения U – критерия:

1) Расположить числовые значения выборок в возрастающем порядке в один общий ряд и пронумеровать члены ряда от 1 до $N=n_1+n_2$;

2) Найти сумму рангов R для каждой выборки и посчитать величины U_1 и U_2 по формулам (1.10) и (1.11) соответственно:

$$U_1 = R_1 - \frac{n_1(n_1+1)}{2}, \tag{1.10}$$

$$U_2 = R_2 - \frac{n_2(n_2+1)}{2}.$$
 (1.11)

3) В качестве U- критерия использовать меньшую величину U и сравнить с критическим значением U_{α} . Условием для принятия нулевой гипотезы служит неравенство $U > U_{\alpha}$. Критические значения U- критерия для n_1 и n_2 и принятого уровня значимости приведены в [10].

Критерий Вилкоксона для независимых совокупностей. С помощью этого непараметрического критерия можно оценить значимость различия двух независимых выборок наблюдений.

Порядок вычисления следующий:

- 1) Ранжирование данных в выборках;
- 2) Вычисление суммы рангов вариант, относящихся к каждой из двух сравниваемых совокупностей Т;
- 3) Сравнение меньшей из полученных сумм с критическими значениями T_{α} из таблиц [10], с учетом числа наблюдений в совокупностях.

Если величина $T \ge T_\alpha$, принимается нулевая гипотеза. Если $T < T_\alpha$, то различия совокупности по центральной тенденции признаются статистически значимыми [11].

1.4 Корреляционный анализ

Корреляционный анализ при проведении клинических испытаний используется с целью установления наличия или отсутствия взаимосвязей между переменными. Если имеются две переменные х и у, значения которых измерены в шкале отношений, используется коэффициент линейной корреляции Пирсона г, принимающий значения от -1 до +1 и вычисляется по формуле (1.12) [12]:

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$$
(1.12).

Примеры связей между переменными и соответствующие коэффициенты корреляции r приведены на рис. 1.4, причем при r>0 – положительная корреляция, r<0 – отрицательная корреляция, r=0 – корреляция отсутствует.

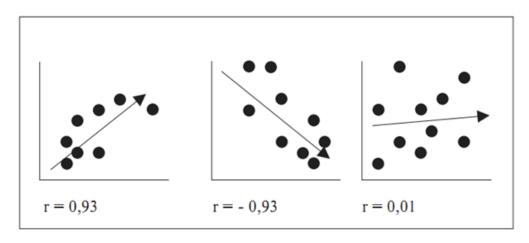


Рис. 1.4 Виды корреляции

Для данных, измеренных в порядковой шкале, следует использовать коэффициент корреляции Спирмена, так как он является непараметрическим и улавливает тенденцию — изменения переменных в одном направлении. Коэффициент корреляции Спирмена является менее чувствительным, чем коэффициент корреляции Пирсона. Важно отметить, что близкое к -1 или +1 значение коэффициента корреляции говорит о силе взаимосвязи переменных, но ничего не говорит о причинно-следственных отношениях между ними.

При нелинейной связи между переменными, неизвестном характере распределения, в случае если признаки носят количественный или качественный характер, нужно использовать непараметрический критерий корреляции Спирмена. Данные нужно упорядочить, проранжировать и рассчитать коэффициент ранговой корреляции Спирмена r_s по формуле (1.13):

$$r_{S} = \frac{6 \sum d^{2}}{n^{3} - n},$$
 (1.13)

где n- количество наблюдений в выборке, d- разность рангов для каждого объекта выборки [15].

ГЛАВА 2 СРАВНЕНИЕ ПОКАЗАТЕЛЕЙ ПЛАЗМА ЭМИССИОННОЙ СПЕКТРОМЕТРИИ С ПОМОЩЬЮ НЕПАРАМЕТРИЧЕСКИХ КРИТЕРИЕВ

Прежде чем начинать работать с теми или иными данным, которые, как правило, должны быть предоставлены в виде таблицы, их необходимо проверить. Для этого нужно проанализировать значения параметров, которые сильно отличаются от остальных. Это могут быть как реальные «выпадающие» значения, так и ошибки ввода, которые необходимо устранить.

Результаты клинических исследований были предоставлены в электронной таблице Excel, в строках которой содержатся объекты исследования, а в столбцах — параметры, по которым исследовались объекты.

Имеются три группы умерших У1 (n=11), У2 (n=7), У3 (n=6), пациенты которых были разделены по величине фракции выброса (ФВ). Пациенты первых двух групп У1 и У2 при жизни страдали заболеваниями сердечнососудистой системы (ССС), пациенты 3 группы УЗ погибли в результате несчастных случаев. Также имеется еще одна группа Ж4 – живые пациенты, сопоставимые по возрасту и полу показателям умерших пациентов. Всем умершим был проведен анализ тканей сердца с помощью плазма эмиссионной спектрометрии ЭТО аналитический предназначенный для определения малых содержаний ряда элементов в образцах различного типа. Этот метод представляет собой разновидность эмиссионной спектрометрии, В которой ДЛЯ возбуждения атомов контролируемая используется высокотемпературная помощью электромагнитного поля плазма. Анализ был выполнен на спектрометре ИСП-ОЭС, где высокотемпературная плазма генерируется путём ионизации аргона с использованием высокой частоты (27,12 МГц). Жидкие образцы поступают в распылитель, откуда в виде аэрозоля через распылительную камеру подаются в плазму, где микрочастицы распадаются на атомы, переходящие в возбуждённое состояние. Самопроизвольно возвращаясь в

нормальное состояние, электроны испускают избыточную энергию в виде фотонов, совокупность которых образует эмиссионный спектр [18;19].

На рис. 2.1 представлена принципиальная схема спектрометра ИСП-ОЭС.

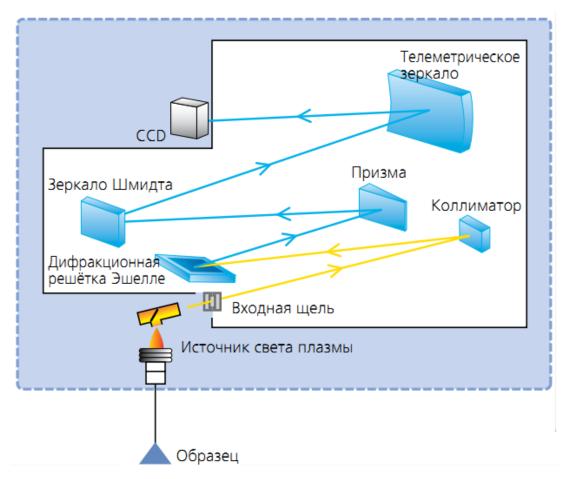


Рис. 2.1 Схема спектрометра ИСП-ОЭС

У пациентов групп У1, У2, Ж4 при обследовании были зафиксированы следующие показатели:

• показатели осмотра:

ЧСС – частота сердечных сокращений;

САД – систолическое артериальное давление;

ДАД – диастолическое артериальное давление;

СрАД – среднее артериальное давление;

PsAД – пульсовое артериальное давление;

QRS – желудочковый комплекс;

• показатели эхокардиографии:

КДР (пж, лж, пп, лп) – конечно-диастолический размер (правого желудочка, левого желудочка, правого предсердия, левого предсердия);

КДО лж – конечно-диастолический объем левого желудочка;

КСО лж – конечно-систолический объем левого желудочка;

ФВ – фракция выброса;

Тмжп – толщина межжелудочковой перегородки в диастолу;

Тзслж – толщина задней стенки левого желудочка в диастолу;

МК.Пик.скорость – митральный клапан: скорость раннего диастолического прикрытия передней створки;

• показатели коагулограммы:

Тр – трикуспидальная регургитация;

МНО – Международное нормализованное отношение;

КФК – креатинфосфокиназа;

ПТИ – протромбиновый индекс, показывающий свертываемость крови.

- показатели биохимии,
- показатели кислотно-щелочного состояния (КЩС) крови.

2.1 Проверка нормальности распределения данных

Как известно, при проведении анализа биологических данных для исключения ошибочного заключения необходимо проверять распределения признаков на нормальность.

Для этого построим гистограммы и для каждой выборки с помощью критериев Шапиро — Уилка и Колмогорова — Смирнова проверим наличие или отсутствие нормальности распределения признаков. С помощью данных критериев были проверены исследуемые показатели осмотра, ЭхоКГ, биохимии, КЩС крови и коагулограммы.

В результате было установлено, что распределение показателей на заданном уровне значимости не соответствует нормальному (гауссовому) распределению, следовательно, дальнейшее сравнение показателей в группах необходимо проводить с помощью непараметрических критериев.

Гистограммы для показателя фракции выброса (ФВ) группы У1, для показателя толщины задней стенки левого желудочка в диастолу Тзслж – группы У2 представлены на рис.2.2 и на рис.2.3 соответственно.

