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1. INTRODUCTION

So far, the theory of pseudodifferential operators, equations, and the corresponding boundary
value problems has a very rich history [1–4]. In the recent years, the theory of pseudodifferential
operator and equations on manifolds with singularities or with singularities on the boundary attracts
constantly increasing attention [5–7]. To study the Fredholm property of elliptic pseudodifferential
equations on compact manifolds with nonsmooth boundary, we proposed a special factorization of
elliptic symbols, which was called the wave factorization [8] and which is based on the use of spaces
of analytic functions in tube domains over cones [9].

Elliptic pseudodifferential equations in multidimensional domains D ⊂ R
m with nonsmooth

boundary ∂D were studied in [8, 10]. The class of considered symbols was distinguished by the
condition

c1(1 + |ξ|)α ≤ |A(x, ξ)| ≤ c2(1 + |ξ|)α,
where c1 and c2 are positive constants. The number α ∈ R was called the order of the pseudodif-
ferential operator (symbol). In the present paper, we show that these methods can be applied to
much more general classes of pseudodifferential equations.

The paper is organized as follows: we define local Sobolev–Slobodetskii spaces, introduce and
study pseudodifferential operators of variable order, and describe the Fredholm property. In con-
clusion, we consider several boundary value problems.

2. SPACES OF VARIABLE ORDER

2.1. Local Sobolev–Slobodetskii Spaces

Let s : Rm → R be an arbitrary function satisfying the following two conditions.

1. There exists a finite limit lim|x|→+∞ s(x).

2. The function s(x) satisfies the Lipschitz condition on R
m; i.e., there exists a constant C > 0

such that |s(x1)− s(x2)| ≤ c|x1 − x2| for any x1, x2 ∈ R
m.

Definition 1. Assume that a function s satisfying conditions (1) and (2) and a point x ∈ R
m

are fixed. The local Sobolev–Slobodetskii space Hs(x)(Rm) consists of (generalized) functions u for
which the following expression is finite:

‖u‖s(x) ≡
( ∫

Rm

(1 + |ξ|)2s(x)|ũ(ξ)|2 dξ
)1/2

,

where ũ is the Fourier transform of the function u.
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PSEUDODIFFERENTIAL OPERATORS AND EQUATIONS OF VARIABLE ORDER 1157

The function ‖u‖s(x) is called the local Hs-norm of the function u.

For brevity, we write Hs(x) instead of Hs(x)(Rm), and if we deal with Hs(x)-functions supported
in a certain domain D ⊂ R

m, then we write Hs(x)(D).

Since in what follows we compare different operators in different local spaces, we need to choose
a universal superspace where one can put all local Sobolev–Slobodetskii spaces, and a universal
subspace contained in all local Sobolev–Slobodetskii spaces.

Definition 2. The universal Sobolev–Slobodetskii superspace HsM is the space containing all
local Sobolev–Slobodetskii spaces with finite norm ‖u‖sm = infx∈Rm ‖u‖s(x).

The universal Sobolev–Slobodetskii subspace Hsm is the space contained in all local Sobolev–
Slobodetskii spaces with finite norm ‖u‖sM = supx∈Rm ‖u‖s(x).

Obviously,
‖u‖sm ≤ ‖u‖s(x) ≤ ‖u‖sM for any x ∈ R

m.

2.2. Properties

By S(Rm) we denote the Schwartz class of infinitely differentiable functions rapidly decaying
at infinity; this class forms a dense set in each local Sobolev–Slobodetskii space [4, p. 44]. Let
u ∈ S(Rm). We compare two local norms ‖u‖s(x1) and ‖u‖s(x2).

Lemma 1. The following estimates hold :

|(1 + |ξ|)s1 − (1 + |ξ|)s2 | ≤ ln(1 + |ξ|)|s1 − s2|(1 + |ξ|)l for some l ∈ [s1, s2],

|‖u‖s(x1) − ‖u‖s(x2)| ≤ c1|x1 − x2| ‖u‖l1 for some l1 ∈ R,

where c1 is a constant.

