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Abstract: Forward transition radiation from relativistic electrons is investigated in an ultrasonic
superlattice excited in a finite thickness plate by two acoustic waves. In the quasi-classical ap-
proximation formulae are derived for the vector potential of the electromagnetic field and for the
spectral-angular distribution of the radiation intensity. Zone structures appear in the plate, which
makes it possible (by an appropriate choice of the frequencies of the two acoustic waves) to control
the spectral-angular distribution of the radiation through changes in the parameters of the medium.
The acoustic waves generate new resonance peaks in the spectral and angular distribution of the
radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic
waves. Numerical examples are presented for a plate of fused quartz.
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1 Introduction

The transition radiation is among the most interesting types of electromagnetic radiation emitted by
a relativistic charged particle interacting with an inhomogeneous medium (for reviews see [1–4]).
Because of its remarkable properties, the transition radiation has found a number of important
applications. In particular, optical and extreme ultraviolet backward transition radiation was used
for the measurement of transverse size, divergence, and energy of electron and proton beams
(see [5, 6] and references therein). It is well known that the interference effects in periodic structures
considerably increase the transition radiation intensity. In [7], it has been suggested to use ultrasonic
waves for the generation of a periodic structure in the radiator of X-ray transition radiation. The
optical transition radiation on a plate, in the presence of acoustic waves, is investigated in [8] and [9]
for the cases of normal and oblique incidence of the radiating particle. The transition radiation on
a dynamic periodic interface between two dielectric media has been recently discussed in [10].

In the present paper we consider the transition radiation on a plate excited by two acoustic
waves. As it will be shown, the presence of the second wave provides additional tools for the
control of spectral and angular characteristics of the radiation.

2 Vector potential for the radiation field

Weconsider a platewith thickness l immersed in a homogeneousmediumwith dielectric permittivity
ε1. The axis z will be directed along the normal to the boundaries of the plate, located at z = −l and
z = 0. We assume the presence of acoustic field inside the plate generated by two acoustic waves
with the wavelengths λs1 and λs2 and propagating along the axis z. The acoustic waves give rise to
the modulation of dielectric permittivity of the plate in the form

ε (z) = ε0 +
∑
j=1,2
∆εj cos

(
ks j z + ωs j t + ψj

)
, (2.1)

where −l < z < 0, ε0 is the dielectric permittivity in the absence of the acoustic field, ks j = 2π/λs j ,
ωs j = 2πνs j , νs1 and νs2 are the frequencies of the acoustic waves.
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In the present paper we are interested in the transition radiation from a charge e (electron)
moving along the axis z with a constant velocity v = vnz . The transition radiation is formed on
the boundaries of the plate and on the one-dimensional superlattice described by (2.1). The exact
solution of the problem is complicated and we will make simplifying assumptions. First of all,
assuming that νs j l/v � 1, the dynamical nature of the dielectric permittivity can be ignored and the
problem can be approximated by the one for a static superlattice. For relativistic electrons and for
the plate thickness l . 1 cm this condition is obeyed in relatively wide range for frequencies of the
acoustic waves, νs j � 1011 Hz. Next, we assume that the amplitudes ∆εj are relatively small. Let
us denote by ω the radiation frequency. Under the condition ω � ks jc, with ω being the radiation
frequency, we can use the quasi-classical approximation for the evaluation of the radiation field in
the forward direction.

In the Lorentz gauge, for the vector potential of the electromagnetic field one has A = A(r,t)nz .
This determines the radiation polarization: the magnetic field is perpendicular to the plane con-
taining the photon wave vector and the vector nz . In the discussion below the calculations will be
presented for the Fourier component

A(k⊥, ω, z) =
1
(2π)3

∫ +∞

−∞

dx
∫ +∞

−∞

dy
∫ +∞

−∞

dt A (r,t) ei(ωt−k1x−k2y), (2.2)

with k⊥ = (k1, k2). In the quasi-classical approximation, the Fourier component in the region z > 0
is determined by the expression

