
Proceedings in Applied Mathematics and Mechanics, 27 May 2017

On a digital approximation for pseudo-differential operators

Alexander Vasilyev and Vladimir Vasilyev∗

Belgorod National Research University, Studencheskaya 14/1, Belgorod 308007, Russia

Copyright line will be provided by the publisher

1 Introduction

We introduce a concept of a discrete pseudo-differential operator using general ideas of the theory and would like to show
correlations between continuous and discrete cases.

2 Digital pseudo-differential operators

2.1 Digital Fourier transform

Given function ud of a discrete variable x̃ ∈ hZm, h > 0, we define its discrete Fourier transform by the series

(Fdud)(ξ) ≡ ũd(ξ) =
∑

x̃∈hZm

eix̃·ξu(x̃)hm, ξ ∈ h̄Tm,

where Tm = [−π, π]m, h̄ = (2πh)−1, partial sums are taken over cubes

QN = {x̃ ∈ Zm : x̃ = (x̃1, · · · , x̃m), max
1≤k≤m

|x̃k| ≤ N}.

2.2 h-operators and h̄-symbols

Let D ⊂ Rm be a domain, and Dd = D ∩ hZm.
We consider the following operators

(Adud)(x̃) =

∫
h̄Tm

∑
ỹ∈Dd

ei(ỹ−x̃)·ξÃd(ξ)ũd(ξ)dξ, x̃ ∈ hDd, (1)

and the function Ãd(ξ), ξ ∈ h̄Tm is called a symbol of the operator Ad.
Also the function

Ad(x̃) =

∫
h̄Tm

eix̃·ξÃd(ξ)dξ.

is called a kernel of the operator Ad.

Definition 2.1 The symbol Ãd(ξ) is called an elliptic symbol of the operator Ad if ess inf
ξ∈h̄Tm

|Ãd(ξ)| > 0.

Example 2.2 The digital Laplacian is the following

(∆dud)(x̃) = h−2
m∑
k=1

(ud(x1, · · · , xk+2h, · · · , xm)−2ud(x1, · · · , xk+h, · · · , xm)+ud(x1, · · · , xk, · · · , xm)),

and its symbol is the function

∆̃d(ξ) = h−2
m∑
k=1

(eihξk − 1)2.

Example 2.3 The digital Calderon–Zygmund operator is defined as follows [4]

(Kdud)(x̃) =
∑

ỹ∈hDd

Kd(x̃− ỹ)ud(ỹ)hm, ỹ ∈ hDd,
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3 A comparison between discrete and continual cases

3.1 An approximation rate

Let Ph be a projection Rm → Zm so that a function u defined on Rm corresponds to a function ud of a discrete variable
defined on hZm, Phu = ud. If we consider the equation

(Au)(x) = v(x), x ∈ D, (2)

where A is a classical pseudo-differential operator with the symbol Ã(ξ) [1–3] of the form

(Au)(x) =

∫
D

∫
Rm

ei(x−y)·ξÃ(ξ)u(y)dydξ,

which acts in certain functional spaces X → Y , for example Sobolev–Slobodetskii spaces [3]. We say that an element u ∈ X
is an admissible element if Phu is defined.

Definition 3.1 An approximation rate for operators A and Ad on an admissible element u ∈ X is called the following
norm

µh(A,Ad, u) = ||(AdPh − PhA)u||Xh
,

where Xh is so-called digital realization of the space X so that the operator Ad : Xh → Yh is a linear bounded operator.
One of main problems is the following. How we can choose the operator Ad to obtain a good approximation rate for the

operator A? We need to fix a domain D and spaces X,Y .
Theorem 3.2 Let D be a domain with a Lipschitz boundary and X = Y = L2(D), Xh = Yh = L2(Dd). If Ã(ξ) is a

smooth bounded function on Rm and

Ad(x̃) =

∫
Rm

eix̃·ξÃ(ξ)dξ

then µh(A,Ad, u) ≤ cuh for arbitrary smooth function u ∈ L2(D), cu is a constant.

3.2 Digital solution and comparison

Definition 3.3 A digital solution for the equation (2) is called a solution of the equation

(Adud)(x̃) = (Phv)(x̃), x̃ ∈ Dd, (3)

if it exists.
Remark 3.4 It is not evidently that a digital solution always exists. Thus, second of main problems is obtaining a solv-

ability for the equation (3) in the space Xh at least for small h from the solvability of the equation (2) in the space X . For this
purpose we need to study a solvability of discrete equations, some steps in this direction were done in [6,7] for special conical
domains D and for the whole space Rm and the half-space Rm

+ [4].
Theorem 3.5 Let D be Rm or Rm

+ , the conditions of above theorem hold, A be an elliptic invertible operator, u be a
solution of the equation (2) with a smooth right-hand side v, ud be a solution of the equation (3). Then

||Phu− ud||Xh
≤ ch.

4 Conclusion

In authors’ opinion these considerations will be useful for studying certain applied problems [5] because such operators and
equation are very typical for these problems.
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