Proof. The first inequality readily follows from the finite increment formula applied to a power-
law function. The proof of the second inequality is simple as well. Indeed, by the definition of the
Hs-norm,

‖u‖s(x1) − ‖u‖s(x2) =

( ∫
Rm

|(1 + |ξ|)2s(x1)|ũ(ξ)|2 dξ
)1/2

−
( ∫

Rm

(1 + |ξ|)2s(x2)|ũ(ξ)|2 dξ
)1/2

,

and then, with regard to the properties of the power-law function and the first inequality, we obtain

‖|u‖s(x1) − ‖u‖s(x2)| ≤
( ∫

Rm

|(1 + |ξ|)2s(x1) − (1 + |ξ|)2s(x2)||ũ(ξ)|2 dξ
)1/2

≤ |s(x1)− s(x2)|
( ∫

Rm

ln(1 + |ξ|)(1 + |ξ|)2l|ũ(ξ)|2 dξ
)1/2

≤ c1|x1 − x2|‖u‖sM ,

because the function s(x) satisfies the Lipschitz condition. The proof of the lemma is complete.

Remark 1. Needless to say, such constructions of (Sobolev, Hölder, and Lp) spaces with variable
exponent have already been used in previous studies. The Vishik–Eskin paper [11] dedicated to
elliptic pseudodifferential equations was the first to do this, but the variable exponent has also
appeared in a different context [12–16].

Consider a family of Hilbert spaces Hx parametrized by points x ∈ R
m. In particular, one can

take Hx = Hs(x). We denote the norm of an element u ∈ Hs(x) by ‖u‖x and assume that S is
a subset everywhere dense in Hs(x) for any x ∈ R

m. For u ∈ S, we define the functional

f(x, u) = ‖u‖x.
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Definition 3. A family of Hilbert spaces {Hx}x∈Rm is said to be locally continuous at a point
x0 ∈ R

m if for each fixed element u ∈ S the functional f(x, u) is continuous at the point x0.

Lemma 2. The family of spaces Hs(x) is locally continuous.

Proof. The assertion of the lemma follows from Lemma 1 and the fact that the class S(Rm) is
dense in any space Hs(x).

3. OPERATORS OF VARIABLE ORDER

A pseudodifferential operator in R
m is introduced [1, 3, 17] as follows.

Definition 4. Let a function A(x, ξ) locally integrable with respect to ξ be given on R
m ×R

m.
The pseudodifferential operator A with symbol A(x, ξ) is the operator of the form

(Au)(x) =

∫
Rm

∫
Rm

A(x, ξ)ei(x−y)ξu(y) dy dξ, x ∈ R
m. (1)

The function A(x, ξ) is called the symbol of the operator A.

Let us give an equivalent definition of pseudodifferential operator in terms of its kernel, which
was first used in [18]. By

B(x, y) = F−1
ξ→yA(x, ξ)

we denote the inverse Fourier transform (in the sense of generalized functions) of the symbol A(x, ξ)
with respect to the variable ξ. Then formula (1) can be written as

(Au)(x) =

∫
Rm

B(x, x− y)u(y) dy, x ∈ R
m. (2)

Formula (2) is called an integral representation of the operator A.

In the study of Fredholm properties of the operator A, a key role is played by the so-called local
principle by which it is necessary to determine the invertibility conditions for “model” operators
in “canonical” domains (for this, see [19, 20]). In this situation, the model operator is an operator
whose symbol is independent of the spatial variable, and since we use a Hilbert scale of spaces,
we give an equivalent definition of such an operator in Fourier transforms, which is convenient for
our purposes as will be shown below.

Definition 5. A pseudodifferential operator A with symbol A(·, ξ) is an operator of the form

(Ãu)(ξ) = A(·, ξ)ũ(ξ).
3.1. Class of Symbols

Assume that a function α : Rm → R has the same properties (1) and (2) as the function s(x).

Definition 6. The symbol class Eα(x) consists of functions A(x, ξ) defined on R
m × R

m and
satisfying the following conditions: one has the double inequality

c1(1 + |ξ|)α(x) ≤ |A(x, ξ)| ≤ c2(1 + |ξ|)α(x), (3)

where c1 and c2 are positive constants, and for any point x0 ∈ R
m there exists a neighborhood Ux0

such that for all x ∈ Ux0
the inequality

|A(x, ξ) −A(x0, ξ)| ≤ c3|x− x0|(1 + |ξ|)α(x) (4)

holds, where c3 is a positive constant. The function α : Rm → R is called the variable order of the
pseudodifferential operator (symbol).
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Remark 2. It is assumed in inequality (4) that the point x0 is located in a finite domain of
the space Rm. If x0 is the point at infinity, then instead of inequality (4) it is necessary to take the
inequality

|A(x, ξ) −A(∞, ξ)| ≤ c4|x|−1(1 + |ξ|)α(x). (4′)

Let us fix x0 ∈ R
m. The operator with symbol A(x0, ξ) will be denoted by Ax0

. Then, with
regard to Definition 3, one can readily obtain the following result.