A (k⊥, ω, z) =
iev

4π2c

√
ε1

k(1)3

∫ +∞

−∞

dt [k3(z (t))ε(z (t))]−1/2 exp
[
iωt + i

∫ z

z(t)

k3(z′)dz′
]
, (2.3)

where z (t) = −l + v (t − t0) is the z-coordinate of the charge, k(n)3 =

√
ω2εn/c2 − k2

⊥, n = 0, 1.
The function ε(z) is defined as ε(z) = ε1 in the regions z < −l, z > 0, and as ε (z) = ε0 +∑

j=1,2 ∆εj cos
(
ks j z + ϕj

)
inside the plate, −l < z < 0, where ϕj = ωs j t0 + ψj . The function k3(z)

is given by k3(z) = k(1)3 for z < −l, z > 0, and

k3(z) = k(0)3 +
∑
j=1,2

aj ks j cos
(
ks j z + ϕj

)
, (2.4)

for −l < z < 0, with the notation aj = ω
2∆εj/(2c2ks j k

(0)
3 ).

The evaluation of the vector potential by the formula (2.3) is similar to that for the case of a
single acoustic wave and we will omit the details. In the region z > 0 one gets

A (k⊥, ω, z) =
ie

2π2c

√
ε1

k(1)3

eiω(t0+l/v)+ik
(1)
3 z


ei(a1 sinϕ1+a2 sinϕ2)√

k(0)3 ε0

+∞∑
m1,m2=−∞

Jm1(a1)Jm2(a2)

× e−
i
2 l(

ω
v −km1,m2 )−i(m1ϕ1+m2ϕ2)

sin[l(ω/v − km1,m2)/2]
ω/v − km1,m2

+
eiφ−il(ω/v−k

(1)
3 ) − 1

2i
√

k(1)3 ε1(ω/v − k(1)3 )

 .
(2.5)
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Here we have introduced the notation km1,m2 = k(0)3 +
∑

j=1,2 mj ks j and φ is defined by the relation

φ = (k(0)3 − k(1)3 )l + 2
∑
j=1,2

aj sin
(
ks j l/2

)
cos

(
ϕj − ks j l/2

)
. (2.6)

In the special case ∆ε1 = ∆ε2, ks1 = ks2, ϕ1 = ϕ2, one has a1 = a2 and instead of m2 we introduce
in (2.5) a new summation variable m = m1 +m2. For a given m, the summation over m1 is done by
using the formula Jm(2a1) =

∑+∞
m1=−∞ Jm∓m1(a1)Jm1(a1) and from (2.5) we obtain the corresponding

result for a single acoustic wave with the amplitude of the oscillations 2∆ε1, discussed in [8].

3 Spectral-angular distribution of the radiation intensity

Let us introduce the angle θ between the momentum of the radiated photon and the axis z. Having
the Fourier transform A (k⊥, ω, z) for the vector potential, we can evaluate the energy radiated in
the forward direction during the electron transit time in the range of frequencies dω and angles
dθ, denoted here by I (ω, θ) dωdθ. For the corresponding energy density in the region z � l one
has [1]

I (ω, θ) = (2π)3 ε3/2
1 c−3ω4 sin3 θ cos2 θ |A(k⊥, ω, z)|2 . (3.1)

In accordance with the definition of the angle θ we have |k⊥ | = k⊥ = (ω
√
ε1/c) sin θ. For the beam

of relativistic electrons, the expression I (ω, θ), with the vector potential taken from (2.5), should
be averaged over the phases ϕ1 and ϕ2.

First we consider the case when the phases for separate waves are not correlated and the
averaging procedure is done separately for ϕ1 and ϕ2. After averaging, the spectral-angular density
of the radiated energy in the angular region sin θ <

√
ε0/ε1 is presented as

I (ω, θ) =
2e2β2

1
πc
√
ε1

sin3 θ

{
+∞∑

m1,m2=−∞

J2
m1(a1)J2

m2(a2)
sin2[gm1,m2(θ)lω/2v]

g2
m1,m2(θ)

×

[√
ε1 cos θ

ε0
√
ε0/ε1 − sin2 θ

−
gm1,m2(θ)

1 − β1 cos θ

]2 , (3.2)

where and in what follows βj = v
√
εj/c, j = 0, 1. In this expression we have introduced the notation

gm1,m2(θ) = 1 − β1

√
ε0/ε1 − sin2 θ −

∑
j=1,2

mj ks jv/ω. (3.3)

