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PSEUDODIFFERENTIAL EQUATIONS ON MANIFOLDS
WITH COMPLICATED BOUNDARY SINGULARITIES
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We consider model pseudodifferential equations in canonical multidimensional domains

with boundary singularities presented by the union of cones or a cone of lower dimension.

We study the solvability of these equations by using the wave factorization concept.

Bibliography: 22 titles.

By a pseudodifferential equation we mean an equation of the form

(Au)(x) = v(x), x ∈ M, (1)

where A is a pseudodifferential operator acting in a space of functions defined on a manifold M ,

u is an unknown function, and v is a given function. For a smooth compact manifold M without

boundary the theory of pseudodifferential equations is well developed. Here, by the theory we

mean a description of the Fredholm conditions of the corresponding pseudodifferential operator

A. As a rule, it is also proposed a method for reducing (1) to a Fredholm equation, i.e., an

equation of the form

(I + T )f = g,

where I is the identity operator and T is a compact operator in a chosen function space.

A crucial point in the study of solvability of pseudodifferential equations on manifolds with

nonsmooth boundary is to find invertibility conditions for special local representatives appearing

while freezing coefficients of the original pseudodifferential equation in a special canonical domain

diffeomorphic to a neighborhood of a singular boundary point. Owing to the wave factorization

concept, introduced by the author, it is possible to obtain a complete picture concerning the

solvability of the model elliptic pseudodifferential equation in the two-dimensional case, which

leads to correct statements of boundary value problems for elliptic pseudodifferential equations

in domains with angular points.

In the multidimensional case, we face difficulties caused by the fact that distributions con-

centrated on the cone surface cannot be expressed in a general form. The author established

that one can use special pseudodifferential operators in terms of which it is possible in some

cases to write out a general solution and further consider boundary conditions of different type.
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1 Simple and Complicated Singularities

Definition 1. Let Ca
+ = {x ∈ R

m : x = (x′, xm), x′ = (x1, · · · , xm−1), xm > a|x′|, a > 0}.
By a canonical stratified singularity in R

n+m we mean the direct product of cones Ca
+ × Cb

+,

where Ca
+ ⊂ R

n and Cb
+ ⊂ R

m.

1.1. Simple singularities.

Example 1. A quadrant in the plane R
2 is the direct product of two half-axes.

Example 2. An octant in the space R3 is the direct product of a quadrant (a two-dimensional

cone) and a half-line (a one-dimensional cone).

Example 3. The cone Ca
+ = {x ∈ R

3 : x3 > a(x21 + x22)
1/2, a > 0} ⊂ R

3 is not stratified.

Furthermore, in multidimensional spaces, the direct product of cones is not visualized.

Example 4. An edge of codimension k in the m-dimensional space {x ∈ R
m : x =

(x′, x′′), x′′ ∈ R
m−k, x′ = (x1, · · · , xm−k−1), xm−k−1 > a|x′′′|, x′′′ = (x1, · · · , xm−k−2), a > 0}.

Example 5. A polyhedral angle variant Pm =
{
x ∈ R

m : xm >
m−1∑
k=1

ak|xk|, ak > 0
}
.

1.2. Complicated singularities.

Example 6. A “thin” cone Tm−k = {x ∈ R
m : xm > a|x′′|, x′′ = (x1, · · · , xm−k), xm−k+1 =

· · · = xm−1 = 0}.
Example 7. A “cluster” of m-dimensional cones with vertex at the origin.

Example 8. A “cluster” of cones of different dimension.

The main thesis of the author is as follows. With each canonical singularity we associate

a distribution, the Fourier transform of the characteristic function of a cone. The convolution

with this distribution describes the Fourier-image of the operator of restriction to the canonical

singularity.