Lemma 3. If A(x0, ξ) ∈ Eα(x0), then the operator Ax0
is bounded in the local Sobolev–Slobodetskii

space, Ax0
: Hs(x0) → Hs(x0)−α(x0).

Proof. Indeed, with regard to inequality (3), we have the obvious estimate

‖Ax0
u‖2s(x0)−α(x0)

=

∫
Rm

|A(x0, ξ)ũ(ξ)|2(1 + |ξ|)2(s(x0)−α(x0)) dξ ≤ C

∫
Rm

|ũ(ξ)|2(1 + |ξ|)2s(x0) dξ, (5)

which implies the boundedness of the operator in question. The proof of the lemma is complete.

This property of pseudodifferential operators is called the local boundedness.

Passing to the least upper bound in inequality (5), we see that each operator Ax0
boundedly

acts in the space HsM , Ax0
: HsM → H(s−α)M .

Definition 7. An operator A with symbol A(x, ξ) is said to be locally bounded if, for each point
x0 ∈ R

m, the operator Ax0
: Hs(x0) → Hs(x0)−α(x0) with symbol A(x0, ξ) is bounded.

Theorem 1. If A(x, ξ) ∈ Eα(x), then the function x0 	→ ‖Ax0
‖s(x0) is continuous at each point

x0 ∈ R
m, including the point at infinity.

Proof. Let us compare two operators Ax1
and Ax2

under the assumption that the points x1

and x2 are sufficiently close to each other. For u ∈ S(Rm), we have

(̃Ax1
u)(ξ)− (̃Ax2

u)(ξ) = [A(x1, ξ)−A(x2, ξ)]ũ(ξ),

which implies the inequality

‖(Ax1
−Ax2

)u‖2l(x) =
∫
Rm

|A(x1, ξ)−A(x2, ξ)|2|ũ(ξ)|2(1 + |ξ|)2l dξ

≤ C|x1 − x2|2
∫
Rm

|ũ(ξ)|2(1 + |ξ|)2(l(x)+α(x)) dξ = C|x1 − x2|2‖u‖2l(x)−α(x).

Therefore,
‖Ax1

u−Ax2
u‖l(x) ≤ C|x1 − x2|‖u‖l(x)+α(x). (6)

Further, by the properties of the norm, we have the estimate

‖|Ax1
u‖l(x) − ‖Ax2

u‖l(x)| ≤ ‖Ax1
u−Ax2

u‖l(x),

and hence, by inequality (6), the estimate

‖|Ax1
u‖l(x) − ‖Ax2

u‖l(x)| ≤ C|x1 − x2|‖u‖l(x)+α(x).

Now we take l(x) = s(x2) and α(x) = α(x2) and use the boundedness of the operator Ax2
in the

space Hs(x2) to obtain

‖Ax2
u‖s(x2) − C|x1 − x2‖|u‖s(x2)+α(x2) ≤ ‖Ax1

u‖s(x2) ≤ ‖Ax2
u‖s(x2) + C|x1 − x2‖|u‖s(x2)+α(x2).
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The last inequality implies that the operator Ax1
is bounded as the operatorHs(x2)→ Hs(x2)−α(x2)

and the norm of this operator is close to the norm of the operator Ax2
provided that the points x1

and x2 are close to each other. The proof of the theorem is complete.

Remark 3. Theorem 1 means that the property of local boundedness is preserved in a suffi-
ciently small neighborhood of the point x0.

3.2. Examples

1. The first example is from the theory of differential operators of fractional order. Consider
a symbol of the form [11, 13]

A(x, ξ) = (1 + ξ21 + ξ22 + · · ·+ ξ2m)
α(x). (7)

This is the so-called fractional Laplacian of variable order. All conditions imposed above on the
symbol are satisfied.

2. The second example is an integral operator of potential type (e.g., see [14] and references
therein), or the hypersingular integral

(Iα(x)u)(x) =

∫
Rm

c(x, y)u(y) dy

|x− y|n−α(x)
.

