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1 Introduction

A certain theory of pseudo-differential operators and corresponding equations
was constructed in the second half of the last century [3, 11, 16, 17], and it
includes as usual boundedness theorems in different functional spaces and a
certain variant of symbolic calculus. But for discrete situation there is no any
variant of such a theory although there are a lot of approximate constructions
for solving simplest kinds of pseudo-differential equations, for example singular
integral and similar equations [1, 6, 7, 8, 9, 10, 13, 15, 18]. Moreover, there are
some recent studies for these discrete situations from algebraic or symbolic
calculus point of view on the whole m-dimensional lattice Zm [2,14]. But there
are principal difficulties to transfer this approach to another discrete domains
which are not Zm, for example a discrete half-space or a discrete cone.

We think to exclude this lacuna and to start studying these discrete ana-
logues of pseudo-differential operators and equations. We also believe that such

�
Copyright c© 2018 The Author(s). Published by VGTU Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are credited.

ISSN: 1392-6292
https://doi.org/10.3846/mma.2018.029
mailto:alexvassel@gmail.com
mailto:vladimir.b.vasilyev@gmail.com
http://creativecommons.org/licenses/by/4.0/


Pseudo-Differential Operators and Equations in a Discrete Half-Space 493

a discrete theory will help us to justify approximate solving schemes for these
equations.

Earlier the authors obtained some initial results for special discrete pseudo-
differential operators and equations, namely Calderon–Zygmund operators [19,
22, 23] including some comparison between discrete and continuous situations
[21]. Moreover, we have some initial results for studying pseudo-differential
equations and related boundary value problems for discrete domains in m-
dimensional space which are different from Zm [24, 26, 27]. Using the small
parameter h > 0 we hope to obtain existing theory of pseudo-differential oper-
ators and boundary value problems on manifolds with a boundary passing to
the limit h → 0, to justify constructing approximate solutions, and to get er-
ror estimates between continuous and discrete solutions in appropriate discrete
functional spaces.

The main goal of this paper is to prove a theorem on a structure of a general
solution for a model discrete elliptic pseudo-differential equation in a discrete
half-space.

2 Discrete Sobolev–Slobodetskii spaces

2.1 Discrete Fourier transform

We will use the following notations. Let Tm be the m-dimensional cube
[−π, π]m, h > 0, ~ = h−1. We will consider all functions defined on a cube
as periodic functions in Rm with the same cube of periods.

If ud(x̃), x̃ ∈ hZm, is a function of a discrete variable, then we call it “dis-
crete function”. For such discrete functions one can define the discrete Fourier
transform

(Fd ud)(ξ) ≡ ũd(ξ) =
∑

x̃∈hZm
e−ix̃·ξud(x̃)hm, ξ ∈ ~Tm,

if the latter series converges, and the function ũd(ξ) is a periodic function
on Rm with the basic cube of periods ~Tm. This discrete Fourier transform
preserves basic properties of the integral Fourier transform, particularly the
inverse discrete Fourier transform is given by the formula

(F−1
d ũd)(x̃) =

1

(2π)m

∫
~Tm

eix̃·ξũd(ξ)dξ, x̃ ∈ hZm.

The discrete Fourier transform is a one-to-one correspondence between the
spaces L2(hZm) and L2(~Tm) with norms

||ud||2 =

( ∑
x̃∈hZm

|ud(x̃)|2hm
)1/2

, ||ũd||2 =

(∫
ξ∈~Tm

|ũd(ξ)|2dξ
)1/2

.

Example 1. Since the definition for Sobolev–Slobodetskii spaces includes partial
derivatives, we use their discrete analogue, i.e. divided difference of first order

(∆
(1)
k ud)(x̃) = h−1(ud(x1, . . . , xk + h, . . . , xm)− ud(x1, . . . , xk, . . . , xm)),
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for which its discrete Fourier transform looks as follows

˜
(∆

(1)
k ud)(ξ) = h−1(e−ih·ξk − 1)ũd(ξ).