2 Manifolds with Nonsmooth Boundary

Anm-dimensional manifoldM with nonsmooth boundary is a compact topological space each

point of which possesses a neighborhood diffeomorphic to some canonical set in the Euclidean

space R
m. If x ∈ M is an interior point of a manifold, then the canonical set is the entire space

R
m. If x ∈ ∂M is a boundary point, where the boundary is smooth, then the canonical set is

the half-space R
m
+ = {x ∈ R

m : x = (x1, · · · , xm), xm > 0}. On the boundary ∂M , we can

distinguish smooth submanifolds Mk, strata of dimension k, 0 � k < (m−1), such that each

point of Mk possesses a neighborhood diffeomorphic to an edge of codimension k (Example 4). A

submanifold of type M0 is introduced as the set of isolated singular boundary points possessing

neighborhoods diffeomorphic to some canonical cone (Examples 1–5). These singularities of

∂M are simple. A complicated singularity appears if for the standard we take the cones in

Examples 6–8.

3 Local Representatives and Their Invertibility

We consider Equation (1) in the Sobolev–Slobodetskii space Hs(M), where M is an m-

dimensional smooth compact manifold with nonsmooth boundary. In other words, the boundary

176



can have singularities like conical points, edges of codimension k, 1 � k � m, and so on; the

unknown function u and the right-hand side v are defined on M .

We consider only local constructions of spaces since the consideration can be extended to

manifolds with the help of the unity partition.

By definition, the space Hs(Ca
+) consists of distributions in Hs(Rm) with supports in Ca

+.

The Hs(Ca
+)–norm is induced by the Hs(Rm)-norm. The right-hand side f is taken in the

space Hs−α
0 (Ca

+) of distributions in S′(Ca
+) admitting an extension on Hs−α(Rm). The norm in

Hs−α
0 (Ca

+) is defined by the equality ||f ||+s−α = inf ||lf ||s−α, where the infimum is taken over all

extensions l.

We introduce the multidimensional singular integral by

(Gmu)(x) = lim
τ→0+

∫

Rm

u(y′, ym)dy′dym
(|x′ − y′|2 − a2(xm − ym + iτ)2)m/2

(we omit some constants, cf. [1]). We recall that this operator is a multidimensional counterpart

of the Cauchy type integral or, more exactly, the Hilbert transform.

If A(x, ξ), (x, ξ) ∈ T ∗M , is the symbol of a pseudodifferential operator A (defined on the

cotangent bundle of the manifold M), then in order to describe the Fredholm conditions for the

operator A, we need to describe the conditions of invertibility of all its local representatives.

This assertion is known as the local principle or the principle of freezing coefficients.

If M is a smooth compact manifold (without boundary), the local representative of the

operator at a point is the operator of multiplication by the symbol. The (necessary and sufficient)

invertibility conditions are formulated as follows: the symbol does not vanish (the symbol is

usually assumed to be sufficiently smooth). Such symbols are said to be elliptic.

For a manifold with smooth boundary we need a new local definition of a pseudodifferential

operator at the smoothness point of the boundary ∂M . While for an interior point x ∈ M we

used the local definition

u(x) �−→
∫

Rm

∫

Rm

A(x, ξ)u(y)ei(x−y)·ξdξdy,

for x ∈ ∂M the local structure of the operator A is defined by

u(x) �−→
∫

R
m
+

∫

Rm

A(x, ξ)u(y)ei(x−y)·ξdξdy.

To study the invertibility of such an operator with symbol A(·, ξ), independent of the spatial
variable x, one could use the theory of classical Riemann problem in the upper and lower half-

planes [2]–[4] with parameter ξ′ = (ξ1, . . . , ξm−1) (cf. [5] for details). However, if the boundary

∂M has at least one conical point, this approach is not applicable.

By a conical boundary point we mean a point possessing a neighborhood diffeomorphic to

the cone Ca
+ = {x ∈ R

m : xm > a|x′|, x′ = (x1, . . . , xm−1), a > 0}.. Consequently, it is necessary
to modify the local definition of a pseudodifferential operator in a neighborhood of a conical

point: the local operator has the form

u(x) �−→
∫

Ca
+

∫

Rm

A(x, ξ)u(y)ei(x−y)·ξdξdy. (2)
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To study the invertibility of the operator (2), the author proposed [1, 6] the concept of wave

factorization of an elliptic symbol at a singular boundary point and, based on this concept,

described the Fredholm conditions for Equation (1).

There are many other approaches to the theory of boundary value problems on nonsmooth

manifolds (cf., for example, [7]–[9]).

