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Abstract—We consider a certain class of discrete pseudo-differential operators and related equa-
tions in a sharp convex cone and describe their invertibility conditions in L2 spaces. For this purpose
we introduce a concept of periodic wave factorization for elliptic symbol and show its applicability for
the studying. For a half-space case we consider the Laplace equation and describe a solution of the
discrete Dirichlet problem.
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1. INTRODUCTION

A classical pseudo-differential operator in Euclidean space R
m is defined by the formula [1–4]

(Au)(x) =

∫

Rm

∫

Rm

Ã(x, ξ)ei(ξ−y)ũ(ξ)dξdy,

where the sign ∼ over a function denotes its discrete Fourier transform

ũ(ξ) =

∫

Rm

u(x)eix·ξdx.

Given function ud of a discrete variable x̃ ∈ Z
m we define its discrete Fourier transform by the series

(Fdud)(ξ) ≡ ũd(ξ) =
∑
x̃∈Zm

eix̃·ξu(x̃), ξ ∈ T
m ≡ [−π, π]m,

where partial sums are taken over cubes QN = {x̃ ∈ Z
m : x̃ = (x̃1, · · · , x̃m), max

1≤k≤m
|x̃k| ≤ N}.

Let D ⊂ R
m be a sharp convex cone, Dd ≡ D ∩ Z

m, and L2(Dd) be a space of functions of discrete
variable defined on Dd, and A(x̃) be a given function of a discrete variable x̃ ∈ Z

m. We introduce the
function Ãd(ξ) =

∑
x̃∈Zm eix̃·ξA(x̃), ξ ∈ T

m, and consider the following types of operators

(Adud)(x̃) =

∫
Tm

∑
ỹ∈Dd

ei(ỹ−x̃)·ξÃ(ξ)ũd(ξ)dξ, x̃ ∈ Dd, (1)

according to a standard definition.

Definition 1. The function Ãd(ξ) is called a symbol of the operator Ad, and this symbol is
called an elliptic symbol if Ãd(ξ) �= 0,∀ξ ∈ T

m.
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Our main goal is describing a periodic variant of wave factorization for an elliptic symbol [10] and
showing its usability for studying invertibility for the operator Ad.

Let us denote PDd
projection operator on Dd, PDd

: L2(Z
m) → L2(Dd) so that for arbitrary function

ud ∈ L2(Z
m)

(PDd
ud)(x̃) =

{
ud(x̃), if x̃ ∈ Dd;

0, otherwise.

If we consider a half-space case then the Fourier image of the operator PDd
is evaluated [12, 13] and

we’ll demonstrate it in the following
Example 1. If D = R

m
+ then

(FdPDd
ud)(ξ

′, ξm) =
1

4πi
lim

τ→0+

π∫

−π

ud(ξ
′, ηm) cot

ξm − ηm + iτ

2
dηm.

If D is a sharp convex cone Ca
+ = {x̃ ∈ Z

m : x̃ = (x̃1, · · · , x̃m), x̃m > a|x̃′|, x̃′ = (x̃1, · · · , x̃m−1),

a > 0} then we introduce the function Bd(z) =
∑

x̃∈Dd

eix̃·z, z = ξ + iτ , ξ ∈ T
m, τ ∈ Ca

+, and define the

operator

(Bdu)(ξ) = lim
τ→0

∫

Tm

Bd(z − η)ud(η)dη.

Lemma 1. For arbitrary ud ∈ L2(Z
m) the property FdPDd

ud = BdFdud holds.
Proof. Let χ+(x̃) be an indicator of the set Dd. Thus (PDd

ud)(x̃) = χ+(x̃) · ud(x̃). Further
since the function χ+(x̃) is not summarizable we can’t apply directly a convolution property of the
Fourier transform. We choose the function eix̃·τ so the product χ+(x̃)e

ix̃·τ will be summarizable for
some admissible τ . Taking into account a forthcoming passing to a limit under τ → 0+ we have
Fd(χ+(x̃)e

ix̃·τ ) = Bd(z). Thus we can use the Fourier transform obtaining convolution of functions
Bd(z) and ũd(ξ). It is left passing to a limit. �

2. MULTIDIMENSIONAL PERIODIC RIEMANN BOUNDARY VALUE PROBLEM

For D = R
m
+ we’ll remind some author’s constructions [12, 13] for discrete equations in a half-space.