For the arguments of the Bessel functions one has the expression

aj = ω∆εj/[2cks j
√
ε0 − ε1 sin2 θ], (3.4)

for j = 1, 2. In this expression, ω/(cks j) = λs j/(λ
√
ε1), where λ = 2πc/(ω

√
ε1) is the radiation

wavelength in the medium with the permittivity ε1. Though |∆εj | is small, the arguments aj ,
in general, are not small. For ∆ε2 = 0, in (3.2) the term with m2 = 0 survives only and the
corresponding formula is reduced to the one for the problem with a single acoustic wave.
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For a fixed radiation wavelength, in (3.2) there are angular peaks θ = θm1,m2(λ) corresponding
to the zeros of the function gm1,m2(θ). These peaks are present under the conditions

1
β1
−

√
ε0
ε1

6 λ
∑
j=1,2

mj

λs j
6

1
β1
, (3.5)

and the corresponding angular locations are determined from

sin2 θm1,m2(λ) = ε0/ε1 − (1/β1 − m1λ/λs1 − m2λ/λs2)
2 . (3.6)

For the radiation inside the plate the locations of the angular peaks are given by

θ = θ
(0)
m1,m2(λ0) = arccos (1/β0 + m1λ0/λs1 + m2λ0/λs2) , (3.7)

where λ0 = 2πc/(ω
√
ε0) is the radiation wavelength in the medium with the permittivity ε0. After

the refraction on the boundary at z = 0, the corresponding outgoing angle for the radiation in the
region z > 0 is determined by the relation sin θ =

√
ε0/ε1 sin[θ(0)m1,m2(λ0)] which coincides with

θm1,m2(λ). Note that the angular and frequency locations of the peaks are determined by the period-
icity properties of the geometry under consideration and do not depend on the specific profile of the
inhomogeneities. The profile determines the distribution of the radiation intensity among the peaks.

In the special case ∆ε1 = ∆ε2 = 0, the only nonzero contribution in (3.2) comes from the term
with m1 = m2 = 0 and we obtain the transition radiation intensity in a finite thickness plate in the
absence of acoustic waves, described in the quasi-classical approximation. The comparison with
the exact formula in a more general case of oblique incidence has been made in [9] (for the validity
of the quasi-classical approximation see also [1]). In the absence of acoustic waves, the location of
the corresponding angular peak is obtained from (3.6) putting m1 = m2 = 0. As seen from (3.6), the
presence of acoustic waves leads to additional peaks. The locations of the peaks can be controlled
by tuning the wavelengths λs j .

In figure 1, for the electron energy 50MeV and for uncorrelated phases of acoustic waves we
have plotted the angular and wavelength dependence of the quantity I (ω, θ) /~ (given by (3.2))
for a plate made of fused quartz with the thickness l = 1 cm. We have taken ε1 = 1 and for
the dielectric permittivity of the plate, ε0 = ε0(ω), the Sellmeier dispersion formula is used.
The frequencies for separate acoustic waves are taken as νs1 = 10 MHz and νs2 = 20 MHz.
For the amplitudes of the electron number density induced by the acoustic waves we have taken
∆n1/n0 = 0.05 and ∆n2/n0 = 0.025, where n0 is the electron number density in the absence of
acoustic waves. As it has been already mentioned before, the presence of acoustic waves gives
rise to new peaks in both the angular and spectral distributions of the radiation intensity. The left
panel in figure 1 presents the angular dependence for a fixed radiation frequency corresponding
to ν = ω/(2π) = 6.0624 × 1013Hz (radiation wavelength λ = 4.944 × 10−4cm). This frequency
is chosen to obtain the suppression of the radiation at the angular peak in the absence of acoustic
waves, corresponding to sin2 θ0,0 = ε0(ω)/ε1 − 1/β2

1 (the argument of the function J2
0 (a1) is close

to the first zero of the Bessel function J0(x)). For the parameters under consideration θ0,0 ≈ 1.115
rad. The other angular peaks in figure 1 are generated by the presence of acoustic waves. There
are also peaks outside the angular range depicted in figure 1. However, their heights are much less
than those presented on the figure. The same is the case for the radiation near the small angles
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θ ∼
√