4 Wave Factorization

Definition 2. A symbol A(ξ) is elliptic if there exist c1, c2 > 0 such that

c1 � |A(ξ)(1 + |ξ|)−α| � c2.

The number α ∈ R is called the order of the operator A.

We set
∗
Ca
+= {ξ ∈ R

m : aξm > |ξ′|} and
∗
Ca−= −

∗
Ca
+. A subset T (

∗
Ca
+) of Cm of the form

R
m + i

∗
Ca
+ is referred to as a radial tubular domain over the cone

∗
Ca
+ (cf. [10]–[12]).

Definition 3. By the wave factorization of an elliptic symbol A(ξ) we mean the represen-

tation A(ξ) = A�=(ξ)A=(ξ), where A�=(ξ) and A=(ξ) satisfy the following conditions:

1) A�=(ξ) and A=(ξ) are defined for all ξ ∈ R
m except for, possibly, the points {ξ ∈ R

m :

|ξ′|2 = a2ξ2m},

2) A�=(ξ) and A=(ξ) admit analytic extensions to the radial tubular domains T (
∗
Ca
+) and

T (
∗
Ca−) respectively, and following estimates hold:

|A±1
�= (ξ + iτ)| � c1(1 + |ξ|+ |τ |)±æ,

|A±1
= (ξ − iτ)| � c2(1 + |ξ|+ |τ |)±(α−æ) ∀τ ∈

∗
Ca
+ .

The number æ ∈ R is called the wave factorization index.

For classes of symbols admitting the wave factorization we refer to [6, 15]. Classes of analytic

functions in radial tubular domains over cones are described in [10]–[12].

5 Multidimensional Riemann Problem

In the literature, there are different generalizations of the classical Riemann problem (cf.,

for example [13, 14]). One of variants was proposed by the author [1, 6, 15] for describing the

Noetherian conditions for multidimensional singular integral equations in nonsmooth domains

in terms of the wave factorization of the symbol of an elliptic operator. This approach turns out

to be very convenient for studying the solvability of pseudodifferential equations and boundary

value problems in domains with nonsmooth boundary (cf. [16]–[22]). We formulate this variant

in the simplest form. We assume that Cm is a convex acute cone in R
m (m � 2) and A(Rm) is the

subspace of L2(R
m) of square Lebesgue integrable functions u(x) admitting analytic extensions

to the radial tubular domain T (
∗

Cm) over the conjugate cone
∗

Cm = {x ∈ R
m : (x, y) > 0 ∀y ∈

Cm } and satisfying the condition

sup

y∈
∗

Cm

∫

Rm

|u(x+ iy)|2 dx � const .
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Let B(Rm) be the direct complement of A(Rm) in L2(R
m) = A(Rm)⊕B(Rm). It is required to

find a pair of functions Φ+(x) ∈ A(Rm), Φ−(x) ∈B(Rm) satisfying the linear relation

Φ+(x) = W (x)Φ−(x) + w(x) (3)

everywhere in R
m. The problem (3) appears as a result of localization of a multidimensional

singular integral (pseudodifferential) equation at a conical boundary point and is solved with

the help of the Bochner integral [10, 11].

We note that our statement of the Riemann problem differs from that given in [14].

6 Structure of Solution and Solvability Conditions

Let C =
n⋃

j=1
Cj , where Cj are convex acute cones with common vertex at the origin,

Cj
⋂

Ck = ∅, k �= j. We consider Equation (1) with M = C. For every Cj , j = 1, . . . , n,

we introduce the multidimensional singular integral with the Bochner kernel [10, 11] by

(Bju)(x) = lim
τ→0+

∫

Rm

Bj(x
′ − y′, xm − ym + iτ)u(y′, ym)dy′dym.

This singular integral appears as the Fourier transform of the product of the characteristic

function of a cone and some integrable function. It is closely connected with the multidimen-

sional Riemann problem in its simplest variant and presents one of possible multidimensional

generalizations of Cauchy type integrals and, respectively, the Hilbert transform.

The Fourier-image of a space H is denoted by H̃.

