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Abstract. A novel high entropy alloy based on the CoCrFeMnNi system with substantial 

amounts of Al and C was studied. After cold rolling and annealing at 973-1273 K a duplex ultra-

fine grained structure composed of the recrystallized fcc grains and M23C6 and B2 particles was 

produced. Analysis of the coarsening behavior of grains and particles growth suggested that 

kinetics of both was controlled by volume diffusion. The apparent activation energy of structure 

coarsening during recrystallization was evaluated. 

1.  Introduction 

The so-called high entropy alloys (HEAs), multicomponent alloys of 5 or more principal elements taken 

in nearly equiatomic concentration (5-35 at.%), have become a very attractive research field in materials 

science [1,2]. The well-known HEAs family is based on 3d transition metals like Cr, Mn, Fe, Co and Ni 

[3]. A typical and well-investigated representative of this family is the equiatomic CoCrFeMnNi alloy, 

also known as the Cantor alloy [4–7]. This alloy has a single disordered face-centered cubic (fcc) 

structure at temperatures >900°C [6,8–13] and is widely considered as a “model” single phase HEA. In 

addition, the alloy has attractive mechanical properties; namely very high ductility and fracture 

toughness at room temperature [5,7], which yet increases even more under cryogenic condition. 

Nevertheless, the strength of the alloy is quite low [5,11]. 

Numerous efforts have been undertaken to increase the strength of the CoCrFeMnNi and similar 

alloys. Precipitation hardening was found to be a particularly effective [14–16]. Compound-forming 

elements like Al and Ti are often used to produce strengthening precipitates. For example, after proper 

heat treatment, a CoCrFeNi alloy, containing 4 at.% of Al and 2 at.% of Ti, demonstrates the ultimate 

tensile strength of ~1100 MPa with elongation of ~40% due to strong precipitation strengthening by L12 

phase particles [14]. Similarly, strong precipitation strengthening can be achieved in the alloys which 

are doped with carbon thanks to precipitation of fine carbide particles [16,17].  

Another approach to increase the strength of the CoCrFeNiMn alloys is to refine the fcc grain size. 

It is well established that the CoCrFeMnNi alloy can have very high Hall-Petch coefficient, about ~0.5 

GPa×μm-0.5 [5]. Indeed, some earlier reports demonstrated promising mechanical properties of the 

equiatomic CoCrFeMnNi alloy with the grain size of d≈0.5 μm [18,19]. In these works, cold working 

followed by annealing at temperatures ≥650°C was used to produce the ultra-fine grained (UFG) 
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structure. Because of relatively fast kinetics of recrystallization and grain growth in the single-phase 

CoCrFeNiMn alloy [20,21], very precise control over the annealing condition is needed for preserving 

the fine grain size. 

A different approach to produce UFG structure was used in [22,23]. Here, the studied alloys 

contained substantial amounts of Al or Al and C. Presence of additional elements resulted in the 

precipitation of second phase particles during post-rolling annealing, that impeded the growth of the 

recrystallized fcc grains. As a result, duplex UFG structure providing a good balance between strength 

and ductility was formed. However, the stability of such a structure requires additional studies. In present 

work, the type and the kinetics of coarsening of second-phase precipitates and grain growth during 

annealing at 973-1273 K for up to 10 hours in the previously reported Al, С containing CoCrFeMnNi-

type alloy [22] were determined. 

2.  Materials and methods 

In this work, the studied alloy was fabricated via the self-propagating high-temperature synthesis (SHS)-

casting technique. The initial products were taken in the form of a mixture of powders including oxides 

of the target elements (Co, Cr, Fe, Mn, Ni), Al (both as the metal reducer and alloying element), and 

pure C (graphite powder). Prior to the synthesis, the powders were mechanically mixed for 20 min. The 

mixture was placed in centrifuge with a graphite mold of 80 mm diameter under artificial gravity of 50-

60 G. 

The obtained ingot had the diameter of 40 mm and the length of 70 mm. The chemical composition 

of the obtained ingot is given in Table 1. Samples for the thermomechanical processing having the 

dimensions of 4×5×22 mm3 were cut from the as-cast ingot by an electric discharge machine were. 

These samples were cold rolled to the final thickness of ≈0.32 mm corresponding to a thickness 

reduction of 92% with reduction per pass of 5-10%. Cold-rolled samples were annealed at 973-1273 K 

for 0.5, 1, 5, and 10 hours. For the annealing, the samples were placed in a preheated oven and held for 

the desired durations of time; cooling was carried by air. 