In the simplest case (c(x, y) ≡ 1), the symbol of such an operator has the form (7), but apparently
it can also be treated as the fractional Laplacian of variable order. In this connection, it should be
noted that popular fractional objects can readily be described in the theory of pseudodifferential
operators. Of course, pseudodifferential operators are rigidly related to the Fourier transform and
special analysis is required in the cases where this technique cannot be applied.

4. LOCAL PRINCIPLE AND FREDHOLMNESS

Consider another representation of the operator A with symbol A(x, ξ) which is more convenient
compared with the preceding one:

(Au)(x) =

∫
Rm

A(x, ξ)eix·ξ ũ(ξ) dξ.

In this section, we subject the symbol A(x, ξ) to stronger restrictions with respect to the vari-
able x to ensure the boundedness of the pseudodifferential operator A in the space HsM.

4.1. Boundedness Theorem

Theorem 2. If an operator A with symbol A(x, ξ) is locally bounded , then it is bounded as the
operator A : HsM → H(s−α)m .

Proof. By C∞
0 (R) we denote the set of infinitely differentiable compactly supported functions.

Let x0 ∈ R
m be an arbitrary point, and let ψx0

(x) ∈ C∞
0 (Rm) be a function defined in a neighbor-

hood of the point x0. Since the property of local boundedness of a pseudodifferential operator is
preserved in a neighborhood U(x0) of the point x0, it follows that this property holds for any point
in this neighborhood; i.e., the operator

ψx0
(x)A : Hs(x) → Hs(x)−α(x), x ∈ U(x0),

is bounded. Since the point x0 is arbitrary, the latter property holds at any point x ∈ R
m.

By Ṙ
m we denote the one-point compactification of the space R

m, and for each point x0 ∈ Ṙ
m

we construct a ball U(x0) centered at this point such that the property of local boundedness is

satisfied at all of its points. Obviously, the union of all such balls forms a cover of the space Ṙ
m.

DIFFERENTIAL EQUATIONS Vol. 54 No. 9 2018



PSEUDODIFFERENTIAL OPERATORS AND EQUATIONS OF VARIABLE ORDER 1161

By the compactness of Ṙm, we can choose a finite subcover U(xk), k = 1, . . . , n, from this cover
and assume that {ϕk(x)}nk=1 is the partition of unity corresponding to this cover. Then we have

A =

n∑
k=1

ϕk(x)A

and can apply the preceding result to each of the operators ϕk(x)A. The assertion of the theorem
now follows from the inequalities

‖Au‖(s−α)m ≤ ‖Au‖s(xk)−α(xk) ≤ C‖u‖s(xk) ≤ C‖u‖sM , k = 1, . . . , n.

The proof of the theorem is complete.

Remark 4. Apparently, for Theorem 2 to hold, it suffices to require that the property of local
boundedness be satisfied on a countable everywhere dense set of points (including the point at
infinity).

4.2. Completely Continuous (Compact) Operators in the Spaces Hs(x)

Assume that a family of bounded linear operators {Tx : Hs1(x) → Hs2(x)}x∈Rm is given.

Lemma 4. If a continuous linear operator Tx0
: Hs1(x0) → Hs2(x0) is compact , then there exists

a neighborhood Ux0
of a point x0 such that , for all x1 ∈ Ux0

, the operator Tx1
: Hs1(x1) → Hs2(x1) is

compact as well.

Proof. To simplify the calculations, we assume that s1(x) = s2(x) = s(x). By Lemma 2,
the family of spaces Hs(x) is locally continuous. We take an arbitrary bounded sequence {yn} ⊂
Hs(x1), ‖yn‖s(x1) ≤ C, and fix a sufficiently small number ε > 0. For each yn ∈ Hs(x1), we choose
a function vn ∈ S(Rm) so that the inequality ‖yn− vn‖s(x1) < ε is satisfied. Since vn = vn−yn+yn,
we obtain

‖vn‖s(x1) ≤ ‖vn − yn‖s(x1) + ‖yn‖s(x1) < C + ε,

and hence the sequence {vn} is bounded in the space Hs(x1). But then, by Lemma 1, this sequence
is also bounded in the space Hs(x0) if the points x0 and x1 are sufficiently close to each other,
‖vn‖s(x0) ≤ 2C.