We formulate the main result for Equation (1) (we refer to [19]–[22] for details in the case

of a single convex cone). The general solution can be constructed as follows. We denote by

Qn(ξ) a polynomial of degree n such that |Qn(ξ)| ∼ (1 + |ξ|)n. We denote by Ea(ξ
′, ξm) the

(m−1)-dimensional Fourier transform (y′ → ξ′ in the sense of the theory of distributions) of the

function e−ia|y′|ξm and introduce the operator

(Vaũ)(ξ
′) = (Ea ∗ ũ)(ξ) ≡

∫

Rm−1

Ea(ξ
′−η′, ξm)ũ(η′, ξm)dη′.

Denote by Tk the rotation of Rm sending the cone Ck to the cone Cak
+ . We consider n auxiliary

multidimensional Riemann problems of type (3) under the assumption that W (ξ) �= 0, ξ ∈ R
m:

Ũk(ξ) = W (ξ)Ṽk(ξ) + w̃k(ξ), k = 1, . . . , n,W (ξ) = − 1

n

(
A(ξ)− n− 1

n

)−1

with arbitrary w̃k(ξ) ∈ H̃s(Rm). We assume that W (ξ) admits the wave factorization with

respect to Ck with index æk, æk − s = nk + δ, nk ∈ N, |δ| < 1/2, and denote by Wk, �=(ξ) and

Wk,=(ξ) elements of the wave factorization [6] of the symbol W (ξ) with respect to the cone Ck.

Theorem 1. The general solution to Equation (1) in the Fourier images is expressed by

ũ+(ξ) =
n∑

k=1

W−1
k, �=(ξ)Qnk

(ξ)BkQ
−1
nk

(ξ)W−1
k,=(ξ)w̃k(ξ)

+

n∑
k=1

W−1
k, �=(ξ)T

−1
k V−akF

( nk∑
j=1

cj(x
′)δ(j−1)(xm)

)
,
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where cj(x
′) ∈ Hsj (Rm−1) are arbitrary, sj = s − æk + j − 1/2, j = 1, 2, . . . , nk, k = 1, . . . , n,

lf is an arbitrary extension of f to Hs−α(Rm).

The proof is based on the results of [21] by reducing to the case of half-spaces with the help

of the following transformations. Denote by Ta the bijection R
m −→ R

m sending ∂Ca
+ to the

hyperplane xm = 0 and defined by tk = xk, k = 1, . . . ,m− 1, tm = xm − a|x′|.
Lemma 1. FTa = VaF .

Proof. The connection between the Fourier transform and the operator Ta is established by

the direct computation:

(FTau)(ξ) =

∫

Rm

e−ix·ξu(x1, . . . , xm−1, xm − a|x′|)dx

=

∫

Rm

e−iy′ξ′e−i(ym+a|y′|)ξmu(y1, . . . , ym−1, ym)dy

=

∫

Rm−1

e−ia|y′|ξme−iy′ξ′ û(y1, . . . , ym−1, ξm)dy′,

where û denotes the Fourier transform with respect to the last variable. If the pseudodifferential

operator is defined by

(Au)(x) =

∫

Rm

eixξA(ξ)ũ(ξ)dξ

and the direct Fourier transform is expressed by

ũ(ξ) =

∫

Rm

e−ixξu(x)dx,

then we have (at least, formally) the following connection:

(FTau)(ξ) =

∫

Rm−1

e−ia|y′|ξme−iy′ξ′ û(y1, . . . , ym−1, ξm)dy.

In other words, if Ea(ξ
′, ξm) denotes the (m−1)-dimensional Fourier transform (y′ → ξ′ in the

sense of the theory of distributions) of the function e−ia|y′|ξm , then the last formula is written as

(FTau)(ξ) = (Ea ∗ ũ)(ξ),
where the symbol ∗ denotes the convolution with respect to the first m − 1 variables and the

multiplication with respect to the last variable ξm. Thus, Va is the combination of convolution

and multiplier with kernel Ea(ξ
′, ξm).