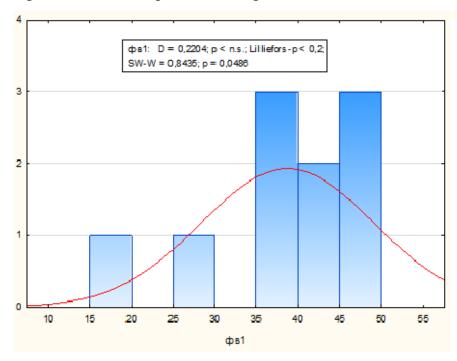


Рис.2.2 Гистограмма показателя ФВ,% группа У1

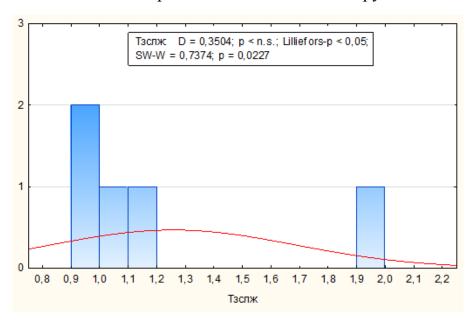


Рис.2.3 Гистограмма показателя Тзслж группа У2

Из рисунков видно, что реальное распределение показателей ассиметрично. Кроме того, значения уровня значимости для критерия Шапиро — Уилка p=0.0486 и p=0.0227, следовательно, эти распределения не являются гауссовыми.

2.2 Сравнение показателей плазма эмиссионной спектрометрии

Для начала необходимо было выяснить, отличались ли показатели анализа плазма эмиссионной спектрометрии у групп У1 и У3 и у групп У2 и У3, то есть сравнить данные группы на предмет принадлежности их к одной генеральной совокупности. Так как объемы сравниваемых групп невелики, их распределения отличны от нормального, поэтому для выявления различий в группах был использован непараметрический критерий Манна-Уитни.

Для этого были сформулированы статистические гипотезы:

- Но (нулевая гипотеза) об отсутствии различий,
- На (альтернативная гипотеза) гипотеза о значимости различий.

То есть необходимо решить вопрос о случайности выявленных различий. От этого будет зависеть принятое решение о том, являются ли выявленные различия следствием различного состояния. Количественную характеристику случайности представляет теория вероятности в виде рзначения. Чем это значение больше, тем больше вероятность отсутствия различий в пользу нулевой гипотезы [10].

В таблицах 2.1, 2.2 и 2.3 приведены результаты сравнения показателей в группах У1, У2, У3 с помощью непараметрического критерия Манна-Уитни для сравнения двух независимых выборок.

Таблица 2.1 Результаты проверки статистической гипотезы о различии с помощью непараметрического критерия Манна-Уитни в группах У1 и У3

Показатель	Группа У1 – умершие от заболеваний ССС, ФВ < 40%				Группа УЗ – умершие от несчастных случаев				Уровень значимости P<0,05
	Опи	Описательная статистика			Опи	сательна	ая статис	тика	
	средн	медиан			средн	медиа			У1-У3
	ee	a	МИН	макс	ee	на	МИН	макс	
Кальций	1,16	1,235	0,612	2,0	2,104	1,860	1,630	3,120	0,012049
Магний	1,26	1,310	0,835	1,4	2,150	2,150	1,560	2,700	0,002694
Железо	0,70	0,692	0,605	0,8	0,761	0,728	0,569	1,060	0,500560
Калий	11,54	11,700	7,240	13,2	12,40	11,30	10,20	15,70	1,000000
Натрий	10,34	10,505	7,700	12,6	8,508	8,430	4,710	13,50	0,244624

Таблица 2.2 Результаты проверки статистической гипотезы о различии с помощью непараметрического критерия Манна-Уитни в группах У2 и У3

									Уровень	
	Группа У2 – умершие от			Гру	ппа У3 –	умерши	е от	значимос		
Показатель	заболе	ваний СС	СС, ФВ >	> 50%	H	есчастнь	іх случає	ев	ти	
								P<0,05		
	Опи	сательная	т статист	тика	Опи	сательна	я статис	тика		
	средне	медиа		макс	средн	медиа		макс	У2-У3	
	e	на	МИН		ee	на	МИН			
Кальций	1,227	1,220	0,920	1,700	2,104	1,860	1,630	3,120	0,005946	
Магний	1,377	1,320	1,130	1,580	2,150	2,150	1,560	2,700	0,003619	
Железо	0,678	0,682	0,459	0,821	0,761	0,728	0,569	1,060	0,381733	
Калий	12,921	12,700	8,450	16,20	12,40	11,30	10,20	15,70	0,736585	
Натрий	11,157	11,500	8,720	14,60	8,508	8,430	4,710	13,50	0,117898	

Из таблиц следует, что в группах У1 и У3 и в группах У2 и У3 имеются достоверные отличия по содержанию кальция и магния с уровнем значимости р <0,05 (в таблице выделены полужирным шрифтом). То есть для данных показателей нулевая гипотеза Н₀ об отсутствии различий отвергается и принимается альтернативная гипотеза о статистически значимых различиях между группами пациентов с заболеванием сердечно сосудистой системы и умершими в результате аварий. В ходе проверки выяснено, что не все исследуемые показатели имеют достоверное различие на установленном уровне значимости р=0,05, в содержании калия, железа и натрия достоверных различий не обнаружено. Можно предположить, что отсутствие различий в содержании калия обусловлено проведением интенсивной терапии.

В связи с различием величины фракции выброса, было проведено сопоставление показателей плазма эмиссионной спектрометрии в группах У1

 $(\Phi B < 40\%)$ и У2 $(\Phi B = 40-50\%)$ с помощью непараметрических критериев (таблица 2.3).

Таблица 2.3 Результаты проверки статистической гипотезы о различии с помощью непараметрического критерия Манна-Уитни в группах У1 и У2

	Группа У1 – умершие от		Группа У2 –	Группа У2 – умершие от		
	заболеваний	$CCC, \Phi B <$	заболеван	ний ССС,		
показатель	40	%	$\Phi B = 4$	0-50%	1.0	
				1-2		
	среднее	медиана	среднее	Медиана		
Кальций	1,16	1,235	1,227	1,220	0,845252	
Железо	0,70	0,692	0,678	0,682	0,807250	
Калий	11,54	11,700	12,921	12,700	0,204560	
Магний	1,26	1,310	1,377	1,320	0,329115	
Натрий	10,34	10,505	11,157	11,500	0,379776	

Из результатов, представленных в таблице, видно, что различие минерального состава ткани сердца этих в этих группах несущественно, то есть исследуемые показатели не связаны с величиной фракции выброса.

2.3 Установление связи между функциональными показателями и показателями плазма эмиссионной спектрометрии

Чтобы эмиссионной выяснить, связаны ЛИ показатели плазма спектрометрии c функциональными показателями, которые были зафиксированы при жизни, было проведено сравнение этих показателей для групп У1, У2 и Ж4. В результате применения непараметрического критерия Манна-Уитни для сравнения двух независимых выборок, установлено, по каким показателям имеются достоверные различия.

Для установления зависимости функциональных показателей и показателей плазма эмиссионной спектрометрии, вычислим коэффициенты корреляции Спирмена. Вычисление коэффициента корреляции для групп У1 и У2 показало, что имеется ряд показателей, для которых обнаружена отрицательная или положительная связь с микроэлементным составом ткани

сердца на заданном уровне значимости р <0,05. Результаты вычислений представлены в таблице 2.4.

Таблица 2.4 Сравнение функциональных показателей с показателями плазма эмиссионной спектрометрии

	Показатели плазм	Значени	Значение уровня	
Функциональные	спектрометрии, для кото	орых значения коэф.	значимости p(M-U)	
показатели	корреляции Спирм	иена r значимы		
	У1	У1 /Ж4	У2 /Ж4	
) (IC T		У2		
МК.Пик.скорость	МК.Пик.скорость	МК.Пик.скорость	0,000007	0,035928
M/C		м/с/железо		
Тр	Тр	Тр/калий/магний	0,395326	0,002188
Кфк	кфк/магний/калий/	кфк	0,014961	0,035628
	кальций			
глюкоза	Глюкоза	глюкоза/калий/	0,121143	0,000335
		кальций		
кдр пп 4кп	кдр пп 4кп /магний	кдр пп 4кп	0,000009	0,000968
ксо лж	ксо лж/ натрий	ксо лж	0,012420	0,040306
Тзслж	Тзслж/магний	Тзслж	0,000496	0,002362
Гр. Дав. Пик.	Гр. Дав.	Гр. Дав. Пик.		0,011997
	Пик/кальций/ магний			
ТВ	ТВ	тв/натрий	0,019625	0,038063

Из таблицы видно, что есть ряд функциональных показателей, по которым наблюдается значимое отличие между основной и контрольной группами, то есть у пациентов, умерших от заболеваний сердечно сосудистой системы, наблюдается отклонения от нормы по данным показателям. Кроме того, в таблице представлены показатели, для которых с помощью коэффициента корреляции Спирмена найдена строгая связь с показателями плазма эмиссионной спектрометрии. Достоверные различия выделены полужирным шрифтом. Все исследуемые показатели представлены в таблице 1 (ПРИЛОЖЕНИЕ 1).

Сопоставление результатов микроэлементного анализа с функциональными прижизненными параметрами позволяют сделать следующие выводы:

- 1) Микроэлементный состав клеток сердца здоровых людей и людей с заболеваниями сердечно сосудистой системы отличается. Значимо отличаются содержание магния, кальция.
- 2) Обнаружена корреляция между содержанием значимых микроэлементов и следующими функциональными прижизненными показателями:

```
в группе У1 (ФВ < 40%):
```

- кфк/магний r=-0,9;
- кфк/калий r=-0,75;
- кфк/Кальций r=0,74;
- кдр пп 4кп/магний r=0,67;
- ксо лж/натрий r=-0,71;
- Тзслж/магний r=-0,66;
- Гр. Дав. Пик/кальций r=-0,75;
- Гр. Дав. Пик/магний r=-0,73; в группе У2 (ФВ = 40-50%):
- МК.Пик.скорость м/с/железо r=-0,9;
- Тр/калий r=-0,89;
- Тр/магний r=-0,79;
- тв/натрий r=-0,98;
- глюкоза/калий r=0,78;
- глюкоза/ кальций r=-0,49.