Since T is a bounded linear operator in the space Hs(x0), the sequence zn = Tvn is also bounded
in this space. By the compactness of the operator T in the space Hs(x0), the sequence {zn} contains
a subsequence {znk

} converging in Hs(x0), so that

‖z0 − znk
‖s(x0) → 0 as k → ∞, z0 ∈ Hs(x0).

By the completeness of the space Hs(x0), the sequence {znk
} is fundamental. By definition, this

means that for any ε > 0 there exists an N such that the inequality ‖zkN
− zkN+p

‖s(x0) < ε holds
for all n ≥ N and p > 0.

Further, since the space S(Rm) is everywhere dense in any space Hs(x), we choose elements vkN
,

vkN+p
∈ S(Rm) so to satisfy the inequalities

‖zkN
− vkN

‖s(x0) < ε/2, ‖zkN+p
− vkN+p

‖s(x0) < ε/2.

In other words, the sequences {znk
} ⊂ Hs(x0) and {vnk

} ⊂ S(Rm) are cofinal with respect to the
norm of the space Hs(x0). By Lemma 1,

‖|vkN
− vkN+p

‖s(x1) − ‖vkN
− vkN+p

‖s(x0)| < |x1 − x0|‖zkN
− zkN+p

‖sM ≤ ‖T‖C1|x1 − x0|,

so that if, as a neighborhood of the point x0, we take a ball U(x0, ε1) centered at x0 of radius
ε1 < ε/(C1‖T‖), then the inequality

‖vkN
− vkN+p

‖s(x1) < ε
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holds any x1 ∈ U(x0, ε1), which implies that the subsequence {vnk
} is fundamental (and converges

by the completeness) with respect to the norm of the space Hs(x1). The proof of the lemma is
complete.

Let ψx0
(x) ∈ C∞

0 (Rm) be a function equal to 1 in a neighborhood of the point x0.

Corollary 1. The operator with symbol ψx0
(x)A(x, ξ) − A(x0, ξ) is completely continuous in

a neighborhood of the point x0 as an operator Hs(x) → Hs(x)−α(x).

Proof. Consider a family of pseudodifferential operators with symbol ψx0
(x)A(x, ξ)−A(x0, ξ),

where the point x0 ∈ R
m is fixed. By inequality (4), this operator Hs(x) → Hs(x)−α(x) is bounded in

a neighborhood of the point x0 and is zero at the point x0, and hence it is completely continuous.
Then, by Theorem 4, there exists a neighborhood of the point x0 such that, for all points x in this
neighborhood, the operator Hs(x) → Hs(x)−α(x) is completely continuous. The proof of the corollary
is complete.

4.3. Local Representatives and Conditions for Being Fredholm

Definition 8. An operator Ax0
with symbol A(x0, ξ) (x0 ∈ R

m is fixed) is called a local
representative of the operator A at the point x0.

(This term and the whole ideology of transition from local to global (with insignificant losses)
were proposed by Simonenko in the mid-1960s; see [21]; here we slightly modify his argument and
change its order.)

Theorem 3. If the local representatives Ax0
: Hs(x0) → Hs(x0)−α(x0) of the operator A are

invertible at each point of the space R
m including the point at infinity, then A : HsM → H(s−α)m is

a Fredholm operator.

Proof. To prove the Fredholm property of being for the operator under study, it suffices to
construct a so-called regularizer (sometimes called an almost inverse operator), i.e., an operator C
such that

AC = I + T1, CA = I + T2,

where I is the identity operator and T1 and T2 are compact operators.

By the properties of the symbol, the function A(x, ξ) is continuous in x on the compactifica-

tion Ṙ
m of the space Rm, i.e., there exists a limit lim|x|→+∞ ≡ A(∞, ξ). We distinguish a neighbor-

hood U(∞) ⊂ R
m of the point at infinity(such a neighborhood is understood as the exterior of a ball

centered at the origin of sufficiently large radius) such that inequality (4′) holds for all x ∈ U(∞).
The set Rm\U(∞) is compact. For each point x ∈ R

m\U(∞), we choose an open ball U(x) centered
at that point such that inequality (4) holds for all points of the ball. Obviously, the family U(x),
x ∈ R

m \U(∞), forms an open cover of the set Rm \U(∞). By the compactness of Rm \U(∞), this

cover contains a finite subcover, which we denote by
⋃n−1

k=1 U(xk). To this cover, we add a neighbor-

hood U(∞). For the finite cover
⋃n−1

k=1 U(xk)
⋃

U(∞), there exists a partition of unity subordinate
to this cover, which we denote by {ϕk(x)}nk=1. For each function ϕk(x), we construct a compactly
supported function ψk(x) ∈ C∞

0 (Rm) such that ψk(x) ≡ 1 on the support of ϕk(x) and the supports
of ϕk(x) and 1− ψk(x) are disjoint. We represent the operator A as

A =

n∑
k=1

ϕk(x)A =

n∑
k=1

ϕk(x)Aψk(x) + T,

where the operator T has the form

T =

n∑
k=1

ϕk(x)A(1 − ψk(x)).