Table 1. Chemical composition of the studied alloy (in at.%). 

Co Cr Fe Mn Ni Al C 

21.55 18.73 21.44 10.01 21.44 5.31 1.52 

Microstructures of the annealed alloy were studied by scanning (SEM) electron microscopy mainly. 

The samples for scanning electron microscopy were prepared by careful mechanical polishing. The SEM 

studies were performed using a FEI Quanta 600 FEG microscope equipped with backscattered electron 

(BSE) and energy dispersive spectrometry (EDS) detectors. The grain/particle size was measured using 

SEM-BSE images per standard linear interception method. At least 300 grains/particles per each 

condition were analyzed. The fraction of the second phase(s) was measured from SEM-BSE images 

using a commercial Digimizer Image Analysis software and a binarization procedure. To identify the 

crystallographic structure of different phases, transmission electron microscopy (TEM) was employed. 

Details on TEM procedures can be found elsewhere [22].  

3.  Results 

Cold rolling and annealing in the interval of 973-1273 K resulted in the formation of a duplex ultrafine-

grained structure composed of the recrystallized fcc grains and M23C6 type carbides and B2 particles 

(see more details in [22]). The measured chemical composition of the fcc phase has retained rather close 

to the nominal one (Table 1), however it was depleted of Al and enriched in Co and Fe (~24-26 at.% 

each). The carbides were primarily composed of Cr (≈63 at.%), and depleted of other metallic elements. 

The B2 phase, in turn, was enriched with Ni (~35-37 at.%), Mn (~14-17 at.%), and Al (~14-21 at.%), 

and depleted of the rest of the elements. Since the clear distinction between the morphology of the 

particles was not possible, the size and the fraction of the M23C6 and B2 second phase’s particles were 

measured jointly.  
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The effect of annealing temperature or time on the hardness of cold rolled samples is shown in Figure 

1. Annealing at 973 K for 0.5 or 1 hour leads to a slight increase in hardness from 478 HV (in the cold-

rolled state) to 513 or 495 HV. Such hardening may be due to the formation of second phase particles 

in a non-recrystallized or partially recrystallized state [13]. However, a further increase in the annealing 

temperature or time resulted in a remarkable decrease in the hardness in all interval of annealing times 

which associated with primary static recrystallization. 
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Figure 1. Effect of annealing temperature (a) and time (b) on the 

microhardness of the Al, C-containing CoCrFeMnNi-type alloy. 

Typical microstructures, which formed in the cold rolled samples after annealing for 0.5 or 10 hours 

at temperatures of 973-1273 K, are shown in Figure 2. Annealing of the rolled alloy during 0.5 h at 

temperatures 973 - 1073 K resulted in partial recrystallization of the fcc matrix phase (Figure 2 a, b). 

The corresponding microstructures consisted of deformed areas and equiaxed recrystallized grains. An 

increase in the annealing temperature to 1173-1273 K gave rise to complete recrystallization (Figure 2 

c, d). After annealing at 973 K the recrystallized fraction and the size of the recrystallized grains were 

0.52 and 0.57±0.23 μm, respectively (Table 2). An increase in the annealing temperature to 1273 K 

resulted in an increase in grain size to 1.75±0.85 μm.  

    
 (a) (b) (c) (d) 

    
 (e) (f) (g) (h) 

Figure 2. SEM-BSE images of the alloy after cold rolling to 92% thickness reduction and subsequent 

annealing for 0.5 h (a-d) and 10 h (e-h) at (a, e) – 973 К, (b, f) – 1073 К, (c, g) – 1173 К, (d, h) – 1273 

К. 

It is worth noting that an increase in the annealing time to 10 hours at the temperature of 973 K does 

not lead to the formation of a fully recrystallized structure (Figure 2e). The average grain size in the 
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recrystallized microstructures increased with an increase in the annealing time (Table 2). A number of 

equilibrium triple junctions of grain boundaries (120° between boundaries in triple junctions) indicates 

normal grain growth as the main mechanism of microstructure evolution. The growing grains are 

characterized by numerous annealing twins, which are typical of low SFE metals and alloys during 

recrystallization followed by normal grain growth. 