Наличие корреляции этих функциональных показателей с содержанием значимых микроэлементов говорит о серьезности нарушений здоровья обследованных пациентов.

3) Сопоставление функциональных параметров пациентов, умерших от заболеваний сердечнососудистой системы, с параметрами контрольной группы подтвердило значимость выделенных функциональных параметров.

ГЛАВА 3 ОЦЕНКА ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ПРЕПАРАТОВ ДЛЯ ЛЕЧЕНИЯ СЕРДЕЧНОСОСУДИСТОЙ СИСТЕМЫ С ПОМОЩЬЮ СТАТИСТИЧЕСКОГО АНАЛИЗА

Основная задача статистического анализа клинических данных — это определение характера результатов, полученных в ходе исследования. Другими словами, нужно определить, являются ли данные случайными или нет. Только после такого определения можно использовать методы, чтобы оценить эффект лечения. Под словом «эффект» в данной работе понимается любое проявление действия изучаемого препарата (или метода лечения), которое было выбрано для демонстрации его эффективности, безопасности и так далее.

3.1 Описание предоставленных медицинских данных

Еще одной задачей, решаемой в рамках исследования, является определение эффективности применения лекарственных препаратов для лечения заболеваний сердечно сосудистой системы. В данной задаче нужно было оценить динамику лечения в группе пациентов n=76, разделенных при поступлении по величине фракции выброса на 2 группы. Каждая группа дополнительно делилась на две по применяемому для лечения препарату: эплеренон (Eplerenonum) и верошпирон (Verospiron). При поступлении – до лечения (1 точка) и по истечении 30 суток после лечения (2 точка) у пациентов был измерен ряд функциональных показателей. Особый интерес в эхокардиографии $(\Im xoK\Gamma)$ исследовании уделялся показателям И электрокардиографии $(\mathfrak{I}(\mathfrak{I}))$ Исходя ИЗ сопоставления динамики показателей, было необходимо определить, какой из двух препаратов более эффективен для лечения заболеваний сердечно - сосудистой системы. Для сопоставления результатов такие же показатели были измерены у здоровых

пациентов - контрольная группа (n=30). Описательная статистика основной и контрольной групп представлена в таблицах 1 и 2 (ПРИЛОЖЕНИЕ 2). Дизайн данного исследования представлен на рис. 3.1.

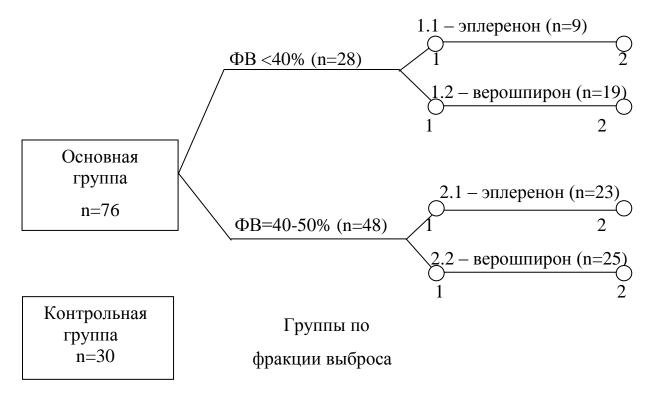


Рис. 3.1. Дизайн исследования

Основные показатели, регистрируемые в клиническом исследовании:

- ФВлж фракция выброса левого желудочка,
- QRS желудочковый комплекс, который регистрируется во время возбуждения желудочков сердца, это наибольшее отклонение на ЭКГ,
- QTc max, QTc min, QTd, QTcd, QT apd, QT apcd –длительности интервала QT,
- JTd, JTcd, JTapd, JTapcd длительности интервалов JT,
- КСОлж конечно систолический объем левого желудочка,
- СДЛА- систолическое давление в легочной артерии.

Для выбора соответствующих статистических критериев на первом этапе была проведена проверка распределений признаков на нормальность с помощью критериев Шапиро – Уилка и Колмогорова – Смирнова

(аналогично проверке, описанной в главе 2). Исходя из этой проверки, было установлено, что выборки распределены не по нормальному закону, следовательно, для проверки гипотез нужно использовать непараметрические критерии.

3.2 Сравнение двух независимых выборок с помощью непараметрического критерия Манна – Уитни

Прежде чем проверять эффективность действия препарата, необходимо проверить, как отличаются показатели пациентов с сердечнососудистыми заболеваниями до лечения с показателями здоровых людей. Для этого было проведено сравнение показателей ЭхоКГ и ЭКГ этих групп с помощью непараметрического критерия Манна-Уитни. Результаты сравнения с уровнем значимости р представлены в таблице 3 (ПРИЛОЖЕНИЕ 2), статистически значимые различия выделены полужирным шрифтом (р <0,05). По результатам, представленным в таблице видно, что большинство показателей у больных людей отличаются от значений показателей контрольной группы.

Группы, разделенные по величине ФВ, были сопоставлены с контрольной группой для установления различий показателей. Также группы с разной величиной фракции выброса сравнивались друг с другом.

Сравнение показателей ЭКГ и ЭхоКГ в 1 точке в группах, различающихся по ФВ, между собой и с контрольной группой производилось с помощью непараметрического критерия Манна-Уитни. Результаты сравнения данных групп представлены в таблице 4 (ПРИЛОЖЕНИЕ 2), причем достоверно значимые отличия с уровнем значимости р <0,05 выделены жирным шрифтом. Из таблицы видно, что практически все показатели больных отличаются от показателей контрольной группы.

3.3 Определение эффективности препарата путем сравнения двух зависимых выборок с помощью непараметрического критерия Вилкоксона

Для определения, какой из препаратов оказал наибольшее влияние при лечении больных, сравнивались показатели до лечения с показателями после лечения. Так как оценивалась различия показателей до и после лечения у пациентов, был одних тех же ДЛЯ сравнения использован непараметрический критерий Вилкоксона для связанных выборок. В таблицах 3.1 и 3.2 представлены результаты сравнения для групп 1.1 и 1.2 пациентов с ФВ <40% (см. рис.3.1), принимавших разные препараты. Полужирным шрифтом выделены значения параметров, отличающиеся на уровне значимости р <0,05. То есть тех, для которых уверенно проявился результат лечения.

Таблица 3.1 Результаты применения критерия Вилкоксона в группе $1.1-\Phi B < 40\%$, представители которой принимали эплеренон

Показатели	N	T	Z	p
ФВлж (1) & ФВлж (2), %	9	0,00	2,665570	0,007686
QRS (1) & QRS (2), мс	7	14,0000	0,00	1,000000
QTc max (1) & QTc max(2), мс	9	1,00000	2,547100	0,010863
QTc min (1) & QTc min (2), мс	9	4,00000	2,191691	0,028403
QTd(1) & QTd (2), мс	9	1,00000	2,547100	0,010863
QTcd(1) & QTcd (2), мс	9	1,00000	2,547100	0,010863
QT apd(1) & QTapd(2), мс	9	0,00	2,665570	0,007686
QT apcd(1) & QT apcd(2), мс	9	0,00	2,665570	0,007686
JTd (1) & JTd (2), мс	9	1,00000	2,547100	0,010863
JTcd (1) & JTcd (2), мс	9	1,00000	2,547100	0,010863
JTapd (1), мс & JTapd (2), мс	8	4,50000	1,890378	0,058708
JTaped (1), мс & JTaped (2), мс	9	11,0000	1,362402	0,173072
Sub Td (1) & Sub Td (2), мс	9	0,00	2,665570	0,007686
Sub Tcd (1) & Sub Tcd (2), мс	9	0,00	2,665570	0,007686
КСОлж (1) & КСОлж (2), мл	9	2,00000	2,428630	0,015157
СДЛА (1) & СДЛА (2), мм рт.ст.	7	0,00	2,366432	0,017961

где N – численность выборки;

Т - сумма знаковых рангов (см. главу 1, параграф 1.3.1);

Z – статистика критерия, принимает значение T_+ или T_- в зависимости от того, какая из них меньше;

р – уровень значимости.

Таблица 3.2 Результаты применения критерия Вилкоксона в группе $1.2-\Phi B<40\%$, представители которой принимали верошпирон

Показатели	N	T	Z	p
ФВлж (1) & ФВлж (2), %	17	14,00000	2,958632	0,003090
QRS (1) & QRS (2), MC	15	60,00000	0,00	1,000000
QТс max (1) & QТс max(2), мс	19	11,00000	3,380343	0,000724
QTc min (1) & QTc min (2), мс	19	33,00000	2,495015	0,012596
QTd(1) & QTd (2), мс	18	4,000000	3,549354	0,000386
QTcd(1) & QTcd (2), мс	19	6,000000	3,581554	0,000342
QT apd(1) & QTapd(2), мс	19	3,000000	3,702281	0,000214
QT apcd(1) & QT apcd(2), мс	19	23,00000	3,549354	0,000027
JTd (1) & JTd (2), мс	18	4,000000	3,549354	0,000386
JTcd (1) & JTcd (2), мс	19	6,000000	3,581554	0,000342
JTapd (1), мс & JTapd (2), мс	19	64,50000	1,227387	0,219678
JTapcd (1), мс & JTapcd (2), мс	19	67,00000	1,126781	0,259836
Sub Td (1) & Sub Td (2), мс	19	0,00	3,823007	0,000132
Sub Tcd (1) & Sub Tcd (2), мс	19	0,00	3,823007	0,000132
КСОлж (1) & КСОлж (2), мл	17	68,00000	0,402374	0,687409
СДЛА (1) & СДЛА (2), мм рт.ст.	11	5,000000	2,489504	0,012793

В результате сравнения показателей в группах с ФВ <40% у пациентов, которые принимали разные препараты, видно, что практически все показатели, представленные в таблицах, имеет значимые различия. Чтобы оценить, какое лекарство оказало наилучшее действие на состояние пациентов, были сопоставлены результаты изменения показателей с нормой – с контрольной группой.