Further for the divided difference of second order we have

(∆
(2)
k ud)(x̃) = h−2(ud(x1, . . . , xk + 2h, . . . , xm)

− 2ud(x1, . . . , xk + h, . . . , xm) + ud(x1, . . . , xk, . . . , xm))

and its discrete Fourier transform

˜
(∆

(2)
k ud)(ξ) = h−2(e−ih·ξk − 1)2ũd(ξ).

Thus, for the discrete Laplacian we have

(∆dud)(x̃) =

m∑
k=1

(∆
(2)
k ud)(x̃),

so that

˜(∆dud)(ξ) = h−2
m∑
k=1

(e−ih·ξk − 1)2ũd(ξ).

We will use the discrete Fourier transform to introduce special discrete
Sobolev–Slobodetskii spaces which are very convenient for studying discrete
pseudo-differential operators and related equations.

2.2 Definitions and notations

2.2.1 Discrete spaces and digital distributions

Now we will introduce the basic space S(hZm) which consists of discrete func-
tions with finite semi-norms

|ud| = sup
x̃∈hZm

(1 + |x̃|)l|∆(k)ud(x̃)|

for arbitrary l ∈ N,k = (k1, . . . , km), kr ∈ N, r = 1, . . . ,m, where

∆(k)ud(x̃) = ∆k1
1 . . . , ∆km

m ud(x̃).

In other words, the space S(hZm) is a discrete analogue of the Schwartz
space S(Rm) of infinitely differentiable rapidly decreasing at infinity functions.
Usually the space of distributions over the basic space S(Rm) is denoted by
S′(Rm).

Digital distribution we call an arbitrary linear continuous functional defined
on S(hZm). A set of such digital distributions we will denote by S′(hZm), and
a value of the functional fd on the basic function ud will be denoted by (fd, ud).

Together with the space S(hZm) we consider the space D(hZm) consisting
of discrete functions with a compact (finite) support. We say that fd = 0 in the
discrete domain Md ≡M ∩hZm,M ⊂ Rm, if (fd, ud) = 0,∀ud ∈ D(Md), where
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D(Md) ⊂ D(hZm) consists of discrete functions whose supports belong to Md.

If we will denote M̃d a union of such Md, where fd = 0 then by definition
supp fd = hZm \ M̃d.

As usual [28] we can define some simplest operations in the space S′(hZm)
excluding the differentiation (see below), and a convergence is defined as a weak
convergence in the space of functionals S′(hZm).

If fd(x̃) is a local summable function then one can define the digital distri-
bution fd by the formula

(fd, ud) =
∑

x̃∈hZm
fd(x̃)ud(x̃)hm, ∀ud ∈ S(hZm). (2.1)

Such distributions we call regular digital distributions. But there are so-
called singular digital distributions like the Dirac mass-function (δd, ud) =
ud(0), which can not be represented by the above formula (2.1).

2.2.2 Digital distributions and the Liouville theorem

Here we will consider our discrete functions from distribution point of view [28].
For simplicity we consider one-dimensional case because a multidimensional
situation will be almost the same.

A multiplication by basic function. If ϕ(x̃) is a discrete function such that
for some l

|ϕ(x̃)| ≤ c|x̃|l, ∀x̃ ∈ hZm,

one can define the discrete distribution ϕfd for arbitrary fd ∈ S′(hZm) by the
formula

(ϕfd, ud) = (fd, ϕud), ∀ud ∈ S(hZm).