We write Ak = ϕkAψk. Since the variable x of the symbol A(x, ξ) varies in the neighbor-
hood U(xk), it follows from Theorem 1 that the operator Ak : Hs(x)(Uk) → Hs(x)−α(x)(Uk) is
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bounded for any x ∈ Uk. In other words, we have the estimate

‖Aku‖s(x) ≤ Ck‖u‖s(x)−α(x), x ∈ Uk.

Further, we write
Ak = ϕk(A−Axk

)ψk + ϕkAxk
ψk, (8)

so that, by Corollary 1, the first term is a completely continuous operator, and the operator Axk
is

invertible by the condition of the theorem. Each of the operators ϕj(x)A(1− ψk(x)) is completely
continuous (the kernel of the operator has no singularity by the condition |x− y| ≥ c), and hence
each of such operators is a Hilbert–Schmidt operator in any space Hs [4, p. 171]; therefore, it is
completely continuous. Thus, the operator A can be written as

A =

n∑
k=1

ϕk(x)Axk
ψk(x) + T. (9)

Now we introduce an operator C as a pseudodifferential operator with symbol A−1(x, ξ) and
show that this operator is a regularizer for the operator A. We multiply (9) by the operator C on
the left and obtain

CA = C

n∑
k=1

ϕk(x)Axk
ψk(x) + T1,

where T1 = CT , and further,

CA =

n∑
k=1

ψk(x)Cϕk(x)Axk
ψk(x) + T2,

because the operator C and its symbol C(x, ξ) = A−1(x, ξ) have properties similar to the properties
of the operator A and the symbol A(x, ξ). Then we introduce the operator Ck = ψk(x)Cϕk(x) and,
by analogy with (8), obtain Ck = ψk(C − Cxk

)ϕk + ψkCxk
ϕk.

Thus,

CA =

n∑
k=1

ψk(x)Cxk
ϕk(x)Axk

ψk(x) + T3,

Further, we apply the property of “almost commutativity” between the operator of multiplication
by the function ϕk(x) and the operator Axk

, which means that the operator ϕk(x)Axk
−Axk

ϕk(x)
is completely continuous in any space Hs [4, p. 49]. With this taken into account, we obtain

CA =

n∑
k=1

ψk(x)Cxk
Axk

ϕk(x)ψk(x) + T4 =

n∑
k=1

ϕk(x) + T4 = I + T4,

because ϕk(x)ψk(x) = ϕk(x) and
∑n

k=1 ϕk(x) = 1.

One can verify in a similar way that the product AC is the sum of the identity operator and
a completely continuous operator. The proof of the theorem is complete.

Remark 5. Under the assumptions of Theorem 3, it is apparently also sufficient to require the
invertibility of local representatives on an everywhere dense set of points.

5. THE CASE OF HALF-SPACE

Definition 9. Let a function A(x, ξ) locally integrable with respect to ξ be given on R
m
+ ×R

m.
A pseudodifferential operator A in the half-space with symbol A(x, ξ) is an operator of the form

(Au)(x) =

∫
Rm

+

( ∫
Rm

A(x, ξ)ei(x−y)ξu(y) dξ

)
dy, x ∈ R

m
+ . (10)
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The function A(x, ξ) is called the symbol of the operator A.

Such an operator is associated with the following equation in the half-space:

(Au)(x) = v(x), x ∈ R
m
+ . (11)

Following [4, p. 43], we introduce the space Hs(x)(Rm
+ ) of functions in Hs(x)(Rm) supported in

the closed half-space R
m
+ , where we seek the solution, and the space H

s(x)
0 (Rm

+ ) of (generalized)

functions in the space S′(Rm) supported in the half-space Rm
+ and admitting continuation to the

entire Hs(x)(Rm), with finite norm

‖v‖+s(x) = inf ‖�v‖s(x),

where the infimum is taken over all possible continuations �.