В таблице 3.3 приведены результаты изменения показателей под действием двух препаратов, а также сопоставление с показателями в норме.

Таблица 3.3 Влияние препаратов на показатели пациентов с ΦB <40%, сопоставление с показателями в норме

	Эплеренон			Верош	пирон			
	n	n=9	Норма	n=1	n=19		p	
Показатели	1 точка	2 точка	n=30	1 точка	2 точка			
	(1	(30 сутки)		(1 сутки)	(30	Эплеренон	Верошпирон	
	сутки)	, ,		, ,	сутки)			
ФВлж, %	35,370	43,042	61,44	35,086	38,648	0,007686	0,003090	
QRS, MC	100,000	98,6667	113,7	115,7895	112,368	1,000000	1,000000	
QTc max,мc	597,610	482,6766	436,22	571,6187	496,011	0,010863	0,000724	
QTc min, мс	491,886	426,5159	398,2	457,4709	422,739	0,028403	0,012596	
QTd, мс	85,0000	50,5556	34,70	96,0526	65,0000	0,010863	0,000386	
QTcd, мс	105,724	56,1607	36,04	114,1478	73,2716	0,010863	0,000342	
QTapd, мс	15,4444	50,5556	24,90	22,1053	65,0000	0,007686	0,000214	
QT apcd, мс	19,7840	56,1607	25,87	26,4330	73,2716	0,007686	0,000027	
JTd , мс	85,0000	50,5556	15,77	96,0526	65,0000	0,010863	0,000386	
JTcd, мс	105,724	56,1607	16,37	114,1478	73,2716	0,010863	0,000342	
JTapd, мс	11,5556	22,2222	15,10	22,1053	30,5263	0,058708	0,219678	
JTapcd, мс	15,0681	24,8828	15,72	26,4330	34,7996	0,173072	0,259836	
Sub Td, мс	73,4444	28,3333	14,87	73,9474	34,4737	0,007686	0,000132	
Sub Tcd, мс	90,6560	31,2779	15,46	87,7148	38,4720	0,007686	0,000132	
КСОлж, мл	104,333	89,667	41,33	95,737	96,235	0,015157	0,687409	
СДЛА, мм	45,667	33,714	25,47	42,089	35,846	0,017961	0,012793	
рт.ст.								

Из результатов, представленных в таблице, видно, что оба препарата оказали влияние на показатели ЭхоКГ и ЭКГ, так как практически все показатели имеют достоверные изменения в процессе лечения (результаты с достоверными изменениями на уровне значимости р <0,05 выделены в последних столбцах полужирным шрифтом). Для показателей QRS, QTapd, QT арсd, JTapd прием препаратов повлиял отрицательно, так как их значения стали больше отличаться от нормы. Из сопоставления результатов лечения следует, что лучшее медикаментозное действие проявил препарат эплеренон, так как после его приема у пациентов больше показателей достоверно

приблизилось к норме. Прием верошпирона также оказал положительное действие, но менее значимое, чем прием эплеренона.

На рис.3.2 показаны распределение показателей до и после приема препаратов для группы пациентов с ФВ <40%, а также для сопоставление изменений показателей, обусловленных приемом препаратов, распределение показателей в норме.

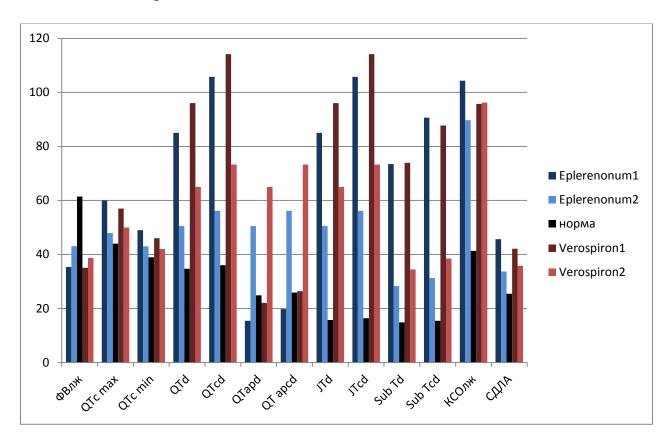


Рис. 3.2 Результаты изменения показателей после приема препаратов

Из рисунка видно, что после приема обоих лекарств значения показателей изменились, причем для одних показателей наблюдается приближение к норме, для других наоборот отклонение от нее. Данная гистограмма подтверждает, что после лечения эплереноном значительная часть показателей сильнее приблизилась к норме и слабее отклонилась от неё, чем после лечения верошпироном.

Для групп пациентов с ФВ=40-50%, была проведена аналогичная проверка с помощью непараметрического критерия Вилкоксана для

зависимых выборок. Результаты применения данного критерия представлены в таблицах 3.4 и 3.5.

Таблица 3.4 Результаты применения критерия Вилкоксона в группа 2.1 – ФВ=40-50%, пациенты которой принимали эплеренон

Показатели	Числ. выборки	T	Z	p
ФВлж (1) & ФВлж (2), %	23	30,0000	3,284815	0,001021
QRS (1) & QRS (2), c	17	32,0000	2,106546	0,035158
QTc max (1) & QTc max(2), c	23	18,0000	3,649794	0,000262
QTc min (1) & QTc min (2), c	23	90,0000	1,459918	0,144314
QTd(1) & QTd (2), мс	23	0,00	4,197264	0,000027
QTcd(1) & QTcd (2), мс	23	0,00	4,197264	0,000027
QT apd(1) & QTapd(2), мс	23	0,00	4,197264	0,000027
QT apcd(1) & QT apcd(2), мс	23	0,00	4,197264	0,000027
JTd (1) & JTd (2), мс	23	0,00	4,197264	0,000027
JTcd (1) & JTcd (2), мс	23	0,00	4,197264	0,000027
JTapd (1) & JTapd (2), мс	23	9,50000	3,908321	0,000093
JTapcd (1) & JTapcd (2), мс	23	11,0000	3,862699	0,000112
Sub Td (1) & Sub Td (2), мс	23	0,00	4,197264	0,000027
Sub Tcd (1) & Sub Tcd (2), Mc	23	0,00	4,197264	0,000027
КСОлж (1) & КСОлж (2), мл	23	56,0000	2,494026	0,012631
СДЛА (1)& СДЛА (2), мм рт.ст.	14	18,0000	2,165789	0,030328

Таблица 3.5 Результаты применения критерия Вилкоксона в группе 2.2 - ФВ=40-50%, пациенты которой принимали верошпирон, р <0,05

	Числ.			
Показатели	выборки	T	Z	p
ФВлж (1) & ФВлж (2), %	23	36,0000	3,102325	0,001920
QRS (1) & QRS (2), c	20	89,5000	0,578656	0,562821
QTc max (1) & QTc max(2), c	25	51,0000	3,000121	0,002699
QTc min (1) & QTc min (2), c	25	60,0000	2,757958	0,005817
QTd(1) & QTd (2), мс	24	101,500	1,385714	0,165835
QTcd(1) & QTcd (2), мс	25	100,000	1,681682	0,092631
QT apd(1) & QTapd(2), мс	25	0,00	4,372373	0,000012
QT apcd(1) & QT apcd(2), Mc	25	0,00	4,372373	0,000012
JTd (1) & JTd (2), мс	24	101,500	1,385714	0,165835
JTcd (1) & JTcd (2), мс	25	100,000	1,681682	0,092631
JTapd (1) & JTapd (2), Mc	22	2,00000	4,041973	0,000053
JTapcd (1) & JTapcd (2), мс	25	11,0000	4,076397	0,000046
Sub Td (1) & Sub Td (2), мс	25	0,00	4,372373	0,000012
КСОлж (1) & КСОлж (2), мл	23	126,500	0,349772	0,726510
СДЛА (1) & СДЛА (2), мм рт.ст.	14	18,0000	2,165789	0,030328

Результаты сравнения показателей в группах с ФВ=40-50% у которые принимали разные препараты, пациентов, показывают, что представленные практически все показатели, В таблицах, значимо изменились. Чтобы оценить, какое лекарство оказало наилучшее действие на состояние пациентов, сопоставим изменение их показателей с нормой – контрольной группой. В таблице 3.6 приведены результаты изменения показателей при лечении обоими препаратами, сопоставление с показателями в норме.