A shift. If fd, ud ∈ S(hZ), we can define the shift (Thfd)(x̃) ≡ fd(x̃+ h) by
the following formula

(Thfd, ud) =
∑

x̃∈hZm
(Thfd)(x̃)ud(x̃)h =

∑
x̃∈hZm

fd(x̃+ h)ud(x̃)h

=
∑

x̃∈hZm
fd(x̃)ud(x̃− h)h =

∑
x̃∈hZm

fd(x̃)(T−hud)(x̃)h = (fd, T−hud),

so we can take the following definition for a shift of digital distribution

(Thfd, ud) = (fd, T−hud), ∀ud ∈ S(hZm). (2.2)

A difference operator. For ud ∈ S(hZm) the difference operators of first
order are defined

(∆
(1)
+ ud)(x̃) =

1

h
(ud(x̃+ h)− ud(x̃)), (∆

(1)
− ud)(x̃) =

1

h
(ud(x̃− h)− ud(x̃)),

and thus according to (2.2) we can write for fd ∈ S(hZ)

(∆
(1)
+ fd, ud) =

∑
x̃∈hZ

(∆(1)fd)(x̃)ud(x̃)h =
1

h

∑
x̃∈hZ

fd(x̃+ h)ud(x̃)h

Math. Model. Anal., 23(3):492–506, 2018.
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− 1

h

∑
x̃∈hZ

fd(x̃)ud(x̃)h =
1

h

∑
ỹ∈hZ

fd(ỹ)ud(ỹ − h)h

− 1

h

∑
ỹ∈hZ

fd(ỹ)ud(ỹ)h =
∑
ỹ∈hZ

fd(ỹ)(∆(1)ud)(ỹ)h = (fd, ∆
(1)
− ud).

It implies the following

Definition 1. For digital distribution fd ∈ S′(hZ) the digital distribution
∆(1)fd is defined by the formula

(∆
(1)
+ fd, ud) = (fd, ∆

(1)
− ud), ∀ud ∈ S(hZ).

Below we will not distinguish ∆±. One can define the divided difference of
k-th order ∆(k)fd for a digital distribution fd by induction

∆(k)fd = ∆(1)(∆(k−1)fd).

We need some difference analogue for a digital distribution supported at
the origin. To obtain these properties we need some preliminary results, these
are discrete analogues of Schwartz’s theorems [28].

Proposition 1. fd ∈ S′(hZm) iff there exist a positive number C and integer
p ≥ 0 such that for arbitrary ud ∈ S(hZm) the following inequality

|(fd, ud)| ≤ C|ud|p

holds, where
|ud|p = sup

k≤p, x̃∈hZm
(1 + |x̃|)p|(∆(k)ud)(x̃)|.

Proof. We will prove the necessity only because one can prove the immedi-
ately. Let fd ∈ S′(hZm). We will prove this property by contradiction and
suppose that there are no such numbers C and p. Then there is a sequence
{ud,k}∞k=1, ud,k ∈ S(hZm), such that

|(fd, ud,k)| ≥ k|ud,k|k. (2.3)

The following sequence

vd,k(x̃) =
ud,k(x̃)√
k|ud,k|k

, k = 1, 2, . . .

tends to zero in S(hZm) since for k ≥ s, k ≥ r we have

|x̃s∆(r)vd,k(x̃)| = |x̃
s∆(s)ud,k(x̃)|√
k|ud,k|k

≤ 1√
k
.

Since the functional fd is continuous in S(hZm), we obtain

lim
k→∞

(fd, vd,k) = 0.
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On the other hand, we obtain from (2.3)

|(fd, vd,k)| = |(fd, ud,k)|√
k|ud,k|k

≥
√
k.

This contradiction proves the Proposition 1. ut

Lemma 1. If a digital distribution fd ∈ S′(hZ) is supported at zero then it is
a finite span of divided differences of f up to n-th order. In other words

fd(x̃) =

n∑
k=0

ck(∆(k)δd)(x̃).

Proof. Since supp fd = {0}, then for arbitrary k > 0

fd = ϕ(kx̃)fd, (2.4)

where ϕ(x̃) ∈ S(hZm) is equal to 1 in some neighbourhood of 0, and equals to
0 for |x̃| > 1. According to the Proposition 1, we have

|(fd, ud)| ≤ C|ud|n, ∀ud ∈ S(hZm) (2.5)

for some C > 0, n ≥ 0, non-depending on ud.