1 − v2/c2. On the right panel of figure 1 we have plotted the dependence of I (ω, θ) /~ on the
radiation wavelength λ for fixed θ = 1.094 rad. This value of the radiation angle corresponds to the
peak on the left panel. The locations of the peaks and their heights can be controlled by tuning the
parameters of the acoustic field. Note that, in the approximation we have used, the locations of the
angular peaks do not depend on the amplitudes of the acoustic waves.
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Figure 1. The angular (left panel) and wavelength (right panel) dependence for the intensity of the transition
radiation on a plate made of fused quartz excited by two acoustic waves with uncorrelated phases.

Now let us consider the case when the phase shift between two acoustic waves is fixed,
ϕ2 = ϕ1 + ϕ. Averaging over ϕ1 for a given ϕ, the spectral-angular density of the radiated energy
is presented in the form

I (ω, θ) =
2e2β2

1
πc
√
ε1

sin3 θ


ε1 cos θ

ε0
√
ε0/ε1 − sin2 θ

+∞∑
m j,m=−∞

Jm1(a1)Jm1+m(a1)Jm2(a2)Jm2−m(a2)

× cos [m (l∆ks/2 + ϕ)]
sin[gm1,m2(θ)lω/2v]

gm1,m2(θ)

sin[(gm1,m2(θ) − mv∆ks/ω)lω/2v]
gm1,m2(θ) − mv∆ks/ω

×
©«1 − 2

√
ε0

√
ε0/ε1 − sin2 θ

ε1 cos θ
gm1,m2(θ) − mv∆ks/ω

1 − β1 cos θ
ª®¬ +

1 − cos
[
g0,0(θ)lω/v

]
J0(2w)

2(1 − β1 cos θ)2

 ,
(3.8)

where ∆ks = ks1 − ks2, the arguments of the Bessel functions are defined in (3.4) and

w2 =
∑
j=1,2

a2
j sin2 (

ks j l/2
)
+ 2a1a2 sin (ks1l/2) sin (ks2l/2) cos (ϕ + ∆ksl/2) . (3.9)

In the special case ∆ε2 = 0 one has a2 = 0 and the only nonzero contribution comes from the
terms m = m2 = 0. In this case, (3.8) is reduced to the corresponding spectral angular density for
a single acoustic wave, discussed in [8]. Compared to the problem with a single acoustic wave, the
presences of the second wave induces new peaks.

By using (3.8), we have made numerical calculations for I (ω, θ) /~ and for the values of the
parameters corresponding to figure 1. The graphs are close to those presented in figure 1. This
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shows that for these values of the parameters and near the peaks the main contribution in (3.8)
comes from the part with m = 0. In this part, the terms containing g2

m1,m2(θ) in the denominator,
responsible for the appearance of the peaks, coincide with those in (3.2). In figure 2, the angular
and wavelength dependence of the radiation intensity is displayed in the case of two acoustic waves
with the fixed phase shift ϕ = 0 (evaluated by formula (3.8)). The values of the parameters are the
same as those for figure 1, except the acoustic wave frequency νs2 = 40 MHz. Again, we have the
suppression of the peak in the absence of acoustic waves.
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Figure 2. The same as in figure 1 for two acoustic waves with fixed phase shift and for the acoustic wave
frequency νs2 = 40MHz.

4 Conclusion

We have studied the transition radiation on a dielectric plate excited by two acoustic waves. As-
suming the validity of the quasi-classical approximation, the vector potential for the radiation field
in the forward direction is evaluated. The spectral-angular density of the radiation intensity is
investigated for two separate cases. For the first one the phases for separate waves are not correlated
and the intensity averaged over these phases is given by (3.2). In the second case the phase shift
between the waves is fixed and the expression for the averaged intensity is presented as (3.8). The
presence of acoustic waves gives rise to new peaks in both the angular and spectral distributions
of the transition radiation intensity. The locations of the peaks, their heights and widths can be
controlled by tuning the parameters characterizing the acoustic fields.
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