Таблица 3.6 Влияние препаратов на показатели больных с ΦB =40-50%, сопоставление с показателями в норме

	Эплеренон			Вероп	Верошпирон		p –	
Показатели	n=23		Норма	n=25		уровень значимости		
	1 точка	2 точка	n=30	1 точка	2 точка)	Верошпиро	
	(1 сутки)	(30		(1 сутки)	(30	Эплеренон	Н	
		сутки)			сутки)			
ФВлж, %	46,956	51,254	61,44	45,671	47,796	0,001021	0,001920	
QRS, MC	103,1739	97,8261	113,7	100,7200	99,4800	0,035158	0,562821	
QTc max,мc	529,9422	475,1234	436,2	519,9504	480,5266	0,000262	0,002699	
QTc min, c	430,9094	415,6379	398,2	431,7221	403,1288	0,144314	0,005817	
QTd, мс	93,2609	56,9565	34,70	76,8000	70,4800	0,000027	0,165835	
QTcd, мс	99,0328	59,4855	36,04	88,2283	77,3977	0,000027	0,092631	
QTapd, мс	14,7826	56,9565	24,90	9,8000	70,4800	0,000027	0,000012	
QTapcd, мс	15,6428	59,4855	25,87	11,3341	77,3977	0,000027	0,000012	
JTd, мс	93,2609	56,9565	15,77	76,8000	70,4800	0,000027	0,165835	
JTcd, мс	99,0328	59,4855	16,37	88,2283	77,3977	0,000027	0,092631	
JTapd, мс	14,7826	36,9565	15,10	9,8000	36,2800	0,000093	0,000053	
JTaped, мс	15,6428	38,6193	15,72	11,3341	40,1898	0,000112	0,000046	
Sub Td, мс	78,4783	20,0000	14,87	67,0000	34,2000	0,000027	0,000012	
Sub Tcd, мс	83,3900	20,8662	15,46	76,8943	37,2080	0,000027	0,000487	
КСОлж, мл	58,565	53,000	41,33	62,740	63,413	0,012631	0,726510	
СДЛА, мм	36,864	34,278	25,47	37,800	36,982	0,030328	0,030328	
рт.ст.							·	

Из результатов, представленных в таблице, видно, что каждый из препаратов оказал влияние на показателе ЭхоКГ и ЭКГ, так как практически все показатели после лечения достоверно изменились.

Для показателей QTapd, QTapcd, JTapd, JTapcd прием эплеренона и верошпирона оказал негативный эффект, так как их значения стали больше отличаться от нормы. Лучшее медикаментозное действие на остальные показатели оказал препарат эплеренон, так как после его приема количество показателей с достоверным изменением больше. Прием верошпирона оказал положительное действие на эти показатели, но менее значимое, чем от приема эплеренона.

На рис. 3.3 показаны распределение показателей до и после приема препаратов для группы пациентов с $\Phi B = 40-50\%$.

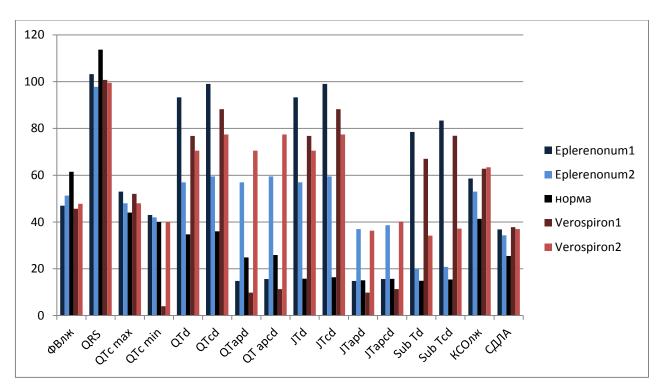


Рис. 3.3 Результаты изменения показателей после приема препаратов

Из рисунка видно, что после приема обоих лекарств значения показателей изменились, причем для одних показателей наблюдается приближение к норме, для других наоборот удаление от нее. Данная гистограмма подтверждает, что после лечения эплереноном значительная часть показателей сильнее приблизилось к норме и слабее отклонилось от неё, чем после лечения верошпироном.

Важно знать, как изменились значения показателей под действием применяемых препаратов в процентном отношении. Для получения этой информации были рассчитаны средние значения изменений показателей обследованных больных, представленные в таблице 3.7.

Таблица 3.7 Средние значения изменений показателей обследованных больных

Изменение	ΦВ «	< 40%	$\Phi B = 40-50\%$		
значений	Эплеренон	Верошпирон	Эплеренон	Верошпирон	
показателей в	1.1 группа	1.2 группа	2.1 группа	2.2 группа	
%	n=9	n=19	n=23	n=25	
dФВлж	+22,8	+13,4	+9,3	+5,0	
dQRS	-0,9	-2	-5	-0,7	
dQTc max	-18,1	-12,4	-9,7	-6,8	
dQTc min	-12,3	-6,4	-2,6	-5,9	
dQTd	-37,4	-30,3	-37,4	-5,2	
dQTcd	-43,0	-32,8	-38,3	-7,7	
dQTapd	+332,2	+457,68	+548,8	+918,9	
dQT apcd	+284,9	+428,0	+527,2	891,4	
dJTd	-37,4	-30,3	-37,4	-5,2	
dJTcd	-43,0	-32,8	-38,3	-7,7	
dJTapd	+79,3	+145,1	+345,8	+464,3	
dJTapcd	+58,3	+134,8	+332,9	+455,8	
dSub Td	-58,3	-52,4	-74,4	-48,5	
dSub Tcd	-61,8	-54,6	-74,8	-50,2	
dКСОлж	-12,9	+0,02	-8,8	+2,7	
dСДЛА	-25,2	-12,7	-19,7	-6,6	

Из приведенных данных видно, что по ряду показателей верошпирон уступает эплеренону, так как после приема эплеренона изменение значений показателей в положительную сторону сильнее, а в отрицательную слабее, чем после верошпирона. Следует отметить, что у пациентов с ФВ <40% значения исследуемых показателей после курса лечения изменились сильнее (значительное приближение к норме), чем у пациентов с ФВ =40-50%. Можно предположить, что данные лекарственные препараты более эффективны для тяжелой стадии болезни.

Результаты исследований эффективности применения использованных препаратов можно сформулировать следующим образом:

- С помощью статистических критериев были определены достоверные изменения значений показателей ЭхоКГ и ЭКГ после лечения обеими препаратами;
- Наилучшим действием обладает лекарственный препарат эплеренон, так как после его приема значения показателей сильнее приблизилось к норме, чем после приема верошпирона;
- Для некоторых показателей после применения обоих препаратов наблюдалось отрицательная динамика (отклонение от нормы), но изменение значений показателей в отрицательную сторону после применения эплеренона слабее, чем после приема верошпирона;
- В зависимости от величины фракции выброса результативность лечения отличается. У пациентов с низким значением фракции выброса ФВ<40% после приема лекарств наблюдалось более существенное изменение, чем у пациентов с ФВ=40-50%.

ЗАКЛЮЧЕНИЕ

Результаты проведённых исследований по обработке данных клинических исследований можно кратко сформулировать следующим образом:

- 1) Изучены основы статистической обработки результатов клинических исследований. Определены типы данных, проведена первичная обработка количественных признаков, определен тип распределения для каждой выборки и показана необходимость использования непараметрических методов. Из изученных непараметрических методов выбраны и использованы оптимальные критерии, позволившие решить поставленные задачи.
- 2) В рамках решения первой задачи с использованием критерия Манна-Уитни для независимых выборок определена взаимосвязь показателей плазма эмиссионной спектрометрии с функциональными показателями у больных, страдающих заболеваниями сердечнососудистой системы, и контрольной группы. Установлено наличие достоверных отличий по содержанию кальция и магния с уровнем значимости р <0,05.
- 3) В связи с различием величины фракции выброса в разных группах пациентов проведено сопоставление показателей плазма эмиссионной спектрометрии в группах У1 и У2 и установлено, что исследуемые показатели не связаны с величиной фракции выброса.
- 4) С помощью коэффициентов корреляции Спирмена обнаружена корреляция между содержанием значимых микроэлементов и функциональными прижизненными показателями. Сопоставление функциональных параметров пациентов, умерших от заболеваний сердечнососудистой системы, с параметрами контрольной группы подтвердило значимость выделенных функциональных параметров.
- 5) В рамках решения задачи определения эффективность применения двух препаратов для лечения заболеваний сердечнососудистой системы с

помощью непараметрического критерия Манна-Уитни установлено отличие показателей ЭхоКГ и ЭКГ пациентов с сердечнососудистыми заболеваниями до лечения с показателями здоровых людей.

6) С помощью непараметрического критерий Вилкоксона для связанных данных проведено сравнение этих показателей до и после лечения у групп пациентов, принимавших разные лекарственные препараты: эплеренон и верошпирон. Для определения препарата, оказавшего наилучшее действие на состояние пациентов, проведено сопоставление показателей, достигнутых в результате лечения каждым препаратом, с показателями контрольной группы.

Результаты сравнения:

- Обнаружены статистически достоверные изменения значений показателей ЭхоКГ и ЭКГ после лечения обеими препаратами;
- Наилучшим действием обладает лекарственный препарат эплеренон, так как после его приема значения показателей сильнее приблизилось к норме, чем после приема верошпирона;
- Для некоторых показателей после применения обоих препаратов наблюдалось отрицательная динамика (отклонение от нормы), но отклонение показателей от нормы после применения эплеренона оказалось слабее, чем после приема верошпирона;
- В зависимости от величины фракции выброса результативность лечения отличается. У пациентов с низким значением фракции выброса ФВ<40% после приема лекарств наблюдалось более существенное изменение, чем у пациентов с ФВ=40-50%.