For arbitrary ud ∈ S(hZm) we set

ud,n(x̃) = ud,n(x̃)−
n∑
l=0

(∆(l)ud)(0)

l!
x̃l, vk(x̃) = ud,n(x̃)ϕ(kx̃).

Taking into account that

(∆(r)ud,n)(x̃) = O(|x̃|n+1−r), x̃→∞ (r ≤ n),

(∆(s)ϕ)(kx̃) = O(ks), k →∞,

and applying (2.5) to vk(x̃) we obtain

|(fd, vk)| ≤ C|vk|n = C sup
l≤n,|x̃|≤ 1

k

(1 + |x̃|)n|∆(l) (ud,n(x̃)ϕ(kx̃))

≤ C1 max
l≤n,|x̃|≤ 1

k

l∑
s=0

|∆(s)ud,n(x̃)||∆(l−s)ϕ(kx̃)|

≤ C2 max
l≤n

l∑
s=0

k−n−1+skl−s =
C3

k
→ 0, k →∞.

But according to (2.4) (fd, vk) does not depend on k. Thus, we have

(fd, v1) = lim
k→∞

(fd, vk) = 0.

Math. Model. Anal., 23(3):492–506, 2018.
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Therefore, using (2.4) for k = 1 we obtain the following representation

(fd, ud) = (ϕfd, ud) = (fd, ϕud) = (fd, v1 +

n∑
l=0

(∆(l)ud)(0)

l!
x̃l)

= (fd, v1) +

n∑
l=0

(∆(l)ud)(0)

l!
(fd, x̃

lϕ(x̃)) =

n∑
l=0

Cl(∆
(l)δd, ud),

where we set Cl = (fd, x̃
lϕ). One can easily prove a uniqueness of such repre-

sentation. ut

The Fourier transform. Let us note that every digital distribution fd ∈
S′(hZ) can be treated as a distribution fd ∈ S′(R) supported on hZ. Since the
Fourier transform for a distribution fd is defined by the standard formula

(Ffd, u) = (fd, Fu), ∀u ∈ S(R),

then we have
(F∆(1)fd, u) = (fd, ∆

(1)Fu).

Now we will calculate the last Fourier transform. For u ∈ S(R) we have

(∆(1)ũ)(ξ) =
1

h
(ũ(ξ + h)− ũ(ξ)) =

1

h

∫ +∞

−∞
(e−ihx − 1)e−ixξu(x)dx,

so that for fd ∈ S′(R)

(fd, ∆
(1)Fu) = (fd, F (

e−ihx − 1

h
u(x))

= (Ffd,
e−ihx − 1

h
u) = (

e−ihξ − 1

h
Ffd, u).

If fd ∈ S(hZ), then

(Fd∆
(1)
+ fd)(ξ) =

∑
x̃∈hZ

e−ix̃·ξ
fd(x̃+ h)− fd(x̃)

h
h =

e−ihξ − 1

h
(Fdfd)(ξ),

and the latter formula is agreed with above calculations.

Corollary 1. For the digital distribution

fd(x̃) =

n∑
k=0

ck(∆(k)δd)(x̃)

we have the Fourier transform f̃d(ξ) =
n∑
k=0

ckζ
k, where ζ = ~(e−ihξ − 1).

Remark 1. We use the term ”Liouville theorem” because such functions are
related with holomorphy properties their Fourier transforms (see, for example,
[3, 25]).
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2.2.3 Discrete Hs-spaces

Let us denote ζ2 = h−2
m∑
k=1

(e−ih·ξk − 1)2 and introduce the following

Definition 2. The space Hs(hZm) is a closure of the space S(hZm) with re-
spect to the norm

||ud||s =

(∫
~Tm

(1 + |ζ2|)s|ũd(ξ)|2dξ
)1/2

. (2.6)

We would like to note that a lot of properties for such spaces were studied
in [4].