We have Bd(z) = cot z
2 , z = (ξ′, ξm + iτ), ξ′ = (ξ1, · · · , ξm−1), τ > 0. Thus (see Example 1) we use a

periodic one-dimensional Riemann problem with a parameter ξ′ ∈ T
m−1 which is the following. Finding

a pair of functions Φ±(ξ′, ξm) which are boundary values of holomorphic in half-strips Π± = {z ∈ C :
z = ξm ± iτ, τ > 0} such that these are satisfied a linear relation

Φ+(ξ)(ξ′, ξm) = G(ξ′, ξm)Φ−(ξ)(ξ′, ξm) + g(ξ), ξ ∈ T
m,

for almost all ξ′ ∈ T
m−1, where G(ξ), g(ξ) are given periodic functions.

Now we will consider an essential multidimensional case. Let
∗
D be a conjugate cone for D i.e.

∗
D= {x ∈ R

m : x · y > 0, y ∈ D}, and T (
∗
D) ⊂ C

m be a set of the type T
m + i

∗
D. For Tm ≡ R

m such

a domain of multidimensional complex space is called a radial tube domain over the cone
∗
D [7, 8, 10].

Let us define the subspace A(Tm) ⊂ L2(T
m) consisting of functions which admit a holomorphic

continuation into T (
∗
D) and satisfy the following condition

sup

τ∈
∗
D

∫

Tm

|ũd(ξ + iτ)|2dξ < +∞. (2)

In other words the space A(Tm) ⊂ L2(T
m) consists of boundary values of holomorphic in T (

∗
D)

functions.
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Let us denote B(Tm) = L2(T
m)�A(Tm), so that B(Tm) is a direct complement of A(Tm) in

L2(T
m). A simplest variant of this problem is so called a jump problem. We formulate the problem

by the following way: finding a pair of functions Φ±, Φ+ ∈ A(Tm), Φ− ∈ B(Tm), such that

Φ+(ξ)− Φ−(ξ) = g(ξ), ξ ∈ T
m, (3)

where g(ξ) ∈ L2(T
m) is given.

Lemma 2. The operator Bd : L2(T
m) → A(Tm) is a bounded projector. A function ud ∈ L2(Dd)

iff its Fourier transform ũd ∈ A(Tm).
Proof. According to standard properties of the discrete Fourier transform Fd we have

Fd(χ+(x̃)ud(x̃)) = lim
τ→0

∫

Tm

Bd(z − η)ũd(η)dη,

where χ+(x̃) is an indicator of the set Dd. It implies a boundedness of the operator Bd. The second
assertion follows from holomorphic properties of the kernel Bd(z). In other words for arbitrary function
v ∈ A(Tm) we have

v(z) =

∫

Tm

Bd(z − η)v(η)dη, z ∈ T (
∗
D).

It is an analogue of the Cauchy integral formula. �

Theorem 1. The jump problem has unique solution for arbitrary right-hand side from L2(T
m).