СПИСОК ЛИТЕРАТУРЫ

- 1. Боровиков В. STATISTICA: искусство анализа данных на компьютере. Для профессионалов. 2-е изд. — СПб.: Питер, 2003. — 688с.
- 2. Валеев С.Г., Клячкин В.Н. Практикум по прикладной статистике: Учебное пособие. – Ульяновск: УлГТУ, 2008. – 130 с.: ил.
- 3. Гайдышев И. Анализ и обработка данных: Специальный справочник. СПб: Питер, 2001.- 752с.
- 4. Годин А. М. Статистика: Учебник 9-е изд., перераб. и испр. М.: Издательско-торговая корпорация «Дашков и К°», 2011. 460с.
- 5. Гланц С. Медико-биологическая статистика. М: Практика 1998. 459с.
- 6. Гублер Е.В., Генкин А.А. Применение непараметрических критериев в медико-биологических исследованиях.— М.: Медицина, 1973. 159 с.
- 7. Кочетов А.Г., Лянг. О.В. Методы статистической обработки медицинских данных: Методические рекомендации для ординаторов и аспирантов медицинских учебных заведений, научных работников / сост.: А.Г. Кочетов, О.В. Лянг., В.П. Масенко, И.В.Жиров, С.Н.Наконечников, С.Н.Терещенко М.: РКНПК, 2012. 42 с.
- 8. Лакин Г.Ф. Биометрия: учеб. пособие для биол. спец. вузов 4-е изд., перераб. и доп.— М.: Высш. шк., 1990. 325 с.: ил.
- 9. Лапач С.Н., Чубенко А.В., Бабич П.Н. Основные принципы применения статистических методов в клинических испытаниях. Сп.б.: Морион, 2002. 160с.
- 10. Ликеш И., Ляга Й. Основные таблицы математической статистики. М.: Финансы и статистика, 1985. 356 с.
- 11. Мерков А.М. Санитарная статистика: пособие для врачей. М.: Медицина, 1974. 384с.
- 12.Петри А., Сэбин К. Наглядная статистика в медицине. М.: ГЭОТАР-МЕД, 2003. – 56с.

- 13. Реброва О.Ю. Статистический анализ медицинских данных. Применение пакета прикладных программ STATISTICA. М.: МедиаСфера, 2002. 312c.
- 14.Сергиенко В.И. Математическая статистика в клинических исследованиях: 2-е изд..– М.:ГЭОТАР Медиа, 2006. 304с.
- 15.Юнкеров В.И., Григорьев С.Г. Математико-статистическая обработка данных медицинских исследований. СПБ.: ВМедА, 2002. 266с.
- 16.Experientia est optima magistra: Collected papers of/ Editor-in-Chief: E.A. Ogneva, I.V. Borisovskaya. Belgorod: OOO «EPIZENTR», 2017.- 208p.
- 17.АНАЛИЗ ДАННЫХ В КЛИНИЧЕСКИХ ИССЛЕДОВАНИЯХ.

 [Электронный ресурс]. [Режим доступа]:

 https://www.scienceforum.ru/2018/2926/2197
- 18.ANALYTICAL AND MEDICAL SYSTEMS. [Электронный ресурс]. [Режим доступа]: www.shimadzu.com/an/
- 19.SHIMADZU EUROPA GMBH .ANALYTICAL AND MEDICAL SYSTEMS. [Электронный ресурс]. [Режим доступа]: www.shimadzu.ru

ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ 1

Таблица 1

Сравнение функциональных показателей с показателями плазма эмиссионной спектрометрии

показатели	Показатели, дл коэф. корреляции	онная спектрометрия из которых значения и Спирмена г значимы		овня значимости (M-U)
	У1	У2	У1/Ж4	У2 /Ж4
Bec	Bec	Bec	0,563371	0,509747
ЧСС	ЧСС	ЧСС	0,005705	0,404431
САД	САД	САД/Са	0,310045	0,135447
ДАД	ДАД	ДАД	0,573963	0,497379
СрАД	СрАД	СрАД	0,137903	0,116295
ПульсАД	ПульсАД	ПульсАД/ Мд	0,035002	0,016206
ΦΠ/ΤΠ	ΦΠ/ΤΠ	ΦΠ/ΤΠ	0,005182	0,984531
ширина	ширина QRS	ширина	0,155265	0,322738
QRS		QRS/K,Na,Mg		
кдр пж	кдр пж	кдр пж	0,000003	0,000531
кдр лж	кдр лж/Mg, Na	кдр лж	0,962631	0,026720
кдр лп п-з-р	кдр лп п-з-р	кдр лп п-3-р	0,000003	0,000445
кдр лп 4кп	кдр лп 4кп	кдр лп 4кп	0,000007	0,035928
кдр пп 4кп	кдр пп 4кп/Мд	кдр пп 4кп	0,000009	0,000968
кдо лж1	кдо лж1	кдо лж1	0,325168	0,081126
ксо лж1	ксо лж1/ Na	ксо лж1	0,012420	0,040306
ксо лж2	ксо лж2/ Na	ксо лж2	1,000000	1,000000
фв1	фв1	фв1/Мд	0,000003	0,278263
фв2	фв2	фв2/Са	1,000000	1,000000
Тмжп	Тмжп	Тмжп	0,000003	0,000445
Тзслж	Тзслж/Мд	Тзслж	0,000496	0,002362
МК.Пик.кор	МК.Пик.корос	МК.Пик.корость	0,000007	0,035928
ость м/с	ть м/Са	m/c/Fe		
E/A	E/A	E/A	0,125587	0,007527
E/E'	E/E'	E/E'	0,001471	1,000000
ДТ	ДТ	ДТ	0,005325	0,001612
Пик ск на	Пик ск на АоК	Пик ск на АоК	0,000343	0,028413
АоК				
Гр. Дав.	Гр. Дав.	Гр. Дав. Пик.	0,000019	0,011997
Пик.	Пик/Ca, Mg			
Гр дав	Гр дав	Гр дав	0,093606	0,301478
СДЛА	СДЛА	СДЛА	0,000437	0,023104
Пик.скор.ТК	Пик.скор.ТК	Пик.скор.ТК	0,130445	0,978678
Гр дав	Гр дав	Гр дав	0,064825	0,020063

		нная спектрометрия я которых значения	Значение уро	овня значимости
показатели	коэф. корреляции	и Спирмена г значимы	p((M-U)
	У1	У2	У1 /Ж4	У2 /Ж4
Tp1	Tp1	Tp1/K,Mg	0,395326	0,002188
тр2	тр2/Мд	тр2	0,089687	0,015194
СОЭ1	CO31	СОЭ1	0,000007	0,000599
СОЭ2	СОЭ2	СОЭ2	0,005821	0,000145
пти1	пти1/m	пти1	0,414120	0,019982
пти2	пти2	пти2/т	0,000145	0,000309
мно1	мно1/m	мно1	0,000858	0,000311
мно2	мно2	мно2/т	0,000145	0,000145
ачтв1	ачтв1	ачтв1	0,137296	0,135447
ачтв2	ачтв2	ачтв2	0,006717	0,009041
тв1	тв1	тв1	0,021931	0,021038
тв2	тв2	тв2/Nа	0,019625	0,038063
фг1	фг1	фг1	0,024086	0,023297
фг2	фг2/Мg	фг2	0,062597	0,279069
общий	Общ.белок1/Nа,	общий белок1	0,907124	0,016206
белок1	Mg	,	- ,	2,0-0-0
общий	общий белок2	общий белок2	0,085592	0,000930
белок2	,	,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
мочевина1	мочевина1	мочевина1	0,011299	0,669699
мочевина2	мочевина2	мочевина2	0,010870	0,018481
креатинин1	креатинин1	креатинин1	0,617075	0,655633
креатинин2	креатинин2	креатинин2/Na	0,143074	0,195441
аст1	аст1	аст1/Nа	0,142468	0,352020
аст2	аст2	аст2	0,001809	0,002406
алт1	алт1	алт1/Мд	0,026647	0,953615
алт2	алт2	алт2/Мg	0,019564	0,097833
кфк1	кфк1/Мд,Са	кфк1	0,014961	0,035628
кфк2	кфк2	кфк2	0,001471	0,555690
кфк-мв1	кфк-мв1/Мд	кфк-мв1	0,092312	0,269751
кфк-мв2	кфк-мв2	кфк-мв2	0,005013	0,383155
глюкоза1	глюкоза1	глюкоза1/К	0,121143	0,000335
глюкоза2	глюкоза2	глюкоза2/Са	0,019625	0,033806
холестерин1	холестерин1	холестерин1	0,073409	0,893695
холестерин2	холестерин2	холестерин2	0,400105	0,218922
ТГ1	TΓ1	TΓ1	0,573026	0,697092
ЛПВП1	ЛПВП1	ЛПВП1	0,005325	0,021644
ЛПНП1	ЛПНП1	ЛПНП1	0,363866	0,876270
ЛПОНП1	ЛПОНП1	ЛПОНП1	0,551902	0,937948
KA1	KA1	KA1	0,005325	0,021644
pH1	pH1	pH1	0,925162	0,978678
pH2	pH2	pH2	0,172873	0,148962