Further, let D ⊂ Rm be a domain, and Dd = D∩hZm be a discrete domain.

Definition 3. The space Hs(Dd) consists of discrete functions from Hs(hZm)
which supports belong to Dd. A norm in the space Hs(Dd) is induced by a
norm of the spaceHs(hZm). The spaceHs

0(Dd) consists of discrete functions ud
with a support in Dd, and these discrete functions should admit a continuation
into the whole Hs(hZm). A norm in the Hs

0(Dd) is given by the formula

||ud||+s = inf||`ud||s,

where infimum is taken over all continuations `.

The Fourier image of the space Hs(Dd) will be denoted by H̃s(Dd). Such
spaces were studied in detail in the paper [4]. Of course, all norms (2.6) are
equivalent to the L2-norm but this equivalence depends on h. Let us note that
all constants below in our considerations do not depend on h.

3 Digital pseudo-differential operators and discrete
equations

3.1 Operators and equations

Let Ãd(ξ) be a periodic function in Rm with the basic cube of periods ~Tm.
Such functions are called symbols. As usual, we will define a digital pseudo-
differential operator by its symbol.

Definition 4. A digital pseudo-differential operator Ad in a discrete domain
Dd is called an operator of the following kind

(Adud)(x̃) =
∑

ỹ∈hZm

∫
~Tm

Ãd(ξ)e
i(x̃−ỹ)·ξũd(ξ)dξ, x̃ ∈ Dd.

An operator Ad is called an elliptic operator if

ess inf
ξ∈~Tm

|Ãd(ξ)| > 0.

First, as usual, we define the operator Ad on the dense set S(hZm) and then
extend it on more general space.

Math. Model. Anal., 23(3):492–506, 2018.
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Remark 2. One can introduce the symbol Ãd(x̃, ξ) depending on a spatial vari-
able x̃ and define a general pseudo-differential operator by the formula

(Adud)(x̃) =
∑

ỹ∈hZm

∫
~Tm

Ãd(x̃, ξ)e
i(x̃−ỹ)·ξũd(ξ)dξ, x̃ ∈ Dd.

For studying such operators and related equations one needs to use more
fine and complicated technique.

Definition 5. By definition the class Eα includes symbols satisfying the fol-
lowing condition

c1(1 + |ζ2|)α/2 ≤ |Ad(ξ)| ≤ c2(1 + |ζ2|)α/2 (3.1)

with universal positive constants c1, c2 non-depending on h and the symbol
Ad(ξ). The number α ∈ R is called an order of a digital pseudo-differential
operator Ad.

Obviously, operator Ad satisfying (3.1) is an elliptic operator. Using the last
definition one can easily get the following property.

Lemma 2. A digital pseudo-differential operator Ad ∈ Eα is a linear bounded
operator Hs(hZm)→ Hs−α(hZm).

We study the equation

(Adud)(x̃) = vd(x̃), x̃ ∈ Dd, (3.2)

assuming that we are interested in a solution ud ∈ Hs(Dd), taking into account
vd ∈ Hs−α

0 (Dd).
Main difficulty for this problem is related to a geometry of the domain D.

Indeed, if D = Rm then the condition (3.1) guarantees the unique solvability for
the equation (3.2). We will consider here only so-called canonical domains and
simplest digital pseudo-differential operators with symbols non-depending on
a spatial variable x̃. This fact is dictated by using in future the local principle.
The last asserts that for a Fredholm solvability of the general equation (3.2)
with symbol Ad(x̃, ξ) in an arbitrary discrete domain Dd, one needs to obtain
invertibility conditions for so-called local representatives of the operator Ad,
i.e. for an operator with symbol Ad(·, ξ) in a special canonical domain.