To study the Fredholm property of Eq. (11), we apply the general methodology of local princi-
ple [21, p. 13] just as it is used to study equations on manifolds. We distinguish two types of local
representatives.

1. For an interior point x0 ∈ R
m
+ , this is the operator considered here:

(Ax0
u)(x) =

∫
Rm

∫
Rm

A(x0, ξ)e
i(x−y)ξu(y) dy dξ, x ∈ R

m.

2. For a boundary point x′
0 = (x′

0, 0) ∈ R
m−1 (for x0 ∈ R

m, we use the notation x0 = (x′
0, x

(0)
m ),

where x(0)
m ∈ R), this is the operator

(Ax′
0
u)(x) 	→

∫
Rm

+

( ∫
Rm

A(x′
0, ξ)e

i(x−y)ξu(y) dξ

)
dy, x ∈ R

m
+ . (12)

Thus, we have two families of operators.

Theorem 4. If all operators of the family Ax′
0
: Hs(x′)(Rm

+ ) → Hs(x′)−α(x′)(Rm
+ ) are bounded ,

then the operator (10) is bounded as an operator HsM (Rm
+ ) → H(s−α)m(Rm

+ ). If all operators of the

families are invertible, then the operator (10) is Fredholm as an operator HsM (Rm
+ ) → H(s−α)m(Rm

+ ).

The scheme of proof is similar to that described above with the only difference that it is now
necessary to consider each of the two different families of local operators separately.

5.1. Variable Factorization Index

The key role in studying the solvability of Eq. (11) in the classical Sobolev–Slobodetskii spaces
is played by the factorization index of the elliptic symbol. We give the corresponding definition for
our case and show how it can be used to study the invertibility of the operator (12) with “frozen”
pole x′ ∈ R

m−1.

Definition 10. The factorization of a symbol A(x′, ξ) with respect to the variable ξm is its
representation in the form

A(x′, ξ′, ξm) = A+(x
′, ξ′, ξm)A−(x

′, ξ′, ξm),

where the factors A+(A−) can analytically be continued in ξm into the upper (lower) complex
half-plane of the variable ξm ± iτ , τ > 0, for almost all ξ′ ∈ R

m−1 and satisfy the estimates

|A+(x
′, ξ′, ξm)| ≤ c1(1 + |ξ′|+ |ξm|+ |τ |)κ(x′),

|A−(x
′, ξ′, ξm)| ≤ c1(1 + |ξ′|+ |ξm|+ |τ |)α(x′)−κ(x′)

for all τ ∈ R. The function κ(x′), x′ ∈ R
m−1, is called a variable factorization index.
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Since the value of the factorization index determines the solvability pattern of the simplest
equation (11) (for a constant index, this is well known [4, p. 71; 18]), we consider one of the most
interesting cases below. Note that such a factorization can constructively be obtained by using
Cauchy type integrals (see [4, 11, 13]).

Throughout the following, we assume that the function κ(x′) has the same properties as the
function s(x′).

5.2. Local Invertibility and the Conditions for the Fredholm Property

The problem of the applicability conditions naturally arises for Theorem 4. In other words, it is
required to understand under what conditions the local representatives of the “boundary” operator
are invertible.

Theorem 5. Let
|κ(x′)− s(x′)| < 1/2 for any x′ ∈ R

m−1. (13)

Then the operator (12) is invertible as an operator Hs(x′)(Rm
+ ) → Hs(x′)−α(x′)(Rm

+ ) for each fixed x′.

The proof of Theorem 5 completely reproduces the corresponding argument for the constant
factorization index in the monograph [4, p. 74].

A combination of Theorems 4 and 5 implies the following result about the Fredholm property
of a pseudodifferential operator (equation) in a half-space.

Theorem 6. Let A(x, ξ) ∈ Eα(x). If inequality (13) is satisfied, then the operator (10) is
Fredholm as an operator HsM (Rm

+ ) → H(s−α)m(Rm
+ ).

5.3. Boundary Operators and Boundary Value Problems

If condition (13) is violated, then the assertion of Theorem 5 is, generally speaking, not true.
Several scenarios of solvability can be found in [4, pp. 75–78; 13]. Here we consider only one possible
version.