The grain growth takes place concurrently with the carbide and B2 particles coarsening. In the 

partially recrystallized condition the second phases were predominantly found in the recrystallized 

regions. The particles located at the grain boundaries were generally coarser than the particles inside 

recrystallized grains. The estimated fraction of the second phases decreased with increasing of annealing 

time and temperature at 1073-1273 K. A nonlinear dependence of the fraction of the particles at low 

annealing temperature can be associated with the development of primary recrystallization, when 

particle formation occurs in recrystallized regions. On the other hand, the average size of the second 

phase’s particles increased from 0.14±0.05 μm to 0.53±0.27 μm when temperature increased from 973 

K to 1273 K.  

Table 2. Microstructure parameters of the studied alloy after cold rolling to 92% thickness 

reduction and subsequent annealing at 973 К, 1073 К, 1173 К, and 1273 К for 0.5-10 hours. 

Temperature 973 K 1073 K 1173 K 1273 K 

Time, h 0.5 1 5 10 0.5 1 5 10 0.5 1 5 10 0.5 1 5 10 

Grain size, 
µm 

0.57 

± 

0.23 

0.42 

± 

0.16 

0.84 

± 

0.31 

1.10 

± 

0.52 

0.55 

± 

0.22 

0.88 

± 

0.42 

1.00 

± 

0.36 

1.41 

± 

0.65 

1.03 

± 

0.35 

0.90 

± 

0.31 

1.81 

± 

0.65 

1.85 

± 

0.44 

1.75 

± 

1.15 

2.28 

± 

1.05 

3.10 

± 

1.36 

4.69 

± 

2.40 

Particle size, 

nm 

136 

± 

 52 

165  

± 

 66 

246 

± 

122 

294 

± 

114 

240 

± 

100 

258 

± 

117 

314 

± 

183 

416 

± 

212 

299 

± 

160 

356 

± 

156 

459 

± 

268 

542 

± 

231 

530 

± 

270 

465 

± 

217 

967 

± 

435 

935 

± 

459 

Particles 

fraction, % 
5.9 9.6 20.2 10.6 19.9 15.2 13.7 9.4 17.3 12.9 7.85 6.5 14.1 8.16 6.0 3.5 

The kinetics of the grain/precipitate coarsening was well described by the power-law dependence: 

𝒅𝒏 −  𝒅𝟎
𝒏 = 𝑲𝒕     (1) 

where n is the grain/particle growth exponents, do is grain/particle size, and K is the rate constant at a 

given temperature. The exponent n =3 suggests that coarsening was controlled by volume diffusion 

(Figure 3 a, b).  

The temperature dependence of the grain size is given by the dependence of rate constant K on 

temperature, Eq. (1), which has an Arrhenius form:  

𝑲 = 𝑲𝟎𝐞𝐱𝐩 (− 𝑸 𝑹𝑻⁄ )    (2) 

Here, T is the absolute temperature, Q is the apparent activation energy for grain/particle growth, R 

is the gas constant, and Ko is a material constant. The apparent activation energy was calculated from 

the linear dependence of ln(K) on 1/T (Figure 3c). In particular, the present analysis showed that Q = 

137 kJ/mol for grain growth and Q = 125 kJ/mol for particles coarsening. The obtained values are 

considerably lower than that were reported for bulk self-diffusion of constitutive elements of the 

CoCrFeMn0.5Ni alloy (288.4-317.5 kJ/mol) [24]. Note that the information on diffusion behavior of Al 

and C in the fcc HEAs are currently lacking, yet the self-diffusion energies of these species in  (fcc) Fe 

are 300 kJ/mol [25,26]. Therefore, additional work is required to correlate the obtained values of 

activation energies of grain growth/particles coarsening with the responsible mechanisms. This work 

will be performed in future studies.      
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Figure 3. Dependence of (a) the fcc grain and (b) particles size on annealing time during 

annealing at 973-1273 K and (c) Arrhenius plots describing the apparent activation energy for 

grain or particle growth. 

4.  Conclusions 

In the present work, recrystallization and grain growth of the CoCrFeMnNi-type high entropy alloy with 

subsequent annealing at 973-1273 K were studied. Following conclusions were drawn: 

1)  The annealed alloy is composed of the fcc matrix phase with the presence of B2 and M23C6 

particles. Fraction and size of recrystallized fcc grains and size of the second phase particles 

increased with the increase of the annealing temperature, while the fraction of second phase 

particles exhibited complex dependence on annealing conditions. 

2)   Power law-type dependence between the grain/particle size and annealing time was observed. 

The exponent value of n=3 suggested that coarsening was controlled by volume diffusion. The 

activation energy was Q = 137 kJ/mol for grain growth and Q = 125 kJ/mol for particles 

coarsening. 
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