Earlier authors have extracted some canonical domains, namely D = Rm,
Rm+ , Ca+, where Rm+ = {x ∈ Rm : x = (x′, xm), xm > 0}, Ca+ = {x ∈ Rm :
xm > a|x′|, a > 0}. Methods for studying two last cases are related to special
boundary value problems for holomorphic functions [19,20,22,24,26,27].

Everywhere below we study the case D = Rm+ .

3.2 Periodic Riemann boundary value problem

For studying the discrete half-space case we need a special technique like con-
tinue case [3, 5, 12]. It was found for this case [20, 22] the periodic analogue of
the Hilbert transform [3,5, 11,12] with the parameter ξ′

(Hper
ξ′ ũd)(ξ

′, ξm) =
1

2πi
v.p.

∫ ~π

−~π
cot

h(ξm − ηm)

2
ũd(ξ

′, ηm)dηm,
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where

v.p.

∫ ~π

−~π
cot

h(ξm − ηm)

2
ũd(ξ

′, ηm)dηm

= lim
ε→0+

(∫ ξm−ε

−~π
+

∫ ~π

ξm+ε

)
cot

h(ξm − ηm)

2
ũd(ξ

′, ηm)dηm.

This operator generates two projectors

P per
ξ′ =

1

2
(I +Hper

ξ′ ), Qper
ξ′ =

1

2
(I −Hper

ξ′ ),

which permit to formulate and solve the following problem.

Let us denote Π± half-strips in the complex plane C

Π± = {z ∈ C : z = s+ iτ, s ∈ [−π, π],±τ > 0},

and let H±(~Tm) ⊂ L2(~Tm) be subspaces of functions u(ξ′, ξm ± iτ) which
admit holomorphic continuation in the strips ~Π± and satisfy the condition∫ ~π

−~π
|u(ξ′, ξm ± iτ)|2dξm < +∞, ∀τ > 0, ξ′ ∈ ~Tm−1.

A statement of the problem: find two functions Φ± ∈ H±(~Tm), which satisfy
the linear relation

Φ+(ξ) = G(ξ)Φ−(ξ) + g(ξ), (3.3)

where G(ξ), g(ξ) are given functions defined on ~Tm.

If G(ξ) ≡ 1 then the problem (3.3) is called a jump problem. For g(ξ) ∈
L2(~Tm) the jump problem has unique solution [19,20,22]

Φ+ = P per
ξ′ g, Φ− = −Qper

ξ′ g.

The last assertion correspond to the unique representation as the direct sum

L2(~Tm) = H+(~Tm)⊕H−(~Tm).

This fact can be generalized for more wide spaces Hs(~Tm) using a bound-
edness of the operator Hper

ξ′ in such spaces for small |s| < 1/2 (see also Theo-
rem 1 below).

4 A general solution

4.1 Index of factorization

To study the general Riemann boundary value problem we will use the following
concept.

Math. Model. Anal., 23(3):492–506, 2018.
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Definition 6. Periodic factorization of an elliptic symbol Ad(ξ) ∈ Eα is called
its representation in the form

Ad(ξ) = Ad,+(ξ)Ad,−(ξ),

where the factors Ad,±(ξ) admit an analytical continuation into half-strips ~Π±
on the last variable ξm for almost all fixed ξ′ ∈ ~Tm−1 and satisfy the estimates

|A±1
d,+(ξ)| ≤ c1(1 + |ζ̂2|)±æ

2 , |A±1
d,−(ξ)| ≤ c2(1 + |ζ̂2|)±

α−æ
2

with constants c1, c2 non-depending on h,

ζ̂2 ≡ ~2

(
m−1∑
k=1

(e−ihξk − 1)2 + (e−ih(ξm+iτ) − 1)2

)
, ξm + iτ ∈ ~Π±.

The number æ ∈ R is called an index of periodic factorization.

Remark 3. For an elliptic symbol Ad(ξ), such periodic factorization always ex-
ists(see [3, 20]).