Proof. Indeed it is equivalent to one-to-one representation of the space L2(Dd) as a direct sum of two
subspaces. If we’ll denote χ+(x), χ−(x) indicators of discrete sets Dd, Zm \Dd respectively then the
following representation ud(x̃) = χ+(x̃)ud(x̃) + χ−(x̃)ud(x̃) is unique and holds for arbitrary function
ud ∈ L2(Z

m). After applying the discrete Fourier transform we have Fdud = Fd(χ+ud) + Fd(χ−ud),
where Fd(χ+ud) ∈ A(Tm) according to Lemma 2, and thus Fd(χ−ud) = Fdud − Fd(χ+ud) ∈ B(Tm)
because Fdud ∈ L2(T

m). �

Example 2. If m = 2 and C2
+ is the first quadrant in a plane then a solution of a jump problem

is given by formulas

Φ+(ξ) =
1

(4πi)2
lim
τ→0

π∫

−π

π∫

−π

cot
ξ1 + iτ1 − t1

2
cot

ξ2 + iτ2 − t2
2

g(t1, t2)dt1dt2,

Φ−(ξ) = Φ+(ξ)− g(ξ), τ = (τ1, τ2) ∈ C2
+.

Now we can formulate a general statement for the multidimensional periodic Riemann boundary
value problem. It looks as follows. Finding a pair of functions Φ±, Φ+ ∈ A(Tm), Φ− ∈ B(Tm), such
that

Φ+(ξ) = G(ξ)Φ−(ξ) + g(ξ), ξ ∈ T
m, (4)

where G(ξ), g(ξ) are given periodic functions. If G(ξ) ≡ 1 we have the jump problem (3).
Like classical studies [5, 6] we want to use a special representation for an elliptic symbol to solve the

problem (4). We can easily obtain so-called characteristic singular integral equation associated with
multidimensional periodic Riemann boundary value problem (4) like [5, 6] (see also [12, 13]).

Let us denote QDd
= I − PDd

and consider so-called paired operator composed by two operators

A
(1)
d , A

(2)
d of the following type

A
(1)
d PDd

+A
(2)
d QDd

: L2(Z
m) → L2(Z

m). (5)

One can easily obtain the following
Lemma 3. The invertibility of the operator (1) in the space L2(Dd) is equivalent to invertibility

of the operator (5) in the space L2(Z
m) with A

(1)
d = Ad, A(2)

d = I.
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The Fourier image for the operator (5) is the following operator

ũd(ξ) 
−→ ((A
(1)
d (ξ)Bd +A

(2)
d (ξ)(I −Bd)ũd)(ξ). (6)

If D = R
m
+ then the operator (6) is a one-dimensional singular integral operator with periodic Cauchy

kernel and a parameter ξ′ [12, 13]

3. PERIODIC WAVE FACTORIZATION

Definition 2. Periodic wave factorization for elliptic symbol Ã(ξ) is called its representation
in the form Ãd(ξ) = Ã�=(ξ)Ã=(ξ), where the factors A±1

�= (ξ), A±1
= (ξ) admit bounded holomorphic

continuation into domains T (±
∗
D).

3.1. Sufficient Conditions

We’ll give here certain sufficient conditions for an existence of the periodic wave factorization for an
elliptic symbol.

Theorem 2. Let an elliptic symbol Ãd(ξ) ∈ C(Tm) be a such that

supp F−1
d (ln Ãd(ξ)) ⊂ Dd ∪ (−Dd), (7)

π∫

−π

d arg Ãd(· · · , ξk, · · · ) = 0, k = 1, · · · ,m. (8)

Then the symbol Ãd(ξ) admits the wave factorization.

Proof. If we start from equality Ãd(ξ) = Ã�=(ξ)Ã=(ξ) then by logarithm we obtain ln Ãd(ξ) =

ln Ã�=(ξ) + ln Ã=(ξ) and we have a special kind of a jump problem.

Namely if we’ll denote by A1(T
m) a subspace of the space L2(T

m) consisting of functions which ad-

mit a holomorphic continuation into T (−
∗
D) and satisfy the condition (2) for τ ∈ −

∗
D. So evidently we

speak on a possibility of decomposition of the function ln Ãd(ξ) into two summands one of which belongs
to the space A(Tm) and the second one belongs to the space A1(T

m). Let us denote F−1(ln Ãd(ξ)) ≡
v(x). If supp v ⊂ Dd ∪ (−Dd) then we have the unique representation v = χ+v + χ−v, where χ± is an
indicator of the discrete set ±Dd. Further passing to the Fourier transform and potentiating we obtain
the required factorization. �

Remark 1. The condition (7) is not necessary but we have no an algorithm for constructing a
periodic wave factorization. For D = R

m
+ a such algorithm exists always (see [13]).

