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Abstract. We study Fredholm properties for a special class of elliptic pseudo-differential operators. Using a local principle we
give boundedness theorems for such operators and describe their Fredholm properties in Sobolev-Slobodetskii spaces of a variable
order. For a half-space case we introduce a certain operator family which helps describing Fredholm properties.

INTRODUCTION

Pseudo-differential operators and equations were born in past century (see, for example, [1-3]) and now this theory
lives and develops. In this paper we would like to enlarge class of spaces of spaces in which such pseudo-differential
operators can act, and describe their Fredholm properties in these spaces. We use spaces of variable order and consider
also pseudo-differential operators of variable order. First similar constructions were introduced in [4] (and further there
were some generalizations and refinements), but our considerations contain new results related to boundedness and
Fredholm properties and based on a local principle. Moreover we study a family of spaces of a variable order and
intend to apply this methodology to appearing boundary value problems. Also we hope these consideration will be
useful for more complicated situations when we deal with a cone instead of a half-space [5].

Local Sobolev-Slobodetskii Spaces

Lets : R*“ A R be an arbitrary function satisfying the following conditions:

e the finite limit lim s(x) exists,

e the function s(x) satisfies the Lipschitz condition in R, i. e. there is a positive constant C > 0 such that
[s(xi) - s(x2)| < c|xi - x2J, Vxb x2e Rm.
For fixed x e Rmwe introduce the following definition.

Definition 1 By definition a local Sobolev-Slobodetskii space Hs(x) (Rm) consists ofdistributions with finite value
12
. 2
IS0 — J d +ifi)2sXu $ i 4

where u denotes the Fourier transform ofthe function u.
The value ||u||s®) is called a local Hs-norm of the function u.

For a brevity we will write H9X) instead of Hs(x)(Rm), and if we speak on Hs()-functions with supports in a
certain domain D ¢ Rmthen we write HSX) (D).
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Definition 2 The universal Sobolev-Slobodetskii super-space HaM is called the space which includes all local
Sobolev-Slobodetskii spaces with finite norm

= Nulls().
\Un )s(éJREn ulls(x)
The universal Sobolev-Slobodetskii subspace Han is called the space which is inside of all local Sobolev-
Slobodetskii spaces with finite norm
IL = xexfml|u||s(X).

Obviously,
[l <lju]|sxd <lullsm, Vxe Rm.
Let us denote S (Rm) the Schwartz class of infinitely differentiable rapidly decreasing at infinity functions; this
class is dense in each local Sobolev-Slobodetskii space [3].

Lemma 1 Forue S (Rm we have estimates
@+ ]EF - @+]|£0< cilsi - s2|m(1 + 14)’
lul|sed) - NullsGe)l < c2|x1 - X2| w|ul|sm
foracertainl e [s1, s2].

Let Hx be a family of Hilbert spaces parametrized by points x e Rm. We denote ||u|[xthe norm of element ue HsY
and assume that S is a dense subset in Hs(x), Vx e Rm. For ue S we define the functional

f(x, U) = Juljx.

Definition 3 We say that a family ofHilbert spaces {Hx}xeRmis a local continuous family in the pointx0 e Rmiif
for fixed ue S the functional f (x, u) is continuous in the point xo .

Lemma 2 The family Hs(¥) is a local continuous family.

OPERATORS OF A VARIABLE ORDER
Definition 4 Given function A(x, £) defined in RmX Rm a pseudo-differential operator A is called an operator of
the following type
(Au)(X) = J J A(x, £)ei(xyy u(y)dydE, xe Rm. (@]

Rm Rm
The function A(X, £) is called a symbol ofthe operator A.

Leta :Rm~ R be afunction with the same properties as s(x).
Definition 5The class Ea(x) consists offunctions A(x, £) defined in RmX Rmand satisfying the conditions
e +ENaY) <|A(XE)|< cea + [E)aAX) @
and for each point x0 e Rmthereexists a neighborhood Ux0 such thatfor all x e Uxthefollowing inequality
|A(X,E) - A(X0,N)| < cs|x- xo|(1 + |£])a®) ©)]

holds, wherecl; c2, c3are positive constants. The function a Rm ~ R is called a variable order of apseudo-
differential operator (symbol).
1fx0 is an infinity then we need to require satisfying the following inequality

JA(X,£) - AKO| < c4x-1( + IEDa(x), (3)
instead o fthe inequality (3).
Example. A very simple example is so called fractional Laplacian of a variable order. Its symbol is
AXE) = 1+£2+& +... +a ax). 4)

All conditions mentioned above are satisfied.
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Boundedness Theorems

If we fix x0 e Rmthen the operator AX0 is an operator with the symbol A(x0,£).

her()ndma 3 IfA(x0,£) e Eafo) then the operator Ax is boundedin local Sobolev-Slobodetskii space, AX0 : Hs0Q »
sbg-ae)

This property is called a local boundedness.