For some simple cases one can use the topological formula [3, 20]

æ =
1

2π

∫ ~π

−~π
d argAd(·, ξm),

where Ad(·, ξm) means that ξ′ ∈ ~Tm−1 is fixed, and the integral is the integral
in Stieltjes sense. It means that we need to calculate divided by 2π variation
of the argument of the symbol Ad(ξ) when ξm varies from −~π to ~π under
fixed ξ′.

Example 2. Let Ad(ξ) = k2+ξ̂2, k ∈ R, such that the condition (3.1) is satisfied,
in other words Ad is the discrete Laplacian plus k2I. The variation of an
argument mentioned above can be calculated immediately, and it equals to 1.

As we will see the index of factorization very influences on the solvability picture
of the equation (3.1). For special case we have the following result.

Theorem 1. If the elliptic symbol Ãd(ξ) ∈ Eα admits periodic factorization
with index æ so that |æ − s| < 1/2, then the the equation (3.2) has unique
solution in the space Hs(Dd) for arbitrary right-hand side vd ∈ Hs−α(Dd),

ũd(ξ) = Ã−1
d,+(ξ)P per

ξ′ (Ã−1
d,−(ξ) ˜̀vd(ξ)). (4.1)

Remark 4. It is easy to see that the solution does not depend on choice of
continuation `vd.

Here we consider more complicated case when the condition |æ− s| < 1/2 does
not hold. There are two possibilities in this situation, and we consider one case
which leads to typical boundary value problems.
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Theorem 2. Let æ − s = n + δ, n ∈ N, |δ| < 1/2. Then a general solution of
the equation (3.2) in Fourier images has the following form

ũd(ξ) = Ã−1
d,+(ξ)Xn(ξ)P per

ξ′ (X−1
n (ξ)Ã−1

d,−(ξ) ˜̀vd(ξ)) + Ã−1
d,+(ξ)

n−1∑
k=0

ck(ξ′)ζ̂km,

where Xn(ξ) is an arbitrary polynomial of order n of variables ζ̂k = ~(e−ihξk −
1), k = 1, . . . ,m, satisfying the condition (3.1), ck(ξ′), j = 0, 1, . . . , n − 1, are
arbitrary functions from Hsk(hTm−1), sk = s− æ + k − 1/2.

The a priori estimate

||ud||s ≤ a
(
||f ||+s−α +

n−1∑
k=0

[ck]sk
)

holds, where [·]sk denotes a norm in the space Hsk(hTm−1), and the constant
a does not depend on h.

Proof. We will use factorization method proving the theorem according to
[3], although the same statement can be obtained by the method of periodic
Riemann boundary value problem [19, 20, 22]. Since vd ∈ Hs−α

0 (Qd), we can
continue it to lvd ∈ Hs−α(hZm). Let us introduce

wd(x̃) = lvd(x̃)− (Adud)(x̃),

so that wd(x̃) ≡ 0, ∀x̃ ∈ Dd. Further we write

(Adud)(x̃) + wd(x̃) = lvd(x̃)

and apply the discrete Fourier transform

Ad(ξ)ũd(ξ) + w̃d(ξ) = l̃vd(ξ).

After factorization of our symbol Ad(ξ), we have

Ad,+(ξ)ũd(ξ) +A−1
d,−(ξ)w̃d(ξ) = A−1

d,−(ξ)l̃vd(ξ).

Now we need to study functional spaces in the last equality. Since l̃vd(ξ) ∈
H̃s−α(hZm), then according to properties of A−1

d,−(ξ) we obtain A−1
d,−(ξ)l̃vd(ξ) ∈

H̃s−æ(hZm). Let Xn(ξ) be an arbitrary polynomial of order n of variables

ζ̂k = ~(e−ihξk − 1), k = 1, . . . ,m, satisfying the condition (3.1).