3.2. Factorization and Index

There is one point in previous considerations from proof of the Theorem 2 for which one needs an
explanation. Indeed the function ln Ã(ξ) is defined correctly because the condition (8) provides an
absence of bifurcation points. That’s why one can call this factorization with vanishing index.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 2 2018



DISCRETE PSEUDO-DIFFERENTIAL OPERATORS 293

4. INVERTIBILITY OF DISCRETE OPERATORS

Lemma 4. If f ∈ B(Tm), g ∈ A1(T
m) then f · g ∈ B(Tm).

Proof. According to properties of discrete Fourier transform Fd we have

(F−1
d (f · g))(x̃)− ((F−1

d f) ∗ (F−1
d g))(x̃) ≡

∑
ỹ∈Zm

f1(x̃− ỹ)g1(ỹ) =
∑

ỹ∈−Dd

f1(x̃− ỹ)g1(ỹ),

where f1 = F−1
d f , g1 = F−1

d g and according to Lemma 2 supp g1 ⊂ −Dd. Further since we have
supp f1 ⊂ Z

m \ (−Dd) then for x̃ ∈ Dd, ỹ ∈ −Dd we have x̃− ỹ ∈ Dd so that f1(x̃− ỹ) = 0 for such x̃,
ỹ. Thus supp f1 ∗ g1 ⊂ Z

m \Dd. �

Theorem 3. If the elliptic symbol Ãd(ξ) ∈ C(Tm) admits periodic wave factorization then the
operator Ad is invertible in the space L2(Dd).

Proof. We’ll remind that according to the Lemma 3 an invertibility of the operator Ad in the space
L2(Dd) is equivalent to an invertibility of the operator AdPDd

+ IQDd
in the space L2(Z

m). It is easily
concluding the last invertibility is equivalent to solving the Riemann problem (4) for arbitrary right-hand
side g(ξ) ∈ L2(Z

m) with G(ξ) ≡ Ã−1
d (ξ). If we have the periodic wave factorization for the symbol Ãd(ξ)

then

Ã�=(ξ)Φ
+(ξ) = Ã−1

= (ξ)Φ−(ξ) + Ã�=(ξ)g(ξ), ξ ∈ T
m, (9)

and we have a jump problem. The first summand Ã�=(ξ)Φ
+(ξ) ∈ A(Tm) according to a holomorphic

property, and the second one Ã−1
= (ξ)Φ−(ξ) ∈ B(Tm) according to the lemma 3. Taking into account the

theorem 2 we conclude that the Riemann problem (9) has a unique solution for arbitrary g(ξ) ∈ L2(T
m).

�

5. DISCRETE BOUNDARY VALUE PROBLEMS IN A HALF-SPACE

We will consider here certain pseudo-differential operators using general concepts of the theory of
special operator equations.

5.1. Discrete Laplacian

We define the discrete Laplacian by divided difference of second order instead of partial derivatives

∂2u

∂x2k
∼ ud(x1, · · · , x̃k + 2, · · · , xm)− 2ud(x1, · · · , x̃k + 1, · · · , xm)

+ ud(x1, · · · , x̃k, · · · , xm) ≡ Δ2
xk
ud,

so that
m∑
k=1

∂2u

∂x2k
≡ Δu ∼

m∑
k=1

Δ2
xk
ud ≡ Δdud.

Remark 2. This is not a convolution operator but a difference one in a discrete space.
Applying the discrete Fourier transform to the last expression one can easily obtain the formula

(Fd(Δdud))(ξ) =

(
m∑
k=1

(eiξk − 1)2

)
ũd(ξ).