ПРИЛОЖЕНИЕ 2

Таблица 1

Описательная статистика основной группы в 1 точке

			(Эписательн	ая статисти	ка		
Показатели	Числен	Среднее	Медиана	Мин	Максиму	Нижний	Верхний	Станд.
ЭКГ и ЭхоКГ	ность	1			M	квартиль	квартиль	Откл.
	группы					1	1	
ФВлж (1), %	115	44,502	45,556	20,4301	64,56	39,7959	48,673	7,076
QRS (1),mc	115	104,139	100,000	10,0000	180,00	100,0000	110,000	18,512
QTc max (1), мс	115	520,078	514,877	140,0000	700,04	467,0592	575,426	78,454
QTc min (1),мс	115	428,306	419,314	113,3333	584,57	386,6413	471,332	62,127
QTd(1),mc	115	81,087	80,000	25,0000	160,00	70,0000	95,000	24,760
QTcd(1), Mc	115	91,709	91,915	26,5165	182,34	71,4435	108,916	31,568
QT apd(1), мс	115	19,487	15,000	0,0000	75,00	5,0000	30,000	15,768
QT apcd(1), мс	115	21,944	15,000	0,0000	91,63	6,5094	33,408	18,177
JTd (1), мс	115	81,087	80,000	25,0000	160,00	70,0000	95,000	24,760
JTcd (1), Mc	115	91,709	91,915	26,5165	182,34	71,4435	108,916	31,568
JTapd (1), Mc	115	19,183	15,000	-15,0000	75,00	5,0000	30,000	16,093
JTapcd (1), мс	115	21,575	14,780	-18,1902	91,63	6,3500	33,408	18,557
Sub Td (1), MC	115	61,904	65,000	10,0000	125,00	50,0000	80,000	23,510
Sub Tcd (1), мс	115	70,134	71,604	10,7833	142,45	55,0000	90,951	28,837
КДОлж (1), мл	115	118,270	112,000	66,0000	229,00	99,0000	127,000	31,178
КСОлж (1), мл	115	66,970	60,000	28,0000	172,00	53,0000	70,000	25,690
LVL (1),cm	25	7,964	7,900	7,2000	9,10	7,5000	8,400	0,572
Тмжп (д) (1), см	115	1,263	1,300	0,9000	2,00	1,2000	1,360	0,172
Тзслж (д)(1), см	114	1,182	1,200	0,8000	1,70	1,1000	1,300	0,163
E/A (1)	102	1,073	0,850	0,4000	3,50	0,7000	1,280	0,581
ДТ (ВЗПРН)(1), мс	100	187,370	192,000	90,0000	321,00	143,5000	222,500	51,119
E/E' (1)	105	11,395	10,000	5,8000	48,00	8,1000	12,600	5,488

	Описательная статистика									
Показатели	Числен	Среднее	Медиана	Мин	Максиму	Нижний	Верхний	Станд.		
ЭКГ и ЭхоКГ	ность	- p - A			M	квартиль	квартиль	Откл.		
	группы					1	1			
СДЛА (1), мм	112	38,060	35,000	26,0000	100,00	30,0000	42,000	11,380		
рт.ст.										
индекс	25	0,631	0,631	0,5114	0,76	0,6154	0,649	0,046		
сферичности (1)										
Vинд.ЛП (1)	29	31,545	32,450	21,0103	45,96	27,5571	34,993	6,141		
ИНЛС (1)	114	1,472	1,375	0,2500	2,25	1,2500	1,630	0,314		
КДО инд.(1)	114	59,778	56,744	34,3917	128,83	49,8633	62,961	16,390		
КДР лж(1), см	67	5,060	5,000	4,0000	6,70	4,8000	5,300	0,470		
КСР лж(1), см	25	3,648	3,700	2,3000	4,90	3,5000	3,800	0,567		
FS%(1)	25	27,200	26,000	15,5000	52,00	24,0000	29,000	7,966		
А мжп (1), см	25	0,478	0,400	0,2000	0,90	0,3000	0,700	0,231		
А зс (1), см	25	0,644	0,600	0,2000	0,90	0,5000	0,800	0,206		
SPWMD (1), MC	25	80,560	72,000	36,0000	152,00	52,0000	95,000	32,147		
А-РЕР (1), мс	25	81,120	77,000	52,0000	186,00	67,0000	87,000	26,194		
Р-РЕР (1), мс	25	66,160	59,000	37,0000	156,00	52,0000	78,000	24,773		
A-PEP-P-PEP(1),	25	14,960	15,000	-16,0000	43,00	9,0000	20,000	11,092		
MC										
ТѕМЖП (1), мс	25	99,640	97,000	64,0000	155,00	88,0000	112,000	22,318		
ТѕБСЛЖ (1), мс	25	98,880	98,000	54,0000	144,00	74,0000	116,000	24,719		
ТsМЖП-	25	0,760	6,000	-52,0000	39,00	-18,0000	21,000	23,997		
ТѕБСЛЖ (1), мс										
миокард.стресс	25	146,391	140,280	100,2000	190,38	134,3634	156,312	20,366		
(1)										
ММЛЖ (1), г/м2	25	247,093	241,962	176,0355	337,90	212,0012	272,503	43,343		
ИММЛЖ (1)	25	121,843	120,974	82,8712	168,92	107,8682	135,325	20,803		

Таблица 2

Описательная статистика контрольной группы в 1 точке

	Описательная статистика									
Показатели	Числен	Среднее	Медиана	Мин	Максимум	Нижний	Верхний	Станд.		
ЭКГ и ЭхоКГ	ность	-			J	кватиль	кватиль	Откл.		
	группы									
ФВлж (1), %	30	61,4425	61,5385	52,8969	71,7949	57,1429	64,4167	5,16219		
QRS (1), MC	30	113,7	90,0	75,0	800	80,0	100,0	129,90		
QTc max (1), мс	30	436,2224	431,7525	417,821	487,8378	426,8041	442,2222	14,85007		
				8						
QTc min (1),мc	30	398,1981	402,6807	137,325	439,5661	398,0149	419,9654	51,84544		
				3						
QTd(1),mc	30	34,7000	35,0000	30,0000	40,0000	32,0000	37,0000	2,74364		
QTcd(1), мс	30	36,0414	35,2667	31,9741	46,4991	33,7310	37,9473	3,19273		
QT apd(1), мс	30	24,9000	25,0000	18,0000	30,0000	24,0000	26,0000	2,42615		
QT apcd(1), мс	30	25,8741	26,0976	18,3712	31,9801	24,3683	27,4064	2,79672		
JTd (1), мс	30	15,7667	16,0000	11,0000	21,0000	14,0000	17,0000	2,31462		
JTcd (1), мс	30	16,3708	16,5140	12,1218	22,1359	14,5960	18,1221	2,45735		
JTapd (1), Mc	30	15,1000	15,5000	10,0000	20,0000	13,0000	17,0000	2,70823		
JTaped (1), мс	30	15,7178	15,8621	10,1535	22,0863	13,0000	17,4416	3,08144		
Sub Td (1), Mc	30	14,8667	16,0000	10,0000	20,0000	12,0000	17,0000	2,83735		
Sub Tcd (1), мс	30	15,4635	16,0006	10,2062	20,9820	12,1842	17,9196	3,12573		
КДОлж (1), мл	30	107,8333	106,0000	96,0000	120,0000	100,0000	116,0000	8,25909		
КСОлж (1), мл	30	41,3257	42,8500	33,0000	48,0000	37,0000	45,0000	4,47682		
LVL (1),cm	30	8,3200	8,3500	7,4000	9,2000	8,0000	8,6000	0,44675		
Тмжп (д) (1), см	30	0,9107	0,9000	0,7000	1,0200	0,9000	1,0000	0,08530		
Тзслж (д)(1), см	30	0,8909	0,9000	0,8000	1,0800	0,8000	0,9050	0,07982		
E/A (1)	30	1,2233	1,1000	1,0000	1,9000	1,0700	1,1700	0,29952		
ДТ (ВЗПРН)(1), мс	30	188,7000	188,5000	167,000	221,0000	176,0000	198,0000	13,40651		
E/E' (1)	30	6,8867	6,9000	4,9000	8,2000	6,4000	7,3000	0,76236		

	Описательная статистика									
Показатели	Числен	Среднее	Медиана	Мин	Максимум	Нижний	Верхний	Станд.		
ЭКГ и ЭхоКГ	ность				-	кватиль	кватиль	Откл.		
	группы									
СДЛА (1), мм	30	25,4667	26,0000	21,0000	28,0000	25,0000	27,0000	1,87052		
рт.ст.										
индекс	30	0,6426	0,6441	0,5977	0,7024	0,6092	0,6711	0,03169		
сферичности (1)										
Vинд.ЛП (1)	30	20,4359	19,3257	15,4685	28,1099	17,1518	23,5412	3,77698		
ИНЛС (1)	30	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,00000		
КДО инд.(1)	30	53,9937	54,5537	43,8162	70,1218	49,4272	57,0124	6,10162		
КДР лж(1), см	30	5,3397	5,4000	4,8000	5,9000	5,1000	5,5600	0,27071		
КСР лж(1), см	30	3,4090	3,5000	2,3000	3,8000	3,2000	3,7000	0,37684		
FS%(1)	30	33,9667	34,0000	31,0000	37,0000	33,0000	35,0000	1,75152		
А мжп (1), см	30	0,6527	0,6500	0,5500	0,7500	0,6000	0,7000	0,05159		
А зс (1), см	30	1,0950	1,1000	1,0000	1,2000	1,0000	1,1500	0,07234		
SPWMD (1), MC	30	89,5667	90,0000	68,0000	112,0000	79,0000	95,0000	11,86035		
А-РЕР (1), мс	30	89,9667	89,0000	73,0000	112,0000	83,0000	98,0000	10,24353		
Р-РЕР (1), мс	30	71,8333	72,0000	8,0000	94,0000	65,0000	82,0000	15,73505		
A-PEP-P-PEP(1),	30	18,1333	16,0000	10,0000	89,0000	13,0000	18,0000	13,68042		
MC										
ТѕМЖП (1), мс	30	104,3667	100,0000	83,0000	134,0000	94,0000	115,0000	14,06263		
ТѕБСЛЖ (1), мс	30	98,5000	101,5000	63,0000	137,0000	78,0000	112,0000	20,08044		
ТsМЖП-	30	5,8667	15,0000	-	26,0000	-14,0000	20,0000	17,88803		
ТѕБСЛЖ (1), мс				22,0000						
миокард.стресс	30	188,1044	186,3984	154,976	223,7800	176,0180	197,0600	17,23342		
(1)				0						
ММЛЖ (1), г/м2	30	177,2127	170,2790	147,78	228,6214	166,8710	187,2767	18,63477		
ИММЛЖ (1)	30	88,7715	86,7092	72,6381	118,1524	79,4067	94,0440	12,40910		

Результаты сравнения показателей основной и контрольной групп в 1 точке – до лечения.