Definition 6 An operator A with the symbol A(x, g) is called a local bounded operator iffor each pointx0 e Rm
the operator Ax : Hs(x0 * Hs(0) a)) with the symbol A(x0,£) is bounded.

Theorem 4 IfA(x,£) e Ea(® then the function x0 —>||Ax||s(e) is continuous at each pointx0 e Rmincluding the
infinity.
Remark 1 It means the property ofa local boundedness is conserved in enough small neighborhood.

Theorem 5 Ifan operator A with the symbol A(x, £) is local bounded then itis bounded A : Hss » H s-am.

Remark 2 Itseems itis enough to require a local boundedness on a certain countable set including the infinity.
Compact Operators in Spaces H¥

Let {Tx:Hs(® * Hs2X}x=:~ be a family of linear bounded operators.

Lemma 6 If the linear bounded operator Tx : HsI(Q » Hs(o) is compact then there is a neighborhood W0 of
the pointx0 such thatfor allx1e WO the operator TXL : Hsi(x1 » Hs2(xL is compact.

Let ftx0(x) e Co° (Rm) be a function equals to 1in some neighborhood of the point x0.

Corollary 7 An operator with the symbol ifxO(x)A(x,E) - A(x0,£) is compactin some neighborhood of the point
x0 as operator HX) ~ H s(x)-a(x).

Fredholmness

Definition 7 An operator AX) with the symbol A(x0,£) (X0 e Rmiis fixed) we call the local representative of the
operator A in the pointxo .

Theorem 8 Iflocal representatives A0 : HsM0) * Hs(x0)-a(x0) ofthe operator A are invertible at each pointofRm
including the infinity then the operator A : HsM” H(s-@m has a Fredholm property.

Remark 3 Itis enough to require an invertibilityfor the local representatives in a certain dense set .

A HALF-SPACE CASE

Definition 8 Let A(x, £) be a function defined in Rm X Rm. A pseudo-differential operatorA in a half-space with
the symbol A(x, g) is called an operator ofthe following type

@)
RM
We consider the following equation in a half-space
(Au)(x) = v(x), xe Rm, (6)

related to such an operator.
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According to [3] we introduce the space Hs"* (R™) of functions from Hs" (Rm) with support in R™, this is space
of solutions, and the space HQ Ui Wnwun» (WBIHUWUUWNL; HUW j ~ ) wHu suppuil in n +, these must admit
analytical continuation in awhole Hs(X) (Rm) with finite norm

[IVi+(X) = inf |[IF[Is(x),

where infimum is taken over all continuations I.

For studying a Fredholmness of the equation (6) we use a local principle. We extract two types of local represen-
tatives.

1) For inner point x0 e Rm this is well-known operator

Rm Rm
2) Forboundary point x0 =(x0,0) e Rm 1 (we use notation x0= (x0, for the x0 eRm) it will be the operator
U
RM ¥mM
Thus, we have two operator families.
Theorem 9 Ifall operators ofthe family Ayg :Hs(x) (Rm) ~ Hs(x)-a(x) (Rm) are bounded then the operator (5) is

bounded as operator HIM(Rm) ~ H (s-ajn(Rm).
If all operators of two operator family are invertible then the operator (5) is Fredholm operator as operator

HIVRmM ~ H s-a)mRm).

Variable Index o f Factorization

This is key point for studying pseudo-differential equations in a half-space. We will give a corresponding definition
and show its applicability to the equation (7) with fixed x e Rm 1.