It is natural the function Δd(ξ) ≡
∑m

k=1(e
iξk − 1)2 should be called a symbol of the discrete Laplacian.

Let Ad be a linear bounded operator acting in the discrete space L2(Z
m). A a rule this operator is

considered with the following operator equation

Adud = vd, vd ∈ L2(Z
m), (10)

and if the operator is such that one can apply the discrete Fourier transform to the equation (10) reducing
it to the multiplier σd(ξ)ũd(ξ) = ṽd(ξ), ξ ∈ R

m, then the function σd(ξ) is called a symbol of operator
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Ad. Of course Ad means not an arbitrary operator but such that above multiplier representation is valid;
it may be a convolution operator or a difference one. Let us note in the last equation all functions are
periodic, thus we can consider these functions on T

m.
Factorization technique for a symbol [3, 9] is used if the equation (10) is considered not on the

whole lattice Z
m but on its part, in our case on Z

m
+ = {x̃ ∈ Z

m : x̃m ≥ 0}. In other words instead of
the equation (10) one considers the equation

P+Adu
+
d = v+d , v+d ∈ L2(Z

m
+ ), (11)

where P+ : L2(Z
m) → L2(Z

m
+ ) is a projector, and a solution u+d belongs to L2(Z

m
+ ).

Everywhere below we consider discrete operators with continuous periodic symbols.
Definition 3. The symbol σd(ξ) is called an elliptic symbol if inf

ξ∈Tm
|σd(ξ)| > 0.

Remark 3. For our case it is equivalent that the symbol is not vanishing everywhere.

6. PERIODIC FACTORIZATION

Let us denote ξ = (ξ′, ξm).
Definition 4. A periodic factorization for elliptic symbol σd(ξ) is called its representation

in the form σd(ξ
′, ξ) = σ+

d (ξ
′, ξ) · σ−

d (ξ
′, ξ), where σ±

d (ξ) admit bounded analytic continuation
with respect to the variable ξm into half-strips Π± = {z ∈ C : z = ξm + iτ, ξm ∈ [−π, π],±τ > 0}
for almost all ξ′.

Definition 5. An index of periodic factorization of elliptic symbol σd(ξ) is called divided by2π
variation of an argument of the function σd(ξ) under varying ξm from−π to π.

Remark 4. This is easily seen that the index of factorization does not depend on ξ′.
Since the discrete Laplacian with the symbol Δd(ξ) is not an elliptic symbol according the definition

3 we will consider here the discrete Helmholtz operator Hd ≡ Δd − k2I, where I is an identity operator
with some fixed k ∈ R to satisfy the definition 1.

Lemma 5. If index of factorization for discrete operator Ad is zero then its symbol admits a
periodic factorization.

All details for constructing such factorizations are contained in [12, 13]. Key role plays a periodic
analogue of the Hilbert transform, i.e. an operator of the form

(H
per
ξ′ ũd)(ξ) =

1

2πi
v.p.

π∫

−π

cot
ηm − ξm

2
ũd(ξ

′, ηm)dηm.

This is a simple corollary of the theory of periodic Riemann boundary value problem which permits in
future considering non-vanishing indices.

Lemma 6. Index of factorization for the discrete operator Hd is equal to 1.
This fact is verified immediately. Indeed, under fixed ξ′ the argument varying is determined by the

term with eiξm for arbitrary k.

7. A GENERAL SOLUTION

Lemmas 5 and 6 permit describing a structure of a general solution for the equation (11) for the case
Ad ≡ Hd in the space L2(Z

m
+ ) using methods [3, 9] and the theory of periodic Riemann boundary value

problem [12, 13].
Theorem 4. For Ad = Hd all solutions of the equation (3) are given by the formula

ũd(ξ) = e−iξmh−1
+ (ξ′, ξm)(Hper

ξ′ (h−1
− l̃v+d ))(ξ) + c̃(ξ′)e−iξmh−1

+ (ξ′, ξm),

where h±(ξ′, ξm) are factors of periodic factorization for the symbol e−iξm(Δd(ξ) + k2), lv+d is an
arbitrary continuation of v+d onto the whole Z

m, c(x′) is an arbitrary function from L2(Z
m−1).