Показатели ЭхоКГ ЭКГ	Основная группа		Контро груг	p	
		1	2		
	M	SD	M	SD	1-2
ФВлж (1), %	44,502	7,076	61,4425	5,16219	0,000000
QRS (1),мc	104,139	18,512	113,7	129,90	0,000000
QTc max (1), мс	520,078	78,454	436,2224	14,85007	0,000000
QTc min (1),мс	428,306	62,127	398,1981	51,84544	0,029488
QTd(1),mc	81,087	24,760	34,7000	2,74364	0,000000
QTcd(1), мс	91,709	31,568	36,0414	3,19273	0,000000
QT apd(1), мс	19,487	15,768	24,9000	2,42615	0,002071
QT apcd(1), мс	21,944	18,177	25,8741	2,79672	0,004749
JTd (1), мс	81,087	24,760	15,7667	2,31462	0,000000
JTcd (1), MC	91,709	31,568	16,3708	2,45735	0,000000
JTapd (1), мс	19,183	16,093	15,1000	2,70823	0,637632
JTaped (1), мс	21,575	18,557	15,7178	3,08144	0,943578
Sub Td (1), мс	61,904	23,510	14,8667	2,83735	0,000000
Sub Tcd (1), мс	70,134	28,837	15,4635	3,12573	0,000000
КДОлж (1), мл	118,270	31,178	107,8333	8,25909	0,167185
КСОлж (1), мл	66,970	25,690	41,3257	4,47682	0,000000
LVL (1),cm	7,964	0,572	8,3200	0,44675	0,017961
Тмжп (д) (1), см	1,263	0,172	0,9107	0,08530	0,000000
Тзслж (д)(1), см	1,182	0,163	0,8909	0,07982	0,000000
E/A (1)	1,073	0,581	1,2233	0,29952	0,000703
ДТ (ВЗПРН)(1), мс	187,370	51,119	188,7000	13,40651	0,980162
E/E'(1)	11,395	5,488	6,8867	0,76236	0,000000

Показатели ЭхоКГ ЭКГ		новная эуппа	Контр гру	p	
		1	2	2	
	M	SD	M	SD	1-2
индекс сферичности (1)	0,631	0,046	0,6426	0,03169	0,298555
Vинд.ЛП (1)	31,545	6,141	20,4359	3,77698	0,000000
ИНЛС (1)	1,472	0,314	1,0000	0,00000	0,000000
КДО инд.(1)	59,778	16,390	53,9937	6,10162	0,073757
КДР лж(1), см	5,060	0,470	5,3397	0,27071	0,000078
КСР лж(1), см	3,648	0,567	3,4090	0,37684	0,026809
FS%(1)	27,200	7,966	33,9667	1,75152	0,000000
А мжп (1), см	0,478	0,231	0,6527	0,05159	0,043393
А зс (1), см	0,644	0,206	1,0950	0,07234	0,000000
SPWMD (1), MC	80,560	32,147	89,5667	11,86035	0,074542
А-РЕР (1), мс	81,120	26,194	89,9667	10,24353	0,001360
Р-РЕР (1), мс	66,160	24,773	71,8333	15,73505	0,026233
A-PEP-P-PEP(1), MC	14,960	11,092	18,1333	13,68042	0,526169
ТѕМЖП (1), мс	99,640	22,318	104,3667	14,06263	0,230094
ТѕБСЛЖ (1), мс	98,880	24,719	98,5000	20,08044	0,865772
ТѕМЖП-ТѕБСЛЖ (1), мс	0,760	23,997	5,8667	17,88803	0,379423
миокард.стресс (1)	146,391	20,366	188,1044	17,23342	0,000000
ММЛЖ (1), г/м2	247,093	43,343	177,2127	18,63477	0,000000
ИММЛЖ (1)	121,843	20,803	88,7715	12,40910	0,000000

Таблица 4

Сравнение средних значений показателей ЭКГ и ЭхоКГ в 1 точке

		Ι				
	1 общая	2 общая				
_	группа	группа				
Показатели	$\Phi B < 40$	ΦВ	ΚГ		p	
ЭКГ и ЭхоКГ	%	40-50 %			1	
	1	2	4	1-2	1-4	2-4
ФВлж (1), %	35,340	46,368	61,4425	0,000000	0,000000	0,000000
QRS (1),mc	110,667	101,611	113,7	0,032885	0,000000	0,000000
QTc max (1), мс	575,368	509,311	436,2224	0,000030	0,000000	0,000000
QTc min (1),мс	461,912	417,030	398,1981	0,001170	0,000730	0,169639
QTd(1),мc	95,000	84,028	34,7000	0,011404	0,000000	0,000000
QTcd(1), мс	113,456	92,695	36,0414	0,001001	0,000000	0,000000
QT apd(1), мс	20,467	18,833	24,9000	0,569237	0,048414	0,002765
QT apcd(1), мс	24,679	20,580	25,8741	0,247390	0,111988	0,004229
JTd (1), мс	95,000	84,028	15,7667	0,011404	0,000000	0,000000
JTcd (1), мс	113,456	92,695	16,3708	0,001001	0,000000	0,000000
JTapd (1), мс	19,300	18,833	15,1000	0,808502	0,657381	0,429819
JTapcd (1), мс	23,264	20,580	15,7178	0,421287	0,778784	0,464933
Sub Td (1), Mc	75,700	65,194	14,8667	0,007678	0,000000	0,000000
Sub Tcd (1), мс	90,192	72,115	15,4635	0,000557	0,000000	0,000000
КДОлж (1), мл	146,300	109,986	107,8333	0,000001	0,000007	0,738258
КСОлж (1), мл	95,600	59,035	41,3257	0,000000	0,000000	0,000000
LVL (1),cm	9,000	7,900	8,3200	0,027469	0,056480	0,012341
Тмжп (д) (1), см	1,265	1,264	0,9107	0,900641	0,000000	0,000000
Тзслж (д)(1), см	1,180	1,186	0,8909	0,510716	0,000000	0,000000
E/A (1)	1,406	0,980	1,2233	0,043979	0,892434	0,000021
ДТ (ВЗПРН)(1),мс	168,250	190,969	188,7000	0,053602	0,060104	0,836141
E/E'(1)	14,390	10,507	6,8867	0,000454	0,000000	0,000000

	1 общая	2 общая				
	группа	группа				
Показатели	$\Phi B < 40$	ΦВ	ΚГ		p	
ЭКГ и ЭхоКГ	%	40-50 %			•	
	1	2	4	1-2	1-4	2-4
СДЛА (1), мм рт.ст.	42,690	36,800	25,4667	0,023571	0,000000	0,000000
индекс сферичн.(1)	0,639	0,634	0,6426	0,752784	0,968950	0,536852
Vинд.ЛП (1)	37,427	31,258	20,4359	0,095837	0,001471	0,000000
ИНЛС (1)	1,700	1,437	1,0000	0,000037	0,000000	0,000000
КДО инд.(1)	73,591	55,637	53,9937	0,000063	0,000125	0,232940
КДР лж(1), см	5,453	4,919	5,3397	0,000031	0,531416	0,000000
КСР лж(1), см	4,850	3,583	3,4090	0,027469	0,021644	0,022688
FS%(1)	15,750	28,083	33,9667	0,027469	0,021644	0,000008
А мжп (1), см	0,250	0,469	0,6527	0,207713	0,021644	0,053946
А зс (1), см	0,650	0,628	1,0950	0,949771	0,021644	0,000000
SPWMD (1), MC	151,000	72,278	89,5667	0,027469	0,021644	0,004469
А-РЕР (1), мс	81,000	80,611	89,9667	0,412831	0,258973	0,001001
Р-РЕР (1), мс	52,000	66,833	71,8333	0,528734	0,047126	0,044172
A-PEP-P-PEP(1),mc	29,000	13,778	18,1333	0,313501	0,459559	0,631827
ТѕМЖП (1), мс	90,000	96,278	104,3667	0,659243	0,119472	0,101051
ТѕБСЛЖ (1), мс	106,500	95,389	98,5000	0,488351	0,640429	0,522904
ТsМЖП-	-16,500	0,889	5,8667	0,377822	0,128997	0,456057
ТѕБСЛЖ(1),мс						
миокард.стресс(1)	173,769	141,177	188,1044	0,067727	0,258973	0,000000
ММЛЖ (1), г/м2	284,754	253,707	177,2127	0,231351	0,021644	0,000000
ИММЛЖ (1)	135,695	125,212	88,7715	0,344705	0,021644	0,000001