Let κ(x′) − s(x′) = n + δ, |δ| < 1/2, n ∈ N, for all x′ ∈ R
m−1. Now even for a fixed pole x′

the operator (12) is not invertible, but the structure of the general solution of the corresponding
equation is known [4, p. 76]. Let us briefly describe this structure to explain the appearance of
boundary operators.

Thus, we consider an equation with the operator (12) and right-hand side f ∈ H
s(x′

0)−α(x′
0)

0 (Rm
+ ).

The general solution of the equation

(Ax′
0
u)(x) = f(x), x ∈ R

m
+

with the operator (12) (recall that x′
0 ∈ R

m−1 is fixed) in Fourier transforms has the form [4, p. 75]

ũ(ξ) = A−1
+ (x′

0, ξ)Pn(ξ)Π+P
−1
n (ξ)A−1

− (x′
0, ξ)�̃f(ξ) +A−1

+ (x′
0, ξ)

n∑
k=1

c̃k(x
′
0, ξ

′)ξk−1
m ,

where Π+ is the Cauchy type integral

(Π+ũ)(ξ) =
i

2π
lim

τ→0+

+∞∫
−∞

ũ(ξ′, ηm)

ξm − ηm + iτ
dηm,

Pn(ξ) ∈ En is an arbitrary polynomial (see Definition 6), and the ck(x
′
0, ξ

′) are arbitrary functions
in the space Hsk(x

′
0)(Rm−1), sk(x

′
0) = s(x′

0)−κ(x′
0)+k−1/2, k = 1, . . . ,m. In particular, it follows

that in this situation the second type of local representative given by formula (12) is chosen poorly;
i.e., it is never invertible. Thus, we need a new type of local representative to be able to apply

DIFFERENTIAL EQUATIONS Vol. 54 No. 9 2018



1166 VASILYEV

Theorem 4. Moreover, we also need new local Sobolev–Slobodetskii spaces where the new local
representative will act.

To determine the functions ck uniquely, we introduce m bounded pseudodifferential operators
Bj : Hs(x′

0)(Rm
+ ) → Hs(x′

0)−αj(x
′
0)(Rm

+ ) with symbols Bj(x0, ξ), j = 1, . . . , n and let γ denote the

operator of restriction to the hyperplane xm = 0 so that the operators γBj : Hs(x′
0)(Rm

+ ) →
Hs(x′

0)−αj(x
′
0)−1/2(Rm−1) are bounded by the condition s(x′

0) − αj(x
′
0) − 1/2 > 0, x′

0 ∈ R
m−1 [13].

We define a new local Sobolev–Slobodetskii space as the direct sum

Hsα(x′
0) ≡ Hs(x′

0)(Rm
+ )

⊕ m∑
j=1

Hs(x′
0)−αj(x

′
0)−1/2(Rm−1).

.

For a point x′
0 ∈ R

m−1, we introduce the local operator Hs(x′
0)(Rm

+ ) → Hsα(x′
0) by the relation

Bx′
0
u = (Ax′

0
u, γB1u, γB2u, . . . , γBmu). (14)

Thus, the operator Bx′
0
is obtained by “gluing” m additional operators together with the family of

additional spaces to the operator Ax′
0
at each point x′

0 ∈ R
m−1.

Under the above assumptions on the symbols, as above, we conclude that all operators are
locally bounded and the local boundedness implies the boundedness of the operator (14).

The invertibility of the local operator (14) can be investigated by using the Fourier transform,
which permits reducing the problem of identifying arbitrary functions ck to the problem of unique
solvability of an m×m system of linear algebraic equations. The nonvanishing of the determinant
of this system is a necessary and sufficient condition for the invertibility of the local operator Bx′

0
.

Remark 6. There is one case left, where κ(x′) − s(x′) = −n + δ, |δ| < 1/2, n ∈ N, for
all x′ ∈ R

m−1. It can mainly be considered as above, only the operator Ax′ has an extended domain
of definition to which additional local Sobolev–Slobodetskii spaces with additional unknowns in
these spaces are glued.

CONCLUSION

Apparently, most of the results obtained by using the local principle can be transferred to op-
erators and equations of variable order. Some results can be found in [12, 13] for the cases of the
space Rm and the half-space Rm

+ , but a different class of symbols is considered there. Moreover, it is
of course of interest to study elliptic pseudodifferential equations and related boundary value prob-
lems in spaces of variable order for domains (manifolds) with singularities on the boundary [19, 20,
22–24].
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