Then X−1
n (ξ)A−1

d,−(ξ)l̃vd(ξ) ∈ H̃−δ(hZm), so that we can write the following
decomposition

X−1
n (ξ)A−1

d,−(ξ)l̃vd(ξ) = f+(ξ) + f−(ξ),

where

f+(ξ) = (P per
ξ′ (X−1

n A−1
d,− l̃vd))(ξ), f−(ξ) = (Qper

ξ′ (X−1
n A−1

d,− l̃vd))(ξ),
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according to the jump problem and Theorem 1. Moreover, f+ ∈ H̃−δ(Qd), f− ∈
H̃−δ(hZm \Qd). Therefore,

Ad,+(ξ)ũd(ξ) +A−1
d,−(ξ)w̃d(ξ) = Xn(ξ)f+(ξ) +Xn(ξ)f−(ξ),

or in other words,

Ad,+(ξ)ũd(ξ)−Xn(ξ)f+(ξ) = Xn(ξ)f−(ξ)−A−1
d,−(ξ)w̃d(ξ).

Thus, we have that the left-hand side of the last equality belongs to H̃s−æ(Qd),

and the right-hand side belongs to H̃s−æ(hZm \ Qd). Now, if we take inverse
discrete Fourier transform for both left-hand side and right-hand one we ob-
tain that these are discrete distribution supported on the discrete hyper-plane
hZm−1. Therefore, according to Lemma 1, we obtain

Ad,+(ξ)ũd(ξ)−Xn(ξ)f+(ξ) =

n∑
k=0

ck(ξ′)ζ̂km,

or after re-writing

ũd(ξ) = Ã−1
d,+(ξ)Xn(ξ)P per

ξ′ (X−1
n (ξ)Ã−1

d,−(ξ) ˜̀vd(ξ)) + Ã−1
d,+(ξ)

n∑
k=0

ck(ξ′)ζ̂km.

The left question is how much summands we need in the right-hand side.
Counting principle is a very simple because every summand should belong
to the space H̃s(~Tm).

Let us consider the summand ck(ξ′)ζ̂km. Taking into account that order of

A−1
d,+(ξ) is −æ, we need to verify the finiteness of the Hs−æ-norm for ck(ξ′)ζ̂km.

We have

||ck(∆(k)
m δ)||2s−æ =

∫
~Tm

(1 + |ζ2
h|)s−æ||ck(ξ′)ζ̂km|2dξ

=

∫
~Tm

(1 + |ζ2
h|)s−æ||ck(ξ′)|2|ζ̂km|2dξ ≤ a1~2(s−æ+k+1/2)

×
∫
~Tm−1

|ck(ξ′)|2dξ′ ≤ a2

∫
~Tm−1

(1 + |ζ ′2h|)s−æ+k+1/2|ck(ξ′)|2dξ′,

where ξ′ = (ξ1, . . . , ξm−1), ζ ′
2
h = ~2

m−1∑
k=1

(e−ihξk − 1)2, and the constants a1, a2

do not depend on h. The last summand should be (n− 1)-th because for n-th
summand we obtain a positive growth: for k = n we have sn = s−æ−n+1/2 =
−n− δ + n+ 1/2 = −δ + 1/2 > 0. ut

Corollary 2. Let æ − s = n + δ,∈ N, |δ| < 1/2, vd ≡ 0. A general solution of
the equation (3.2) has the following form

ũd(x̃
′, x̃m) = Ã−1

d,+(ξ)

n−1∑
k=0

ck(ξ′)ζ̂km.

The Theorem 2 implies that if we want to have a unique solution in the
case æ − s = n + δ, n ∈ N, |δ| < 1/2, we need some additional conditions to
determine uniquely unknown functions ck(ξ′), k = 0, 1, . . . , n− 1.
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5 Conclusions

The proof of the Theorem 1 and a solvability theorems for simple boundary
value problems for the equation (3.2) will appear in Springer Proc. Math. &
Stat. Consideration and constructions for the left case æ − s = −n + δ, n ∈
N, |δ| < 1/2, will appear in Tatra Mt. Math. Publ.
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