Factors of a periodic factorization are constructed according to classical books of F.D. Gakhov [5]
and N.I. Muskhelishvili [6] with the change of the Hilbert transform H by the operator Hper

ξ′ .
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7.1. Boundary Value Problems

The Theorem 4 contains an assertion on non-uniqueness of a solution for the equation (11). To
extract an unique solution one needs additional conditions. Usually they use boundary conditions.
Simplest variants are given by discrete analogues of Dirichlet or Neumann conditions. We will consider
here discrete Dirichlet conditions. We will require that a solution of the equation (11) satisfies the
following discrete Dirichlet condition

ud|x̃m=0 = gd(x̃
′), (12)

where gd is given function of a discrete variable on a discrete hyper-plane Zm−1. The condition (12) for
Fourier image takes the form

π∫

−π

ũd(ξ
′, ξm)dξm = g̃d(ξ

′),

and according to the Theorem 4 it leads to the following integral equation with respect to c̃(ξ′)
π∫

−π

c(ξ′)e−iξmh−1
+ (ξ′, ξm)dξm = f̃d(ξ

′);

we use the notations

f̃d(ξ
′) = g̃d(ξ

′)−
π∫

−π

e−iξmh−1
+ (ξ′, ξm)1/2(I +H

per
ξ′ )(h−1

− l̃v+d )(ξ)dξm.

Further, denoting
π∫

−π

e−iξmh−1
+ (ξ′, ξm)dξm ≡ b(ξ′),

and supposing b(ξ′) �= 0 one can easily find c̃(ξ′) = b−1(ξ′)f̃d(ξ
′). Then a solution of the problem (11),

(12) for Fourier image takes the form

ũd(ξ) = e−iξmh−1
+ (ξ′, ξm)(1/2(I +H

per
ξ′ )(h−1

− l̃v+d ))(ξ) + b−1(ξ′)f̃d(ξ
′)e−iξmh−1

+ (ξ′, ξm),

Remark 5. One can verify that really b(ξ′) is a non-vanishing complex constant.

Theorem 5. Discrete boundary value problem (11), (12) is uniquely solvable in the space
L2(Z

m
+ ) for an arbitrary right-hand side vd ∈ L2(Z

m
+ ) and an arbitrary boundary function gd ∈

L2(Z
m−1).

7.2. Discrete Poisson Formula

If the right-hand side of the equation is a zero, v+d ≡ 0, then formula for a solution of the discrete
boundary value problem (11), (12) will be very simplified ũd(ξ) = b−1(ξ′)g̃d(ξ

′)e−iξmh−1
+ (ξ′, ξm), and

after applying the inverse discrete Fourier transform it will be like this expression

ud(x̃
′, x̃m) =

∑
ỹ′∈Zm−1

Pd(x̃
′ − ỹ′, x̃m)gd(ỹ

′), (13)

where the function of a discrete variable Pd(x̃) is defined by inverse discrete Fourier transform of the
function b−1(ξ′)e−iξmh−1

+ (ξ′, ξm). The formula (13) is a discrete analogue of the Poisson formula for
solving the Dirichlet problem in a half-space.
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CONCLUSION

Taking into account these results one can wait some interesting interrelations between discrete and
continue theory which will permit to justify obtaining discrete solutions with computer calculations for
a lot of distinct boundary value problems and wide classes of equations. Moreover such technique are
also useful for studying difference equations in multidimensional spaces [10. 11, 14–16]. Last these
“discrete” considerations can be transferred on more general situations and operators. It will be a subject
of forthcoming papers of the author.
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