Thus, to describe the construction of a solution to Equation (1), we need to solve the corre-

sponding auxiliary problem for each cone Ck, k = 1, . . . , n, separately; moreover, for a special

“composed” symbol we need to use the wave factorization with respect to each cone Ck with

index æk. We note that the structure of the symbol W (ξ) looks like that of the original symbol

A(ξ). Moreover, owing to the computations performed in [17], it is hopeful to obtain informative

results on the solvability of Equation (1) in the case of more complicated singularities with cones

of less dimension than the dimension of the space.
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7 Asymptotic Expansions for Small Cone Opening

We consider the model two-dimensional equation (1) in the canonical cone Ca
+ = {x ∈ R

2 :

x2 > a|x1|, a>0}. In the case of the wave factorization of the symbol A(ξ), we can write out the

solution with the help of the singular integral operator [1]:

(Kau)(x) =
a

2π2
lim

τ→0+

∫

R2

u(y)dy

(x1 − y1)2 − a2(x2 − y2 + iτ)2
.

This operator plays a role of a local representative of the operator A in a neighborhood of an

angular point of the manifold. This operator is represented by convolution, and the parameter

a is the angular opening α, x2 > a|x1|, a = ctgα.

A distribution such that the convolution with this distribution is the operator Ka has the

form

Ka(ξ1, ξ2) ≡ a

2π2

1

ξ21 − a2ξ22
.

To have an impression what happens if the angular opening becomes small, it is desirable to

clarify the behavior of the operator Ka (the distribution Ka(ξ1, ξ2)) as a
−1 → 0.

On functions ϕ in the Schwarz class S(R2) of infinitely differentiable functions rapidly de-

creasing with all their derivatives, this distribution is defined by the formula

(Ka, ϕ) =
a

2π2

∫

R2

ϕ(ξ1, ξ2)dξ

ξ21 − a2ξ22
.

7.1. Zeroth approximation. The limit distribution

lim
a→∞

a

2π2

1

ξ21 − a2ξ22
=

i

2π
P

1

ξ1
⊗ δ (ξ2)

was obtained in [17] as a → +∞, where the notation P is taken from [12] and ⊗ denotes the

direct product of distributions. Here, δ is the Dirack δ-function acting on ϕ ∈ S(R) by the rule

(δ, ϕ) = ϕ(0) and the distribution P 1
x is defined by

(
P

1

x
, ϕ

)
= v.p.

+∞∫

−∞

ϕ(x)dx

x
≡ lim

ε→0+

( −ε∫

−∞
+

+∞∫

ε

)ϕ(x)dx
x

.

7.2. Complete expansion. It turns out that the distribution Ka(ξ1, ξ2) admits an asymp-

totic expansion in powers of a−1.

Lemma 2. If a distribution a acts on a test function ϕ ∈ S(R) by the formula

(a, ϕ) =

+∞∫

−∞
ξkϕ(ξ)dξ,

then the distribution a has the form a(ξ) = δ̃(k)(ξ), where the symbol ∼ means the inverse

Fourier transform F−1.
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Proof. Indeed, we have Fδ = 1, where 1 is identically equal to 1 in the sense of the theory

of distributions, so that F−11 = δ. Since (F (ϕ(k)))(ξ) = (−1)kξkϕ̃(ξ), we can write

(a, ϕ) = (a, Fψ) =

+∞∫

−∞
ξkψ̃(ξ)dξ = (1, ξkψ̃(ξ)) = (1, FF−1(ξkψ̃(ξ)))

= (F1, F−1(ξkψ̃(ξ))) = (F1, (−1)kψ(k)(x)) = (δ, (−1)kψ(k)(x))

= (δ(k), ψ) = (δ(k), F−1ϕ) = (F−1δ(k), ϕ),

where ψ = F−1ϕ. Thus, we obtain the required equality.

Using this lemma and the expansion of a test function into the Maclaurin series, it is possible

to describe the asymptotic behavior of Ka(ξ1, ξ2).

Theorem 2. The following formula holds in the sense of the theory of distributions:

Ka(ξ1, ξ2) =
i

2π
P

1

ξ1
⊗ δ(ξ2) +

∑
m,n

cm,n(a)δ̃(m)(ξ1)⊗ δ(n)(ξ2),

where cm,n(a) → 0 as a → +∞.
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Birkhäuser, Basel (2011).

17. V. B. Vasilyev, “Asymptotical analysis of singularities for pseudo differential equations in
canonical non-smooth domains,” In: Integral Methods in Science and Engineering, pp. 379–
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