Definition 9 Factorization ofthe symbol A(x,£) on a variable £mis called its representation in the form
A(x,e,Em) = A+(x,e,£m)A-(x,£'Em),

where the factors A+(A-) admit analytical continuation on £min upper (lower) complex half-plane £m+ rr,r > 0,
underalmostall e Rm1 and satisfy estimates

|A+(x,2,€m)I< cI(L + M + Il + |r])Ffi(x),

A-(X,2,Em)l < c1(1 + M + |fml + IDa(x)-*(x), Vit e R.

The function x(x ), x e Rm 1, is called a variable index offactorization.

Let us note that such factorization can be constructed effectively with a help of the Cauchy type integral [3].
Below we will assume that the function »x(¥) has the same properties as s(x).

A Local Solvability and Boundary Conditions

Now there is a question how one can use the theorem 9. In other words we need conditions which guarantee an
invertibility for local representatives of boundary operator.

Theorem 10 Let
[fi(x) - s(x)] < 1/2, VX e Rm-1. ®)

Then the operator (7) is invertible as an operator Hs(x) (Rm) ~ Hs(x)-a(x) (Rm) under each fixedx.
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Collecting the theorems 9, 10 we obtain a Fredholm property for pseudo-differential operator (equation) in a
half-space.

Theorem 11 LetA(x,9) eEa.If
|®(X) - s(X)] < 1/2, VX eRml VXe4d™1,
then the operator (5) has a Fredholm property as an operator HSWRm) A H-s-a)m(Rm).

There are situations for which the condition (8) does not hold. We consider here one of possible variants.

Letffi(x') - s(X) =m +6,6] < 1/2,me N, VX e Rm-1. Now for fixed X even the operator (7) is non-invertible,
but we know a general solution of corresponding equation [3]. We will briefly describe its form to explain appearing
boundary operators.

Thus, we consider an equation with the operator (7) and right-hand side f e HSX0 a(X) (Rm).

We will remind that for fixed X0 e Rm-1 a general solution of the equation

(Ax0u)(x) = f(X), xeRm

with the operator (7) in Fourier image has the following form [3]

m
&E) =A-VorPmAnPm 1(MA:1(XoMNT?(") + A+Vo,$ (X o,r)ym, ©)]
k=1

where the operator I+ is the Cauchy type integral

+10

=1 kn P C(f.nmydnr
EHJF v 2n ril}‘rB+1lo %n- tfm +r||_3|_ddr]m,

Pm(£) e Emis an arbitrary polynomial, ck(X0,i;") are arbitrary functions from H () (Rm-1), sk(x0) = s(x|) - ®(x|) +
k- 1/2,k =1, mmmm.

To determine uniquely ckwe choose m bounded pseudo-differential operators Bj : Hs(xQ (Rm) » Hs(x0-aj(x0 (Rm)
with symbols Bj(X0,£),j = 1, mmm, and y is a restriction operator on the hyperplane Xm = 0 so that operators yBj
are boundedHPQ (Rm) ~ HO-aj(X9-1/2(Rm-1) under the conditions(x)) - oAX)) - 1/2 > 0,VX0e Rm-1. Let us
introduce a new local sobolev-Slobodetskii space as a direct sum

m
Hs00 = HOQ(RY) e & Hs00-a/(:0)- U2 (Rm-1)
A

For the point X) e Rm1 we introduce a local operator Hs(xJ (Rm) » H (0 by the formula

BxOu = (AxOu, 7 B1U, 7 B1U wam,yBmuy . (10)

Therefore, the operator BXj is given by pasting m additional operators together with a family of additional spaces
to the operator A" at each point X0 e Rm-1.

We can conclude as above that under our assumptions all such operators are locally bounded, and it implies a
boundedness of the (10).

One can study an invertibility of the local operator (10) by the Fourier transform, it permits to reduce an iden-
tification problem for the functions ck to unique solvability of some m X m-system of linear algebraic equations.
Non-vanishing for a determinant of the latter system is necessary and sufficient condition for an invertibility of the
local operator BA .

Remark4 Theleftcase ffi(X) - s(X) = -m +6, |6 < 1/2, me N, VX e Rm-1, can dt considered analogously. For

this case we extend the domain of Axs and we past to the domain additional local Sobolev-Slobodetskii spaces with
additional unknowns in these spaces.
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CONCLUSION

It seems a lot of results obtained by a local principle can be transferred on operators and equations of a variable
order. In our opinion more interesting case is studying such operators and equations on manifolds with non-smooth
boundaries like [5-9].
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